ia64/xen-unstable
changeset 14295:9f8e996a678d
[IA64] Add arch/ia64/kernel/time.c to spare tree for steal time accounting
Signed-off-by: Atsushi SAKAI <sakaia@jp.fujitsu.com>
Signed-off-by: Atsushi SAKAI <sakaia@jp.fujitsu.com>
author | awilliam@xenbuild2.aw |
---|---|
date | Wed Mar 07 12:45:08 2007 -0700 (2007-03-07) |
parents | 210858e4f6d5 |
children | 4e367aa89895 |
files | linux-2.6-xen-sparse/arch/ia64/kernel/time.c |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/linux-2.6-xen-sparse/arch/ia64/kernel/time.c Wed Mar 07 12:45:08 2007 -0700 1.3 @@ -0,0 +1,306 @@ 1.4 +/* 1.5 + * linux/arch/ia64/kernel/time.c 1.6 + * 1.7 + * Copyright (C) 1998-2003 Hewlett-Packard Co 1.8 + * Stephane Eranian <eranian@hpl.hp.com> 1.9 + * David Mosberger <davidm@hpl.hp.com> 1.10 + * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> 1.11 + * Copyright (C) 1999-2000 VA Linux Systems 1.12 + * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com> 1.13 + */ 1.14 + 1.15 +#include <linux/cpu.h> 1.16 +#include <linux/init.h> 1.17 +#include <linux/kernel.h> 1.18 +#include <linux/module.h> 1.19 +#include <linux/profile.h> 1.20 +#include <linux/sched.h> 1.21 +#include <linux/time.h> 1.22 +#include <linux/interrupt.h> 1.23 +#include <linux/efi.h> 1.24 +#include <linux/profile.h> 1.25 +#include <linux/timex.h> 1.26 + 1.27 +#include <asm/machvec.h> 1.28 +#include <asm/delay.h> 1.29 +#include <asm/hw_irq.h> 1.30 +#include <asm/ptrace.h> 1.31 +#include <asm/sal.h> 1.32 +#include <asm/sections.h> 1.33 +#include <asm/system.h> 1.34 + 1.35 +extern unsigned long wall_jiffies; 1.36 + 1.37 +volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */ 1.38 + 1.39 +#ifdef CONFIG_IA64_DEBUG_IRQ 1.40 + 1.41 +unsigned long last_cli_ip; 1.42 +EXPORT_SYMBOL(last_cli_ip); 1.43 + 1.44 +#endif 1.45 + 1.46 +static struct time_interpolator itc_interpolator = { 1.47 + .shift = 16, 1.48 + .mask = 0xffffffffffffffffLL, 1.49 + .source = TIME_SOURCE_CPU 1.50 +}; 1.51 + 1.52 +static irqreturn_t 1.53 +timer_interrupt (int irq, void *dev_id, struct pt_regs *regs) 1.54 +{ 1.55 + unsigned long new_itm; 1.56 + 1.57 + if (unlikely(cpu_is_offline(smp_processor_id()))) { 1.58 + return IRQ_HANDLED; 1.59 + } 1.60 + 1.61 + platform_timer_interrupt(irq, dev_id, regs); 1.62 + 1.63 + new_itm = local_cpu_data->itm_next; 1.64 + 1.65 + if (!time_after(ia64_get_itc(), new_itm)) 1.66 + printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n", 1.67 + ia64_get_itc(), new_itm); 1.68 + 1.69 + profile_tick(CPU_PROFILING, regs); 1.70 + 1.71 + while (1) { 1.72 + update_process_times(user_mode(regs)); 1.73 + 1.74 + new_itm += local_cpu_data->itm_delta; 1.75 + 1.76 + if (smp_processor_id() == time_keeper_id) { 1.77 + /* 1.78 + * Here we are in the timer irq handler. We have irqs locally 1.79 + * disabled, but we don't know if the timer_bh is running on 1.80 + * another CPU. We need to avoid to SMP race by acquiring the 1.81 + * xtime_lock. 1.82 + */ 1.83 + write_seqlock(&xtime_lock); 1.84 + do_timer(regs); 1.85 + local_cpu_data->itm_next = new_itm; 1.86 + write_sequnlock(&xtime_lock); 1.87 + } else 1.88 + local_cpu_data->itm_next = new_itm; 1.89 + 1.90 + if (time_after(new_itm, ia64_get_itc())) 1.91 + break; 1.92 + } 1.93 + 1.94 + do { 1.95 + /* 1.96 + * If we're too close to the next clock tick for 1.97 + * comfort, we increase the safety margin by 1.98 + * intentionally dropping the next tick(s). We do NOT 1.99 + * update itm.next because that would force us to call 1.100 + * do_timer() which in turn would let our clock run 1.101 + * too fast (with the potentially devastating effect 1.102 + * of losing monotony of time). 1.103 + */ 1.104 + while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2)) 1.105 + new_itm += local_cpu_data->itm_delta; 1.106 + ia64_set_itm(new_itm); 1.107 + /* double check, in case we got hit by a (slow) PMI: */ 1.108 + } while (time_after_eq(ia64_get_itc(), new_itm)); 1.109 + return IRQ_HANDLED; 1.110 +} 1.111 + 1.112 +/* 1.113 + * Encapsulate access to the itm structure for SMP. 1.114 + */ 1.115 +void 1.116 +ia64_cpu_local_tick (void) 1.117 +{ 1.118 + int cpu = smp_processor_id(); 1.119 + unsigned long shift = 0, delta; 1.120 + 1.121 + /* arrange for the cycle counter to generate a timer interrupt: */ 1.122 + ia64_set_itv(IA64_TIMER_VECTOR); 1.123 + 1.124 + delta = local_cpu_data->itm_delta; 1.125 + /* 1.126 + * Stagger the timer tick for each CPU so they don't occur all at (almost) the 1.127 + * same time: 1.128 + */ 1.129 + if (cpu) { 1.130 + unsigned long hi = 1UL << ia64_fls(cpu); 1.131 + shift = (2*(cpu - hi) + 1) * delta/hi/2; 1.132 + } 1.133 + local_cpu_data->itm_next = ia64_get_itc() + delta + shift; 1.134 + ia64_set_itm(local_cpu_data->itm_next); 1.135 +} 1.136 + 1.137 +static int nojitter; 1.138 + 1.139 +static int __init nojitter_setup(char *str) 1.140 +{ 1.141 + nojitter = 1; 1.142 + printk("Jitter checking for ITC timers disabled\n"); 1.143 + return 1; 1.144 +} 1.145 + 1.146 +__setup("nojitter", nojitter_setup); 1.147 + 1.148 + 1.149 +void __devinit 1.150 +ia64_init_itm (void) 1.151 +{ 1.152 + unsigned long platform_base_freq, itc_freq; 1.153 + struct pal_freq_ratio itc_ratio, proc_ratio; 1.154 + long status, platform_base_drift, itc_drift; 1.155 + 1.156 + /* 1.157 + * According to SAL v2.6, we need to use a SAL call to determine the platform base 1.158 + * frequency and then a PAL call to determine the frequency ratio between the ITC 1.159 + * and the base frequency. 1.160 + */ 1.161 + status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM, 1.162 + &platform_base_freq, &platform_base_drift); 1.163 + if (status != 0) { 1.164 + printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status)); 1.165 + } else { 1.166 + status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio); 1.167 + if (status != 0) 1.168 + printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status); 1.169 + } 1.170 + if (status != 0) { 1.171 + /* invent "random" values */ 1.172 + printk(KERN_ERR 1.173 + "SAL/PAL failed to obtain frequency info---inventing reasonable values\n"); 1.174 + platform_base_freq = 100000000; 1.175 + platform_base_drift = -1; /* no drift info */ 1.176 + itc_ratio.num = 3; 1.177 + itc_ratio.den = 1; 1.178 + } 1.179 + if (platform_base_freq < 40000000) { 1.180 + printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n", 1.181 + platform_base_freq); 1.182 + platform_base_freq = 75000000; 1.183 + platform_base_drift = -1; 1.184 + } 1.185 + if (!proc_ratio.den) 1.186 + proc_ratio.den = 1; /* avoid division by zero */ 1.187 + if (!itc_ratio.den) 1.188 + itc_ratio.den = 1; /* avoid division by zero */ 1.189 + 1.190 + itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den; 1.191 + 1.192 + local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ; 1.193 + printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, " 1.194 + "ITC freq=%lu.%03luMHz", smp_processor_id(), 1.195 + platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000, 1.196 + itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000); 1.197 + 1.198 + if (platform_base_drift != -1) { 1.199 + itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den; 1.200 + printk("+/-%ldppm\n", itc_drift); 1.201 + } else { 1.202 + itc_drift = -1; 1.203 + printk("\n"); 1.204 + } 1.205 + 1.206 + local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den; 1.207 + local_cpu_data->itc_freq = itc_freq; 1.208 + local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC; 1.209 + local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT) 1.210 + + itc_freq/2)/itc_freq; 1.211 + 1.212 + if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) { 1.213 + itc_interpolator.frequency = local_cpu_data->itc_freq; 1.214 + itc_interpolator.drift = itc_drift; 1.215 +#ifdef CONFIG_SMP 1.216 + /* On IA64 in an SMP configuration ITCs are never accurately synchronized. 1.217 + * Jitter compensation requires a cmpxchg which may limit 1.218 + * the scalability of the syscalls for retrieving time. 1.219 + * The ITC synchronization is usually successful to within a few 1.220 + * ITC ticks but this is not a sure thing. If you need to improve 1.221 + * timer performance in SMP situations then boot the kernel with the 1.222 + * "nojitter" option. However, doing so may result in time fluctuating (maybe 1.223 + * even going backward) if the ITC offsets between the individual CPUs 1.224 + * are too large. 1.225 + */ 1.226 + if (!nojitter) itc_interpolator.jitter = 1; 1.227 +#endif 1.228 + register_time_interpolator(&itc_interpolator); 1.229 + } 1.230 + 1.231 + /* Setup the CPU local timer tick */ 1.232 + ia64_cpu_local_tick(); 1.233 +} 1.234 + 1.235 +static struct irqaction timer_irqaction = { 1.236 + .handler = timer_interrupt, 1.237 + .flags = IRQF_DISABLED, 1.238 + .name = "timer" 1.239 +}; 1.240 + 1.241 +void __devinit ia64_disable_timer(void) 1.242 +{ 1.243 + ia64_set_itv(1 << 16); 1.244 +} 1.245 + 1.246 +void __init 1.247 +time_init (void) 1.248 +{ 1.249 + register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction); 1.250 + efi_gettimeofday(&xtime); 1.251 + ia64_init_itm(); 1.252 + 1.253 + /* 1.254 + * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the 1.255 + * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC). 1.256 + */ 1.257 + set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); 1.258 +} 1.259 + 1.260 +/* 1.261 + * Generic udelay assumes that if preemption is allowed and the thread 1.262 + * migrates to another CPU, that the ITC values are synchronized across 1.263 + * all CPUs. 1.264 + */ 1.265 +static void 1.266 +ia64_itc_udelay (unsigned long usecs) 1.267 +{ 1.268 + unsigned long start = ia64_get_itc(); 1.269 + unsigned long end = start + usecs*local_cpu_data->cyc_per_usec; 1.270 + 1.271 + while (time_before(ia64_get_itc(), end)) 1.272 + cpu_relax(); 1.273 +} 1.274 + 1.275 +void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay; 1.276 + 1.277 +void 1.278 +udelay (unsigned long usecs) 1.279 +{ 1.280 + (*ia64_udelay)(usecs); 1.281 +} 1.282 +EXPORT_SYMBOL(udelay); 1.283 + 1.284 +static unsigned long long ia64_itc_printk_clock(void) 1.285 +{ 1.286 + if (ia64_get_kr(IA64_KR_PER_CPU_DATA)) 1.287 + return sched_clock(); 1.288 + return 0; 1.289 +} 1.290 + 1.291 +static unsigned long long ia64_default_printk_clock(void) 1.292 +{ 1.293 + return (unsigned long long)(jiffies_64 - INITIAL_JIFFIES) * 1.294 + (1000000000/HZ); 1.295 +} 1.296 + 1.297 +unsigned long long (*ia64_printk_clock)(void) = &ia64_default_printk_clock; 1.298 + 1.299 +unsigned long long printk_clock(void) 1.300 +{ 1.301 + return ia64_printk_clock(); 1.302 +} 1.303 + 1.304 +void __init 1.305 +ia64_setup_printk_clock(void) 1.306 +{ 1.307 + if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) 1.308 + ia64_printk_clock = ia64_itc_printk_clock; 1.309 +}