ia64/xen-unstable

view linux-2.6-xen-sparse/include/asm-xen/asm-x86_64/mach-xen/irq_vectors.h @ 8534:da7873110bbb

Tiny bootstrap cleanup.

Signed-off-by: Keir Fraser <keir@xensource.com>
author kaf24@firebug.cl.cam.ac.uk
date Mon Jan 09 19:46:46 2006 +0100 (2006-01-09)
parents 61b3b357d827
children
line source
1 /*
2 * This file should contain #defines for all of the interrupt vector
3 * numbers used by this architecture.
4 *
5 * In addition, there are some standard defines:
6 *
7 * FIRST_EXTERNAL_VECTOR:
8 * The first free place for external interrupts
9 *
10 * SYSCALL_VECTOR:
11 * The IRQ vector a syscall makes the user to kernel transition
12 * under.
13 *
14 * TIMER_IRQ:
15 * The IRQ number the timer interrupt comes in at.
16 *
17 * NR_IRQS:
18 * The total number of interrupt vectors (including all the
19 * architecture specific interrupts) needed.
20 *
21 */
22 #ifndef _ASM_IRQ_VECTORS_H
23 #define _ASM_IRQ_VECTORS_H
25 /*
26 * IDT vectors usable for external interrupt sources start
27 * at 0x20:
28 */
29 #define FIRST_EXTERNAL_VECTOR 0x20
31 #define SYSCALL_VECTOR 0x80
33 /*
34 * Vectors 0x20-0x2f are used for ISA interrupts.
35 */
37 #if 0
38 /*
39 * Special IRQ vectors used by the SMP architecture, 0xf0-0xff
40 *
41 * some of the following vectors are 'rare', they are merged
42 * into a single vector (CALL_FUNCTION_VECTOR) to save vector space.
43 * TLB, reschedule and local APIC vectors are performance-critical.
44 *
45 * Vectors 0xf0-0xfa are free (reserved for future Linux use).
46 */
47 #define INVALIDATE_TLB_VECTOR 0xfd
48 #define RESCHEDULE_VECTOR 0xfc
49 #define CALL_FUNCTION_VECTOR 0xfb
51 #define THERMAL_APIC_VECTOR 0xf0
52 /*
53 * Local APIC timer IRQ vector is on a different priority level,
54 * to work around the 'lost local interrupt if more than 2 IRQ
55 * sources per level' errata.
56 */
57 #define LOCAL_TIMER_VECTOR 0xef
58 #endif
60 #define SPURIOUS_APIC_VECTOR 0xff
61 #define ERROR_APIC_VECTOR 0xfe
63 /*
64 * First APIC vector available to drivers: (vectors 0x30-0xee)
65 * we start at 0x31 to spread out vectors evenly between priority
66 * levels. (0x80 is the syscall vector)
67 */
68 #define FIRST_DEVICE_VECTOR 0x31
69 #define FIRST_SYSTEM_VECTOR 0xef
71 /*
72 * 16 8259A IRQ's, 208 potential APIC interrupt sources.
73 * Right now the APIC is mostly only used for SMP.
74 * 256 vectors is an architectural limit. (we can have
75 * more than 256 devices theoretically, but they will
76 * have to use shared interrupts)
77 * Since vectors 0x00-0x1f are used/reserved for the CPU,
78 * the usable vector space is 0x20-0xff (224 vectors)
79 */
81 #define RESCHEDULE_VECTOR 0
82 #define CALL_FUNCTION_VECTOR 1
83 #define NR_IPIS 2
85 /*
86 * The maximum number of vectors supported by i386 processors
87 * is limited to 256. For processors other than i386, NR_VECTORS
88 * should be changed accordingly.
89 */
90 #define NR_VECTORS 256
92 #define FPU_IRQ 13
94 #define FIRST_VM86_IRQ 3
95 #define LAST_VM86_IRQ 15
96 #define invalid_vm86_irq(irq) ((irq) < 3 || (irq) > 15)
98 /*
99 * The flat IRQ space is divided into two regions:
100 * 1. A one-to-one mapping of real physical IRQs. This space is only used
101 * if we have physical device-access privilege. This region is at the
102 * start of the IRQ space so that existing device drivers do not need
103 * to be modified to translate physical IRQ numbers into our IRQ space.
104 * 3. A dynamic mapping of inter-domain and Xen-sourced virtual IRQs. These
105 * are bound using the provided bind/unbind functions.
106 */
108 #define PIRQ_BASE 0
109 #define NR_PIRQS 256
111 #define DYNIRQ_BASE (PIRQ_BASE + NR_PIRQS)
112 #define NR_DYNIRQS 256
114 #define NR_IRQS (NR_PIRQS + NR_DYNIRQS)
115 #define NR_IRQ_VECTORS NR_IRQS
117 #define pirq_to_irq(_x) ((_x) + PIRQ_BASE)
118 #define irq_to_pirq(_x) ((_x) - PIRQ_BASE)
120 #define dynirq_to_irq(_x) ((_x) + DYNIRQ_BASE)
121 #define irq_to_dynirq(_x) ((_x) - DYNIRQ_BASE)
123 #endif /* _ASM_IRQ_VECTORS_H */