
Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching with Xen LivePatch
Non disruptive patching of hypervisor

Ross Lagerwall
Citrix
Software Engineer

Konrad Rzeszutek Wilk
Oracle
Software Development Director

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Agenda:

•Non disruptive patching.

•Why would you want this?

•Other known patching techniques.

•Patching!

•Tiny details.

•Roadmap.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

What is this?

• Replacing compiled functions with new code.

• While hypervisor is running with guests.

const char *xen_extra_version(void)
{
 return XEN_EXTRAVERSION;
}

=>

const char *xen_extra_version(void)
{
 return “Hello World”;
}

push %rbp
mov %rsp,%rbp
lea 0x16698b(%rip),%rax
leaveq
retq

=>

push %rbp
mov %rsp,%rbp
lea 0x29333b(%rip),%rax
leaveq
retq

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Why binary patching? Why not migrate to another host?

• Local storage (SATA?),

• PCI pass-through (SR-IOV),

• NUMA locality,

• Giant guests (memory or CPU) and cannot fit on other hosts,

• Or system administrator simply does not want to reboot host:
– Can or want to only during scheduled maintaince windows.

• Patching is almost instantenous

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Known patching techniques.

• On Linux:
– kGraft (SuSE).

– kPatch (Red Hat).

– kSplice (Oracle).

– Linux live-patching (upstream) – common paths of kGraft + kPatch.

• On Xen:

– Xen Livepatch (Oracle, Citrix), with Amazon contributing to design.
• http://wiki.xenproject.org/wiki/LivePatch

• http://xenbits.xen.org/docs/unstable/misc/livepatch.html

– Amazon’s internal hotpatching design:
• http://www.linuxplumbersconf.net/2014/ocw//system/presentations/2421/original/xen_hotpatchin

g-2014-10-16.pdf

http://wiki.xenproject.org/wiki/LivePatch

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Non disruptive patching options.

Oracle Confidential – Internal/Restricted/Highly Restricted 6

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

And their functionality:

Level Name Function + Data Patching of data
structures

Inline
patching

Userspace kSplice userpace
(glibc,openssl)

Kernel

Linux hot patching

kGraft (SuSE)

kPatch (Red Hat) [via hooks]

kSplice

Hypervisor Xen livepatch [via hooks,
hopefully in Xen 4.8]

Oracle Confidential – Internal/Restricted/Highly Restricted 7

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching!

• At first blush this sounds like binary translation – we convert old code to
new code:

• XSA-132 “domctl/sysctl:
don’t leak hypervisor stack
to toolstack” – change inside arch_do_domctl.

• But nobody can translate the code for us. We NEED to change the code in
memory while the hypervisor is executing.

 mov %rsp,%rax

 and $0xffffffffffff8000,%rax
 movq $0x0,-0x48(%rbp)

 movq $0x0,-0x40(%rbp)

 movq $0x0,-0x38(%rbp)

 mov %rsp,%rax

 and $0xffffffffffff8000,%rax

Extra 18 bytes
of code.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: inserting new code.

• But adding in code means moving other code as well:
arch_do_domctl:
 55 48 89 E5 48 89 FB 90

89 05 A4 9C 1E 00 8B 13
48 8D 05 83 71 12 00 8B
14 90 48 B8 00 00 00 80
D0 82 FF FF 48 8D 04 02
49 89 06 8B 03 83 C0 01
89 03 89 C0 48 89 05 7F
9C 1E 00 48 8D 3D D0 12
17 00 E8 E3 EC FF FF B8
48 89 E0 48 25 00 80 FF
FF 00 00 00 48 8B 1C 24
4C 8B 64 24 08 4C 8B 6C
24 10 4C 8B 74 24 18 C9

do_domctl:
55 48 89 E5 48 81 EC 70
01 00 00 48 89 5D D8 4C

…

55 48 89 E5 48 89 FB 90
89 05 A4 9C 1E 00 8B 13
48 8D 05 83 71 12 00 8B
14 90 48 B8 00 00 00 80
D0 82 FF FF 48 8D 04 02
49 89 06 8B 03 83 C0 01
89 03 89 C0 48 89 05 7F
9C 1E 00 48 8D 3D D0 12
17 00 E8 E3 EC FF FF B8
48 C7 45 B8 00 00 00 00
48 C7 45 C0 00 00 00 00
48 C7 45 C8 00 00 00 00
48 89 E0 48 25 00 80 FF
FF 00 00 00 48 8B 1C 24
4C 8B 64 24 08 4C 8B 6C
24 10 4C 8B 74 24 18 C9
C3 90 90 90 90 90 90 90
90 90 55 48 89 E5 48 81

• Otherwise we end up
executing nonsense code
at old location!

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: Jumping

• We could add padding in all the functions to deal with this. But what if the
amount of changes is greater than the padding?

• Jump!

– Allocate new memory.

– Copy new code in memory.

– Check that nobody is running old code.

– Compute offset from old code to new code.

– Add trampoline jump to new code.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: 1) Allocate + copy new code in

• New arch_do_domctl code at newly allocated memory space:

<arch_do_domctl>:

 55 push %rbp
 48 89 e5 mov %rsp,%rbp
 41 57 push %r15
…
48 c7 45 b8 00 00 00 00 movq $0x0,-0x48(%rbp)
48 c7 45 c0 00 00 00 00 movq $0x0,-0x40(%rbp)
48 c7 45 c8 00 00 00 00 movq $0x0,-0x38(%rbp)
48 89 e0 mov %rsp,%rax
48 25 00 80 ff ff and $0xffffffffffff8000,%rax

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: 2) Check code 3) Compute offset

<arch_do_domctl>:

 55 push %rbp
 48 89 e5 mov %rsp,%rbp
 41 57 push %r15
…
48 c7 45 b8 00 00 00 00 movq $0x0,-0x48(%rbp)
48 c7 45 c0 00 00 00 00 movq $0x0,-0x40(%rbp)
48 c7 45 c8 00 00 00 00 movq $0x0,-0x38(%rbp)
48 89 e0 mov %rsp,%rax
48 25 00 80 ff ff and $0xffffffffffff8000,%rax

<arch_do_domctl>:

 55 push %rbp
 48 89 e5 mov %rsp,%rbp
 41 57 push %r15
…
48 89 e0 mov %rsp,%rax
48 25 00 80 ff ff and $0xffffffffffff8000,%rax

• Check that arch_do_domctl is not being executed.

• Figure out offset from new to old code.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: 4) Add trampoline

• Add trampoline:

13

<arch_do_domctl>:

 55 push %rbp
 48 89 e5 mov %rsp,%rbp
 41 57 push %r15
…
48 c7 45 b8 00 00 00 00 movq $0x0,-0x48(%rbp)
48 c7 45 c0 00 00 00 00 movq $0x0,-0x40(%rbp)
48 c7 45 c8 00 00 00 00 movq $0x0,-0x38(%rbp)
48 89 e0 mov %rsp,%rax
48 25 00 80 ff ff and $0xffffffffffff8000,%rax

<arch_do_domctl>:

 E9 1A 97 EA FF jmpq <arch_do_domctl>[NEW]
…
48 89 e0 mov %rsp,%rax
48 25 00 80 ff ff and $0xffffffffffff8000,%rax

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patching: Conclusion

• For code just need to over-write start of function with:

• For data it can be inline replacement (changing in .data values):

…
E9 1A 97 EA FF jmpq <arch_do_domctl>[NEW] …

<opt_noreboot>:
 00 00
 ...

<opt_noreboot>:
 00 01
 ...

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

That was easy, what is the fuss about?

• Relocation of symbols – data or functions:

Need to compute new code/data the offsets to other functions, data
structures, etc.
– Xen hyprvisor now has an ELF final dynamic linker to resolve this.

• Correctness: Is the old code the same as what the hot-patch had been
based on? Using an build-id (unique value) generated by compiler.
– The tools to generate payloads need to embed the correct build-id

– Allows also to stack payloads on top of each other (with each having an unique build-
id and depending on prior payload’s build-id):

…
8b 0d 53 80 fb ff mov -0x47fad(%rip),%ecx # ffff82d0802848c0 <pfn_pdx_hole_shift>
…

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Payloads dependencies – and how build-id are used for
that.

• Hypervisor build-id (0x17ac1..)
– Payload test1 (build-id: 0x8ef93.., depends on 0x17ac1..)

• Payload test2 (build-id: b409fb.., depends on 0x8ef93..)

–And so on.

–Can apply payloads on top of each other.

–Can also replace the chain of them with a new one:

–Hypervisor build-id (0x17ac1..)
• Payload test1 (build-id: 0x8ef93.., depends on 0x17ac1..)
–…

• Payload replace (build-id: 0x99432.., depends on 0x17ac1..)

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

How do guarantee we don’t patch code which may be in
this (or another) CPU cache/stack?

• Stack checking: Cannot patch the function which is in use by another CPU!
– We patch when the hypervisor has no stack – at deterministic point.

• A two stage rendezvous mechanism:
– Schedule_work sets per_cpu(work_to_do) and global do_work.

–Whoever gets first to check_for_livepatach_work is master, all others are sub-
ordinates. check_for_livepatch_work called in VMEXIT handlers and idle_loop loop.
• Master IPIs all other CPUs to call function which sets per_cpu(work_to_do)

• Slave CPUs IPI handler is called. It sets per_cpu(work_to_do), and right before entering to the guest
calls check_for_livepatch_work. Spins waiting until ->ready is set.

• Master spins until all CPUs have incremented a atomic counter (aka – all subordinates are waiting on
->ready). Sets ->ready=1.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Hypervisor patching code

• Master signals to sub-ordinates to disable IRQs (we don’t want IRQ
handlers to run as we may be patching them).

– Sub-ordinates disable IRQs, and spin waiting on patching (->do_work) to be complete.

• Master disables IRQs, disables Write Protection on read-only memory and
patches code, re-enables Write Protection.

• Master enables IRQs, clears ->do_work.

• Sub-ordinates stop spinning, flush their pipeline, and restore IRQs.

• Master prints that it has finished patching.

• Same mechanism for revert and replace - only what’s written into the
trampoline differs.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Tool side functionality:

• Query what payloads have been loaded and their status (checked, applied).

• Upload new payloads.

• Apply, revert or replace payloads.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Roadmap – Further work in hypervisor:

• /proc/xen/xensyms needs symbols introduced by payloads

• Signature verification code.

• NMI and MCE handling when patching

• OSSTest

• ARM64 support

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Roadmap – Further work in tools:

• Sensibly patching assembly code (probably requires HV changes too)

• Ensure that .config is unchanged between the original build and the
patched build

• General livepatch-build improvements to increase the success rate to patch
anything close to 100%.

• Merge xen-livepatch tool into xl.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Questions and Answer

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Backup slides

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Signature verification:

• The signature is to be appended at the end of the ELF payload prefixed with
the string: ~Module signature appended~\n

• Signature header afterwards matches Linux’s one.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Screenshot of xen-livepatch

Building live patches

Live patches are binary Öles containing code to be loaded by
the hypervisor — like kernel modules.

How are these created?

Enter livepatch-build-tools!

livepatch-build-tools is based on kpatch-build

http://xenbits.xen.org/gitweb/?p=livepatch-build-tools.git

http://xenbits.xen.org/gitweb/?p=livepatch-build-tools.git

Building live patches: Inputs
$ livepatchbuild s xen c orig.config \
 depends 55776af8c7377e7191d733797543b87a59631c50 \
 p xsa182.patch o outdir

Takes as input:

The exact source tree from the running Xen.
The .conÖg from the original build of Xen.
A build-id onto which the livepatch will be applied.
A source patch.

Building live patches: Process

livepatch-build does:

1. Build Xen
2. Apply Patch
3. Build Xen with "-ffunction-sections -fdata-sections"
4. Unapply patch
5. Build Xen again with "-ffunction-sections -fdata-sections"
6. Create a livepatch from the changed object Öles.

For each pair of changed objects, ‘original’ and ‘patched’, run
:

Building live patches: Diff

create‐diff‐tool
Load objects and check that the headers match.
Adjust the ELFs to make them easier to process:

Replace section symbols with function/object symbols
Rename mangled symbols: .isra. .part.
.constprop.

map_domain_page.isra.9 ➡ map_domain_page.isra.2

Building live patches: Diff

Correlate sections: for each section in ‘original’, Önd its twin
in ‘patched’.
Correlate symbols: for each symbol in ‘original’, Önd its twin
in ‘patched’.
Correlate static locals: match randomly named static local
variables from ‘original’ to ‘patched’.

Static locals are correlated if they have the same base
name and are referenced by a pair of correlated
sections.
avail_static.16247 ➡ avail_static.24561

Building live patches: Diff

Compare and mark as SAME, CHANGED or NEW.
For each CHANGED function or NEW global, include it and
its references recursively.
Handle special sections (bug frames, altinstructions,
exception tables).

Building live patches: Diff

Rename local symbols to match the format used by Xen
(Ölename#symbolname).
For each CHANGED function, create an entry in a special
livepatch section (.livepatch.funcs).
Write out the new object Öle.

Building live patches: Link

Link all the diff object Öles into a single ELF Öle, adding:

A dependency section containing the target build id,
and a new build id for the object Öle.

This object Öle gets uploaded to the hypervisor.

Pitfalls when building live patches: Assembly

There are some XSAs which patch assembly, for example
XSA-183. It is not currently possible to generate a livepatch

using livepatch-build.

Have less assembly (yay!).
Rewrite assembly into self-contained functional units (aka
assembler functions) with entries in the symbol table.
Inline patching of assembly (when possible).

Pitfalls when building live patches: Data

New data and read-only data is handled correctly.
Changing initialized data or existing data structures is hard
so such changes are prevented.
Use hook functions to allow code to be executed at various
stages during the patch apply (or revert) process.

Allows data to be transformed during patch apply, even
if the data is dynamically allocated
Allows once-off initializations.

Use shadow variables to attach new members to existing
data structures.
Hopefully in Xen 4.8.

Pitfalls when building live patches: Visibility

Changing the type or visibility of a symbol is not allowed.
Issue when building a patch for XSA-58.
put_old_guest_table goes from local symbol to a global
symbol.
Rename the function (e.g. lp_put_old_guest_table)
then replace all references to the old name with the new
name.
This isn't ideal because it means potentially many functions
need to be changed unnecessarily, but it is the current
solution.

Pitfalls when building live patches: __init

Tool prevents changes to __init — doesn't make sense
anyway.
Use a hook function to make the equivalent change during
patch load.
Need to verify per-patch that it is actually safe since to do
this ➡ otherwise reboot!

Pitfalls when building live patches:
__LINE__

__LINE__ causes many functions to be CHANGED and
included in the ouput.
Not necessarily a problem since the size is small, but it is
harder to analyze.
dprintk uses __LINE__ — not in release build
Patches coming to reduce uses of __LINE__ to zero for a
release build.

Pitfalls when building live patches: leaks

Even if the patch is trivial to build and apply, it is not
necessarily correct — XSA-100
Freed pages aren't scrubbed after live patch is applied.

Schedule an asynchronous scrub of the free heap
Scrub before handing pages to the guest.

Do not blindly trust the tools with the output they
generate.

Demo!

