
Inter-domain Communication using Virtual

Sockets

David Vrabel <david.vrabel@citrix.com

Draft C

Contents

1 Introduction 2

1.1 Revision History . 2

1.2 Purpose . 2

1.3 System Overview . 3

1.4 Design Map . 3

1.5 Definitions and Acronyms . 3

1.6 References . 3

2 Design Considerations 4

2.1 Assumptions . 4

2.2 Constraints . 4

2.3 Risks and Volatile Areas . 4

3 Architecture 4

3.1 Overview . 4

4 High Level Design 5

4.1 Virtual Sockets . 5

4.2 Front / Back Drivers . 6

4.3 Connection Manager . 7

1

mailto:david.vrabel@citrix.com

5 Low-level transport 7

5.1 Frontend and backend domains 7

5.2 Peer domains . 8

6 Appendix 8

6.1 V4V . 8

6.1.1 Advantages . 8

6.1.2 Disadvantages . 9

1 Introduction

1.1 Revision History

Version Date Changes
Draft C 11 Jun 2013 Minor clarifications.
Draft B 10 Jun 2013 Added a section on the low-level shared ring

transport.
Added a section on using v4v as the low-level
transport.

Draft A 28 May 2013 Initial draft.

1.2 Purpose

In the Windsor architecture for XenServer, dom0 is disaggregated into several
service domains. Examples of service domains include network and storage
driver domains, and qemu (stub) domains.

To allow the toolstack to manage service domains there needs to be a commu-
nication mechanism between the toolstack running in one domain and all the
service domains.

The principle focus of this new transport is control-plane traffic (low latency
and low data rates) but consideration is given to future uses requiring higher
data rates.

Linux 3.9 support virtual sockets which is a new type of socket (the new
AF VSOCK address family) for inter-domain communication. This was orig-
inally implemented for VMWare’s VMCI transport but has hooks for other
transports. This will be used to provide the interface to applications.

2

Socket Interface

Application

S
e
cu

ri
ty

Po
lic

y

Toolstack

Transport

DomU DomU

Application

Data

Figure 1: System Overview

1.3 System Overview

1.4 Design Map

The linux kernel requires a Xen-specific virtual socket transport and front and
back drivers.

The connection manager is a new user space daemon running in the backend
domain.

Toolstacks will require changes to allow them to set the policy used by the con-
nection manager. The design of these changes is out of scope of this document.

1.5 Definitions and Acronyms

AF VSOCK The address family for virtual sockets.

CID (Context ID) The domain ID portion of the AF VSOCK address for-
mat.

Port The part of the AF VSOCK address format identifying a specific service.
Similar to the port number used in TCP connection.

Virtual Socket A socket using the AF VSOCK protocol.

1.6 References

Windsor Architecture slides from XenSummit 2012

3

http://www.slideshare.net/xen_com_mgr/windsor-domain-0-disaggregation-for-xenserver-and-xcp

2 Design Considerations

2.1 Assumptions

• There exists a low-level peer-to-peer, datagram based transport mecha-
nism using shared rings (as in libvchan).

2.2 Constraints

• The AF VSOCK address format is limited to a 32-bit CID and a 32-bit
port number. This is sufficient as Xen only has 16-bit domain IDs.

2.3 Risks and Volatile Areas

• The transport may be used between untrusted peers. A domain may be
subject to malicious activity or denial of service attacks.

3 Architecture

3.1 Overview

Linux’s virtual sockets are used as the interface to applications. Virtual sockets
were introduced in Linux 3.9 and provides a hypervisor independent1 interface
to user space applications for inter-domain communication.

An internal API is provided to implement a low-level virtual socket transport.
This will be implemented within a pair of front and back drivers. The use of the
standard front/back driver method allows the toolstack to handle the suspend,
resume and migration in a similar way to the existing drivers.

The front/back pair provides a point-to-point link between the two domains.
This is used to communicate between applications on those hosts and between
the frontend domain and the connection manager running on the backend.

The connection manager allows domUs to request direct connections to peer do-
mains. Without the connection manager, peers have no mechanism to exchange
the information ncessary for setting up the direct connections. The toolstack
sets the policy in the connection manager to allow connection requests. The
default policy is to deny connection requests.

1The API and address format is hypervisor independent but the address values are not.

4

Frontend Driver Backend Driver

VSOCK transportVSOCK transport

VSOCK VSOCK

Connection
Manager

Toolstack

Application Service
Discovery

DomU Dom0 DomU

Frontend Driver

VSOCK transport

VSOCK

Application

Frontend to backend
Data Connections

Peer to Peer Data Connection

Figure 2: Architecture Overview

4 High Level Design

4.1 Virtual Sockets

The AF VSOCK socket address family in the Linux kernel has a two part ad-
dress format: a uint32 t context ID (CID) identifying the domain and a uint32 t
port for the specific service in that domain.

The CID shall be the domain ID and some CIDs have a specific meaning.

CID Purpose
0x7FF0 (DOMID SELF) The local domain.
0x7FF1 The backend domain (where the connection manager is).

Some port numbers are reserved.

Port Purpose
0 Reserved
1 Connection Manager
2–1023 Reserved for well-known services (such as a service discovery service).

5

4.2 Front / Back Drivers

Using a front or back driver to provide the virtual socket transport allows the
toolstack to only make the inter-domain communication facility available to
selected domains.

The “standard” xenbus connection state machine shall be used. See figures 3
and 4 on pages 6 and 10.

INITIALISING

INITIALISED

Shared ring granted and event channel bound

CONNECTED

Backend = INITIALISED

CLOSING

Backend = CLOSING or CLOSED, or user request or fatal error

CLOSED

Resources released

Figure 3: Frontend Connection State Machine

6

4.3 Connection Manager

The connection manager has two main purposes.

1. Checking that two domains are permitted to connect.

2. Providing a mechanism for two domains to exchange the grant references
and event channels needed for them to setup a shared ring transport.

Domains commnicate with the connection manager over the front-back trans-
port link. The connection manager must be in the same domain as the virtual
socket backend driver.

The connection manager opens a virtual socket and listens on a well defined
port (port 1).

The following messages are defined.

Message Purpose
CONNECT req Request connection to another peer.
CONNECT rsp Response to a connection request.
CONNECT ind Indicate that a peer is trying to connect.
CONNECT ack Acknowledge a connection request.

Before forwarding a connection request to a peer, the connection manager checks
that the connection is permitted. The toolstack sets these permissions.

Disconnecting transport links to an uncooperative (or dead) domain is required.
Therefore there are no messages for disconnecting transport links (as these may
be ignore or delayed). Instead a transport link is disconnected by tearing down
the local end. The peer will notice the remote end going away and then teardown
its end.

5 Low-level transport

[This exact details are yet to be determined but this section should provide a
reasonably summary of the mechanisms used.]

5.1 Frontend and backend domains

As is typical for frontend and backend drivers, the frontend will grant copy-only
access to two rings — one for from-front messages and one for to-front messages.
Each ring shall have an event channel for notifying when requests and responses
are placed on the ring.

7

5.2 Peer domains

The initiator grants copy-only access to a from-initiator (transmit) ring and
provides an event channel for notifications for this ring. This information is
included in the CONNECT req and CONNECT ind messages.

The responder grants copy-only access to a from-responder (transmit) ring and
provides an event channel for notifications for this ring. The information is
included in the CONNECT ack and CONNECT rsp messages.

After the initial connection, the two domains operate as identical peers. Dis-
connection is signalled by a domain ungranting its transmit ring, notifying the
peer via the associated event channel. The event channel is then unbound.

6 Appendix

6.1 V4V

An alternative low-level transport (V4V) has been proposed. The hypervisor
copies messages from the source domain into a destination ring provided by the
destination domain.

Because peers are untrusted, in order to prevent them from being able to denial-
of-service the processing of messages from other peers, each receiver must have
a per-peer receive ring. A listening service does not know in advance which
peers may connect so it cannot create these rings in advance.

The connection manager service running in a trusted domain (as in the shared
ring transport described above) may be used. The CONNECT ind message is
used to trigger the creation of receive ring for that specific sender.

A peer must be able to find the connection manager service both at start of day
and if the connection manager service is restarted in a new domain. This can
be done in two possible ways:

1. Watch a Xenstore key which contains the connection manager service do-
main ID.

2. Use a frontend/backend driver pair.

6.1.1 Advantages

• Does not use grant table resource. If shared rings are used then a busy
guest with hundreds of peers will require more grant table entries than
the current default.

8

6.1.2 Disadvantages

• Any changes or extentions to the protocol or ring format would require a
hypervisor change. This is more difficult than making changes to guests.

• The connection-less, “shared-bus” model of v4v is unsuitable for untrusted
peers. This requires layering a connection model on top and much of the
simplicity of the v4v ABI is lost.

• The mechanism for handling full destination rings will not scale up on
busy domains. The event channel only indicates that some ring may have
space — it does not identify which ring has space.

9

INITIALISING

INITWAIT

Started

INITIALISED

Frontend = INITIALISED, mapped shared rings, event channel bound

CONNECTED

CLOSING

Frontend = CLOSING or CLOSED, or user request or fatal error

CLOSED

Resources released

Frontend = CONNECTED

Figure 4: Backend Connection State Machine

10

A CM B

CONNECT_req

CONNECT_ind

CONNECT_ack

CONNECT_rsp

Figure 5: Connect Message Sequence Chart

11

	Introduction
	Revision History
	Purpose
	System Overview
	Design Map
	Definitions and Acronyms
	References

	Design Considerations
	Assumptions
	Constraints
	Risks and Volatile Areas

	Architecture
	Overview

	High Level Design
	Virtual Sockets
	Front / Back Drivers
	Connection Manager

	Low-level transport
	Frontend and backend domains
	Peer domains

	Appendix
	V4V
	Advantages
	Disadvantages

