
FIFO-based Event Channel ABI

David Vrabel <david.vrabel@citrix.com>

Draft F

Contents

1 Introduction 3

1.1 Revision History . 3

1.2 Purpose . 4

1.3 Design Map . 4

2 Design Considerations 4

2.1 Assumptions . 4

2.2 Constraints . 4

2.3 Risks and Volatile Areas . 5

3 Architecture 5

3.1 Overview . 5

4 High Level Design 5

4.1 Shared Event Data Structure . 5

4.1.1 Event Array . 6

4.1.2 Control Block . 6

4.2 Event State Machine . 7

4.3 Event Queues . 7

4.4 Hypercalls . 8

4.4.1 EVTCHNOP init control 8

4.4.2 EVTCHNOP expand array 9

1

mailto:david.vrabel@citrix.com

4.4.3 EVTCHNOP set priority 10

4.4.4 DOMCTL set max evtchn 10

4.5 Memory Usage . 11

4.5.1 Event Arrays . 11

4.5.2 Control Block . 12

5 Low Level Design 12

5.1 Raising an Event . 12

5.2 Consuming Events . 13

5.3 Upcall . 14

5.4 Masking Events . 14

5.5 Unmasking Events . 14

2

1 Introduction

1.1 Revision History

Version Date Changes
Draft A 4 Feb 2013 Initial draft.
Draft B 15 Feb 2013 Clarified that the event array is per-domain.

Control block is no longer part of the
vcpu info but does reside in the same page.
Hypercall changes: structures are now
32/64-bit clean, added notes on handling
failures, expand_array has its vcpu field
removed, use expand_array to add first page.
Added an upcall section.
Added a READY field to the control block to
make finding the highest priority non-empty
event queue more efficient.
Note that memory barriers will be required
but leave the details to a future draft.

Draft C 19 Mar 2013 Queue tail is now private to Xen.
Guest pages are specified by MFN in the
hypercalls.
Updated link/unlink algorithm to avoid races
when adding an event to a queue that is
becoming empty.

Draft D 7 May 2013 Only Xen writes to HEAD.
Expand the state diagram to include all
sub-states.
Added link_bits field to
struct evtchn_init_control.
Clarifications to the pseudocode.

Draft E 13 Sep 2013 Control blocks are no longer required to be in
the same page as the vcpu info structures.
Add padding bytes to struct
evtchn init control.

Draft F 27 Sep 2013 READY field is now 32-bits wide.
DOMCTL set max evtchn replaces
EVTCHNOP set limit.
DomU now defaults to allowing an unlimited
number of event channels. The toolstack
should set a limit during domain creation.

3

1.2 Purpose

Xen uses event channels to signal events (interrupts) to (fully or partially) par-
avirtualized guests. The current event channel ABI provided by Xen only sup-
ports up-to 1024 (for 32-bit guests) or 4096 (for 64-bit guests) event channels.
This is limiting scalability as support for more VMs, VCPUs and devices is
required.

Events also cannot be serviced fairly as information on the ordering of events
is lost. This can result in events from some VMs experiencing (potentially
significantly) longer than average latency.

The existing ABI does not easily allow events to have different priorities. Cur-
rent Linux kernels prioritize the timer event by special casing this but this is
not generalizable to more events. Event priorities may be useful for prioritizing
MMIO emulation requests over bulk data traffic (such as network or disk).

This design replaces the existing event channel ABI with one that:

• is scalable to more than 100,000 event channels, with scope for increasing
this further with minimal ABI changes.

• allows events to be serviced fairly.

• allows guests to use up-to 16 different event priorities.

• has an ABI that is the same regardless of the natural word size.

1.3 Design Map

A new event channel ABI requires changes to Xen and the guest kernels.

2 Design Considerations

2.1 Assumptions

• Atomic read-modify-write of 32-bit words is possible on all supported plat-
forms. This can be with a linked-load / store-conditional (e.g., ARMv8’s
ldrx/strx) or a compare-and-swap (e.g., x86’s cmpxchg).

2.2 Constraints

• The existing ABI must continue to be useable. Compatibilty with existing
guests is mandatory.

4

2.3 Risks and Volatile Areas

• Should the 3-level proposal be merged into Xen then this design does
not offer enough improvements to warrant the cost of maintaining three
different event channel ABIs in Xen and guest kernels.

• The performance of some operations may be decreased. Specifically, re-
triggering an event now always requires a hypercall.

3 Architecture

3.1 Overview

The event channel ABI uses a data structure that is shared between Xen and
the guest. Access to the structure is done with lock-less operations (except for
some less common operations where the guest must use a hypercall). The guest
is responsible for allocating this structure and registering it with Xen during
VCPU bring-up.

Events are reported to a guest’s VCPU using a FIFO event queue. There is a
queue for each priority level and each VCPU.

Each event has a pending and a masked bit. The pending bit indicates the event
has been raised. The masked bit is used by the guest to prevent delivery of that
specific event.

4 High Level Design

4.1 Shared Event Data Structure

The shared event data structure has a per-domain event array, and a per-VCPU
control block.

• event array : A logical array of event words (one per event channel) which
contains the pending and mask bits and the link index for next event in
the queue. The event array is shared between all of the guest’s VCPUs.

• control block : This contains the meta data for the event queues: the ready
bits and the head index and tail index for each priority level. Each VCPU
has its own control block.

5

M L LINKReserved

31 30 29 Bit 01628 17

P

Figure 1: Event Array Word

4.1.1 Event Array

The pages within the event array need not be physically nor virtually contiguous,
but the guest or Xen may make the virtually contiguous for ease of implemen-
tation. e.g., by using vmap() in Xen or vmalloc() in Linux. Pages are added by
the guest as required to accomodate the event with the highest port number.

Only 17 bits are currently defined for the LINK field, allowing 217 (131,072)
events. This limit can be trivially increased without any other changes to the
ABI. Bits [28:17] are reserved for future expansion or for other uses.

4.1.2 Control Block

READY

HEAD0HEAD1

HEAD1HEAD3

HEADN-2HEADN-1

...

Octet 01234567

Reserved

Figure 2: Control Block

The READY field contains a bit for each priority’s queue. A set bit indicates
that there are events pending on that queue. A queue’s ready bit is set by Xen
when an event is placed on an empty queue. The READY field is atomically
read-and-cleared by the guest.

Bits 16 to 31 in the READY field are unused and will never be set by the
hypervisor.

There are N HEAD indexes, one for each priority.

The HEAD index is the first event in the queue. empty. HEAD is only set by
Xen when adding an event to an empty queue and is never set by the guest. If

6

the queue is empty, HEAD may be zero or the last head index and the guest
should not use the HEAD value until the queue has been set as READY again.

4.2 Event State Machine

Event channels are bound to a port in the domain using the existing ABI.

A bound event may be in one of three main states.

State Abbrev. PML Bits Meaning
BOUND B 000 The event is bound but not pending.
PENDING P 100 The event has been raised and not yet acknowledged.
LINKED L 101 The event is on an event queue.

The LINKED state has number of sub-states reflecting the events position in
the list and how it may be reached by the guest.

Sub-state Meaning
L H Pointed to by the control block’s HEAD field.
L GH Pointed to by the guest’s local head index.
L L Pointed to by the previous event in the queue.
LL * Event’s link field points to another event.

Additionally, events may be UNMASKED or MASKED (M) in any state.

Valid transitions for UNMASKED events are shown in figure 3 on page 16.

MASKED events have all the same transitions except for:

• Ack (P→ B). MASKED events should not be handled, so when a MASKED
event is unlinked it should should remain PENDING until it is unmasked
and then added to the event queue.

• Link (P → L). Since a MASKED event will not be handled, it does not
needed to be added to the event queue until it becomes UNMASKED.

4.3 Event Queues

The event queues use a singly-linked list of event array words (see figure 1 and
4). Each VCPU has an event queue for each priority.

Each event queue has a head index stored in the control block and a tail index
private to Xen. The head index is the index of the first element in the queue.

7

The tail index is the last element in the queue. Every element within the queue
has the L bit set.

The LINK field in the event word indexes the next event in the queue. LINK is
zero for the last word in the queue.

The queue is empty when the head index is zero (zero is not a valid event
channel).

4.4 Hypercalls

Three new EVTCHNOP hypercall sub-operations and one DOMCTL hypercall
sub-operation are added:

• EVTCHNOP_init_control

• EVTCHNOP_expand_array

• EVTCHNOP_set_priority

• DOMCTL_set_max_evtchn

4.4.1 EVTCHNOP init control

This call initializes a single VCPU’s control block.

A guest should call this during initial VCPU bring up.

If this call fails on the boot VCPU, the guest should continue to use the 2-level
event channel ABI for all VCPUs. If this call fails on any non-boot VCPU
then the VCPU will be unable to receive events and the guest should offline the
VCPU.

Note: This only initializes the control block. At least one page needs
to be added to the event arrary with EVTCHNOP_expand_array.

struct evtchn_init_control {

uint64_t control_gfn;

uint32_t offset;

uint32_t vcpu;

uint8_t link_bits;

uint8_t _pad[7];

};

8

Field Purpose
control_gfn [in] The GFN of the page containing the control

block.
offset [in] Offset in bytes from the start of the page to the

beginning of the control block.
vcpu [in] The VCPU number.
link_bits [out] The number of valid bits of the LINK and

HEAD fields. This will be same for all VCPUs but
may change after a domain migrates.

_pad Padding bytes for ABI compatibility between 32-bit
and 64-bit guests. Ignored by the hypervisor.

Error code Reason
EINVAL vcpu is invalid or already initialized.
EINVAL control_gfn is not a valid frame for the domain.
EINVAL offset is not a multiple of 8 or the control block

would cross a page boundary.
ENOMEM Insufficient memory to allocate internal structures.

4.4.2 EVTCHNOP expand array

This call expands the event array by appending an additional page.

A guest should call this when a new event channel is required and there is
insufficient space in the current event array.

It is not possible to shrink the event array once it has been expanded.

If this call fails, then subsequent attempts to bind event channels may fail with
-ENOSPC. If the first page cannot be added then the guest cannot receive any
events and it should panic.

struct evtchn_expand_array {

uint64_t array_gfn;

};

Field Purpose
array_gfn [in] The GFN of a page to be used for the next page

of the event array.

Error code Reason
EINVAL array_gfn is not a valid frame for the domain.
ENOSPC The event array already has the maximum number of

pages.
ENOMEM Insufficient memory to allocate internal structures.

9

4.4.3 EVTCHNOP set priority

This call sets the priority for an event channel. The event channel may be bound
or unbound.

The meaning and the use of the priority are up to the guest. Valid priorities
are 0 - 15 and the default is 7. 0 is the highest priority.

If the priority is changed on a bound event channel then at most one event may
be signalled at the previous priority.

struct evtchn_set_priority {

uint32_t port;

uint32_t priority;

};

Field Purpose
port [in] The event channel.
priority [in] The priority for the event channel.

Error code Reason
EINVAL port is invalid.
EINVAL priority is outside the range 0 - 15.

4.4.4 DOMCTL set max evtchn

This privileged call sets the highest port number a domain can bind an event
channel to. The default for all domains is unlimited.

The limit only affects future attempts to bind event channels. Event channels
that are already bound are not affected.

It is recommended that the toolstack only calls this during domain creation
before the guest is started. A sensible default value for a toolstack to use is
1023 which means only a single page is required for the event array.

struct xen_domctl_set_max_evtchn {

uint32_t max_port;

};

Field Purpose
max_port [in] The highest port number that the domain may

bound an event channel to.

No sub-op specific errors are returned.

10

4.5 Memory Usage

4.5.1 Event Arrays

Xen needs to map every domains’ event array into its address space. The space
reserved for these global mappings is limited to 1 GiB on x86–64 (262144 pages)
and is shared with other users.

It is non-trivial to calculate the maximum number of VMs that can be supported
as this depends on the system configuration (how many driver domains etc.) and
VM configuration. We can make some assuptions and derive an approximate
limit.

Each page of the event array has space for 1024 events (EP) so a regular domU
will only require a single page. Since event channels have two ends, the upper
bound on the total number of pages is 2× number of VMs.

If the guests are further restricted in the number of event channels (EV) then
this upper bound can be reduced further. By assuming that each event event
channel has one end in a domU and the other in dom0 (or a small number of
driver domains) then the ends in dom0 will be packed together within the event
array.

The number of VMs (V) with a limit of P total event array pages is approxi-
mately:

V = P ÷
(

1 +
EV

EP

)
Using only half the available pages and limiting guests to only 64 events gives:

V = (262144/2)÷ (1 + 64/1024)

= 123× 103 VMs

Alternatively, we can consider a system with D driver domains, each of which
requires ED events, and a dom0 using the maximum number of pages (128).
The number of pages left over, hence the number of guests is:

V = P −
(

128 + D × ED

EP

)
With, for example, 16 driver domains each using the maximum number of pages:

V = (262144/2)− (128 + 16× 217

1024
)

= 129× 103 VMs

In summary, there is space to map the event arrays for over 100,000 VMs. This
is more than the limit imposed by the 16 bit domain ID (∼32,000 VMs).

11

4.5.2 Control Block

With L priority levels and two 32-bit words for the head and tail indexes, the
amount of space (S) required for the control block is:

S = L× 2× 4 + 8

= 16× 2× 4 + 8

= 136 bytes

5 Low Level Design

In the pseudo code in this section, all memory accesses are atomic, including
those to bit-fields within the event word. All memory accesses are considered
to be strongly ordered. The required memory barriers for real processors will
be considered in a future draft.

The following variables are used for the shared and selected local data structures.
Lowercase variables are local.

Variable Purpose
E Event array.
C Per-VCPU control block.
T Tail index array (local to Xen).
H Head index array (local to the guest).

5.1 Raising an Event

When Xen raises an event it marks it pending and (if it is not masked) adds it
tail of event queue.

This needs to handle two main cases: the queue is empty or it is not empty.
The link() function atomically ensures that the link field is only updated if the
queue is non-empty.

function link(t, p)

w = E[t]

do

if not w.linked

return false

o = n = E[t]

n.link = p

w = cmpxchg(E + t, o, n)

while w != o

return true

12

function raise(q, p)

E[p].pending = 1

if not E[p].masked and not E[p].linked

linked = false

E[p].linked = 1

if T[q] != p

linked = link(T[q], p)

if not linked

C.head[q] = p

T[q] = p

Concurrent access by Xen to the event queue must be protected by a per-event
queue spin lock.

5.2 Consuming Events

The guest consumes events starting at the head until it reaches the tail. Events
in the queue that are not pending or are masked are consumed but not handled.

The unlink() function atomically clears LINKED and LINK and returns the
LINK field.

To consume a single event:

function unlink(p)

w = E[p]

do

o = n = w

n.linked = false

n.link = 0

w = cmpxchg(E + p, o, n)

while w != o

return w.link

function handle_one_event(q)

p = H[q]

if p == 0

p = C.head[q]

link = unlink(p)

H[q] = link

if E[p].pending and not E[p].masked

handle(p)

return link == 0

handle() clears E[p].pending and EOIs level-triggered PIRQs.

13

Note: When the event queue contains a single event we do not set
the head as this would race with Xen adding a new event and setting
the head.

5.3 Upcall

When Xen places an event on an empty queue it sets the queue as ready in the
control block. If the ready bit transitions from 0 to 1, a new event is signalled
to the guest.

The guest uses the control block’s ready field to find the highest priority queue
with pending events. The ready field is atomically read and cleared and or’d
with a local copy.

Higher priority events do not need to preempt lower priority event handlers so
the guest can handle events by taking one event off the currently ready queue
with highest priority.

function upcall()

r = xchg(C.ready, 0)

while r

q = find_first_set_bit(r)

empty = handle_one_event(q)

if empty

clear_bit(q, r)

r |= xchg(C.ready, 0)

Since the upcall is reentrant the guest should ensure that nested upcalls return
immediately without processing any events. A per-VCPU nesting count may be
used for this.

5.4 Masking Events

Events are masked by setting the masked bit. If the event is pending and linked
it does not need to be unlinked.

E[p].masked = 1

5.5 Unmasking Events

Events are unmasked by the guest by clearing the masked bit. If the event is
pending the guest must call the event channel unmask hypercall so Xen can link
the event into the correct event queue.

14

E[p].masked = 0

if E[p].pending

hypercall(EVTCHN_unmask)

The expectation here is that unmasking a pending event will be rare, so the
performance hit of the hypercall is minimal.

Note: After clearing the mask bit, the event may be raised and thus
it may already be linked by the time the hypercall is done. The
mask must be cleared before testing the pending bit to avoid racing
with the event becoming pending.

15

B

P

Raise Ack

L

Link

L_L

Link Prev

L_H

Set HEAD

LL_L

Link Next

L_GH

Unlink Prev

LL_GH

Unlink Prev

Unlink

LL_H

Link Next

UnlinkUnlink

Unlink

Figure 3: Event State Machine

16

H: 50

1

2

3

4

5

6

7

7

1

0
T: 1

H: 00

1

2

3

4

5

6

7

T: -

Figure 4: Empty and Non-empty Event Queues

17

	Introduction
	Revision History
	Purpose
	Design Map

	Design Considerations
	Assumptions
	Constraints
	Risks and Volatile Areas

	Architecture
	Overview

	High Level Design
	Shared Event Data Structure
	Event Array
	Control Block

	Event State Machine
	Event Queues
	Hypercalls
	EVTCHNOP_init_control
	EVTCHNOP_expand_array
	EVTCHNOP_set_priority
	DOMCTL_set_max_evtchn

	Memory Usage
	Event Arrays
	Control Block

	Low Level Design
	Raising an Event
	Consuming Events
	Upcall
	Masking Events
	Unmasking Events

