* If the target behaviour here is anything other than "set
* the PC register to the value passed in" then the target must
* also implement the synchronize_from_tb hook.
+ * @get_pc: Callback for getting the Program Counter register.
+ * As above, with the semantics of the target architecture.
* @gdb_read_register: Callback for letting GDB read a register.
* @gdb_write_register: Callback for letting GDB write a register.
* @gdb_adjust_breakpoint: Callback for adjusting the address of a
void (*dump_state)(CPUState *cpu, FILE *, int flags);
int64_t (*get_arch_id)(CPUState *cpu);
void (*set_pc)(CPUState *cpu, vaddr value);
+ vaddr (*get_pc)(CPUState *cpu);
int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
cpu->env.pc = value;
}
+static vaddr alpha_cpu_get_pc(CPUState *cs)
+{
+ AlphaCPU *cpu = ALPHA_CPU(cs);
+
+ return cpu->env.pc;
+}
+
+
static bool alpha_cpu_has_work(CPUState *cs)
{
/* Here we are checking to see if the CPU should wake up from HALT.
cc->has_work = alpha_cpu_has_work;
cc->dump_state = alpha_cpu_dump_state;
cc->set_pc = alpha_cpu_set_pc;
+ cc->get_pc = alpha_cpu_get_pc;
cc->gdb_read_register = alpha_cpu_gdb_read_register;
cc->gdb_write_register = alpha_cpu_gdb_write_register;
#ifndef CONFIG_USER_ONLY
}
}
+static vaddr arm_cpu_get_pc(CPUState *cs)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+
+ if (is_a64(env)) {
+ return env->pc;
+ } else {
+ return env->regs[15];
+ }
+}
+
#ifdef CONFIG_TCG
void arm_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
cc->has_work = arm_cpu_has_work;
cc->dump_state = arm_cpu_dump_state;
cc->set_pc = arm_cpu_set_pc;
+ cc->get_pc = arm_cpu_get_pc;
cc->gdb_read_register = arm_cpu_gdb_read_register;
cc->gdb_write_register = arm_cpu_gdb_write_register;
#ifndef CONFIG_USER_ONLY
cpu->env.pc_w = value / 2; /* internally PC points to words */
}
+static vaddr avr_cpu_get_pc(CPUState *cs)
+{
+ AVRCPU *cpu = AVR_CPU(cs);
+
+ return cpu->env.pc_w * 2;
+}
+
static bool avr_cpu_has_work(CPUState *cs)
{
AVRCPU *cpu = AVR_CPU(cs);
cc->has_work = avr_cpu_has_work;
cc->dump_state = avr_cpu_dump_state;
cc->set_pc = avr_cpu_set_pc;
+ cc->get_pc = avr_cpu_get_pc;
dc->vmsd = &vms_avr_cpu;
cc->sysemu_ops = &avr_sysemu_ops;
cc->disas_set_info = avr_cpu_disas_set_info;
cpu->env.pc = value;
}
+static vaddr cris_cpu_get_pc(CPUState *cs)
+{
+ CRISCPU *cpu = CRIS_CPU(cs);
+
+ return cpu->env.pc;
+}
+
static bool cris_cpu_has_work(CPUState *cs)
{
return cs->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI);
cc->has_work = cris_cpu_has_work;
cc->dump_state = cris_cpu_dump_state;
cc->set_pc = cris_cpu_set_pc;
+ cc->get_pc = cris_cpu_get_pc;
cc->gdb_read_register = cris_cpu_gdb_read_register;
cc->gdb_write_register = cris_cpu_gdb_write_register;
#ifndef CONFIG_USER_ONLY
env->gpr[HEX_REG_PC] = value;
}
+static vaddr hexagon_cpu_get_pc(CPUState *cs)
+{
+ HexagonCPU *cpu = HEXAGON_CPU(cs);
+ CPUHexagonState *env = &cpu->env;
+ return env->gpr[HEX_REG_PC];
+}
+
static void hexagon_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
{
cc->has_work = hexagon_cpu_has_work;
cc->dump_state = hexagon_dump_state;
cc->set_pc = hexagon_cpu_set_pc;
+ cc->get_pc = hexagon_cpu_get_pc;
cc->gdb_read_register = hexagon_gdb_read_register;
cc->gdb_write_register = hexagon_gdb_write_register;
cc->gdb_num_core_regs = TOTAL_PER_THREAD_REGS + NUM_VREGS + NUM_QREGS;
cpu->env.iaoq_b = value + 4;
}
+static vaddr hppa_cpu_get_pc(CPUState *cs)
+{
+ HPPACPU *cpu = HPPA_CPU(cs);
+
+ return cpu->env.iaoq_f;
+}
+
static void hppa_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
{
cc->has_work = hppa_cpu_has_work;
cc->dump_state = hppa_cpu_dump_state;
cc->set_pc = hppa_cpu_set_pc;
+ cc->get_pc = hppa_cpu_get_pc;
cc->gdb_read_register = hppa_cpu_gdb_read_register;
cc->gdb_write_register = hppa_cpu_gdb_write_register;
#ifndef CONFIG_USER_ONLY
cpu->env.eip = value;
}
+static vaddr x86_cpu_get_pc(CPUState *cs)
+{
+ X86CPU *cpu = X86_CPU(cs);
+
+ /* Match cpu_get_tb_cpu_state. */
+ return cpu->env.eip + cpu->env.segs[R_CS].base;
+}
+
int x86_cpu_pending_interrupt(CPUState *cs, int interrupt_request)
{
X86CPU *cpu = X86_CPU(cs);
cc->has_work = x86_cpu_has_work;
cc->dump_state = x86_cpu_dump_state;
cc->set_pc = x86_cpu_set_pc;
+ cc->get_pc = x86_cpu_get_pc;
cc->gdb_read_register = x86_cpu_gdb_read_register;
cc->gdb_write_register = x86_cpu_gdb_write_register;
cc->get_arch_id = x86_cpu_get_arch_id;
env->pc = value;
}
+static vaddr loongarch_cpu_get_pc(CPUState *cs)
+{
+ LoongArchCPU *cpu = LOONGARCH_CPU(cs);
+ CPULoongArchState *env = &cpu->env;
+
+ return env->pc;
+}
+
#ifndef CONFIG_USER_ONLY
#include "hw/loongarch/virt.h"
cc->has_work = loongarch_cpu_has_work;
cc->dump_state = loongarch_cpu_dump_state;
cc->set_pc = loongarch_cpu_set_pc;
+ cc->get_pc = loongarch_cpu_get_pc;
#ifndef CONFIG_USER_ONLY
dc->vmsd = &vmstate_loongarch_cpu;
cc->sysemu_ops = &loongarch_sysemu_ops;
cpu->env.pc = value;
}
+static vaddr m68k_cpu_get_pc(CPUState *cs)
+{
+ M68kCPU *cpu = M68K_CPU(cs);
+
+ return cpu->env.pc;
+}
+
static bool m68k_cpu_has_work(CPUState *cs)
{
return cs->interrupt_request & CPU_INTERRUPT_HARD;
cc->has_work = m68k_cpu_has_work;
cc->dump_state = m68k_cpu_dump_state;
cc->set_pc = m68k_cpu_set_pc;
+ cc->get_pc = m68k_cpu_get_pc;
cc->gdb_read_register = m68k_cpu_gdb_read_register;
cc->gdb_write_register = m68k_cpu_gdb_write_register;
#if defined(CONFIG_SOFTMMU)
cpu->env.iflags = 0;
}
+static vaddr mb_cpu_get_pc(CPUState *cs)
+{
+ MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
+
+ return cpu->env.pc;
+}
+
static void mb_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
{
cc->dump_state = mb_cpu_dump_state;
cc->set_pc = mb_cpu_set_pc;
+ cc->get_pc = mb_cpu_get_pc;
cc->gdb_read_register = mb_cpu_gdb_read_register;
cc->gdb_write_register = mb_cpu_gdb_write_register;
mips_env_set_pc(&cpu->env, value);
}
+static vaddr mips_cpu_get_pc(CPUState *cs)
+{
+ MIPSCPU *cpu = MIPS_CPU(cs);
+
+ return cpu->env.active_tc.PC;
+}
+
static bool mips_cpu_has_work(CPUState *cs)
{
MIPSCPU *cpu = MIPS_CPU(cs);
cc->has_work = mips_cpu_has_work;
cc->dump_state = mips_cpu_dump_state;
cc->set_pc = mips_cpu_set_pc;
+ cc->get_pc = mips_cpu_get_pc;
cc->gdb_read_register = mips_cpu_gdb_read_register;
cc->gdb_write_register = mips_cpu_gdb_write_register;
#ifndef CONFIG_USER_ONLY
env->pc = value;
}
+static vaddr nios2_cpu_get_pc(CPUState *cs)
+{
+ Nios2CPU *cpu = NIOS2_CPU(cs);
+ CPUNios2State *env = &cpu->env;
+
+ return env->pc;
+}
+
static bool nios2_cpu_has_work(CPUState *cs)
{
return cs->interrupt_request & CPU_INTERRUPT_HARD;
cc->has_work = nios2_cpu_has_work;
cc->dump_state = nios2_cpu_dump_state;
cc->set_pc = nios2_cpu_set_pc;
+ cc->get_pc = nios2_cpu_get_pc;
cc->disas_set_info = nios2_cpu_disas_set_info;
#ifndef CONFIG_USER_ONLY
cc->sysemu_ops = &nios2_sysemu_ops;
cpu->env.dflag = 0;
}
+static vaddr openrisc_cpu_get_pc(CPUState *cs)
+{
+ OpenRISCCPU *cpu = OPENRISC_CPU(cs);
+
+ return cpu->env.pc;
+}
+
static void openrisc_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
{
cc->has_work = openrisc_cpu_has_work;
cc->dump_state = openrisc_cpu_dump_state;
cc->set_pc = openrisc_cpu_set_pc;
+ cc->get_pc = openrisc_cpu_get_pc;
cc->gdb_read_register = openrisc_cpu_gdb_read_register;
cc->gdb_write_register = openrisc_cpu_gdb_write_register;
#ifndef CONFIG_USER_ONLY
cpu->env.nip = value;
}
+static vaddr ppc_cpu_get_pc(CPUState *cs)
+{
+ PowerPCCPU *cpu = POWERPC_CPU(cs);
+
+ return cpu->env.nip;
+}
+
static bool ppc_cpu_has_work(CPUState *cs)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
cc->has_work = ppc_cpu_has_work;
cc->dump_state = ppc_cpu_dump_state;
cc->set_pc = ppc_cpu_set_pc;
+ cc->get_pc = ppc_cpu_get_pc;
cc->gdb_read_register = ppc_cpu_gdb_read_register;
cc->gdb_write_register = ppc_cpu_gdb_write_register;
#ifndef CONFIG_USER_ONLY
}
}
+static vaddr riscv_cpu_get_pc(CPUState *cs)
+{
+ RISCVCPU *cpu = RISCV_CPU(cs);
+ CPURISCVState *env = &cpu->env;
+
+ /* Match cpu_get_tb_cpu_state. */
+ if (env->xl == MXL_RV32) {
+ return env->pc & UINT32_MAX;
+ }
+ return env->pc;
+}
+
static void riscv_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
{
cc->has_work = riscv_cpu_has_work;
cc->dump_state = riscv_cpu_dump_state;
cc->set_pc = riscv_cpu_set_pc;
+ cc->get_pc = riscv_cpu_get_pc;
cc->gdb_read_register = riscv_cpu_gdb_read_register;
cc->gdb_write_register = riscv_cpu_gdb_write_register;
cc->gdb_num_core_regs = 33;
cpu->env.pc = value;
}
+static vaddr rx_cpu_get_pc(CPUState *cs)
+{
+ RXCPU *cpu = RX_CPU(cs);
+
+ return cpu->env.pc;
+}
+
static void rx_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
{
cc->has_work = rx_cpu_has_work;
cc->dump_state = rx_cpu_dump_state;
cc->set_pc = rx_cpu_set_pc;
+ cc->get_pc = rx_cpu_get_pc;
#ifndef CONFIG_USER_ONLY
cc->sysemu_ops = &rx_sysemu_ops;
cpu->env.psw.addr = value;
}
+static vaddr s390_cpu_get_pc(CPUState *cs)
+{
+ S390CPU *cpu = S390_CPU(cs);
+
+ return cpu->env.psw.addr;
+}
+
static bool s390_cpu_has_work(CPUState *cs)
{
S390CPU *cpu = S390_CPU(cs);
cc->has_work = s390_cpu_has_work;
cc->dump_state = s390_cpu_dump_state;
cc->set_pc = s390_cpu_set_pc;
+ cc->get_pc = s390_cpu_get_pc;
cc->gdb_read_register = s390_cpu_gdb_read_register;
cc->gdb_write_register = s390_cpu_gdb_write_register;
#ifndef CONFIG_USER_ONLY
cpu->env.pc = value;
}
+static vaddr superh_cpu_get_pc(CPUState *cs)
+{
+ SuperHCPU *cpu = SUPERH_CPU(cs);
+
+ return cpu->env.pc;
+}
+
static void superh_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
{
cc->has_work = superh_cpu_has_work;
cc->dump_state = superh_cpu_dump_state;
cc->set_pc = superh_cpu_set_pc;
+ cc->get_pc = superh_cpu_get_pc;
cc->gdb_read_register = superh_cpu_gdb_read_register;
cc->gdb_write_register = superh_cpu_gdb_write_register;
#ifndef CONFIG_USER_ONLY
cpu->env.npc = value + 4;
}
+static vaddr sparc_cpu_get_pc(CPUState *cs)
+{
+ SPARCCPU *cpu = SPARC_CPU(cs);
+
+ return cpu->env.pc;
+}
+
static void sparc_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
{
cc->memory_rw_debug = sparc_cpu_memory_rw_debug;
#endif
cc->set_pc = sparc_cpu_set_pc;
+ cc->get_pc = sparc_cpu_get_pc;
cc->gdb_read_register = sparc_cpu_gdb_read_register;
cc->gdb_write_register = sparc_cpu_gdb_write_register;
#ifndef CONFIG_USER_ONLY
env->PC = value & ~(target_ulong)1;
}
+static vaddr tricore_cpu_get_pc(CPUState *cs)
+{
+ TriCoreCPU *cpu = TRICORE_CPU(cs);
+ CPUTriCoreState *env = &cpu->env;
+
+ return env->PC;
+}
+
static void tricore_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
{
cc->dump_state = tricore_cpu_dump_state;
cc->set_pc = tricore_cpu_set_pc;
+ cc->get_pc = tricore_cpu_get_pc;
cc->sysemu_ops = &tricore_sysemu_ops;
cc->tcg_ops = &tricore_tcg_ops;
}
cpu->env.pc = value;
}
+static vaddr xtensa_cpu_get_pc(CPUState *cs)
+{
+ XtensaCPU *cpu = XTENSA_CPU(cs);
+
+ return cpu->env.pc;
+}
+
static bool xtensa_cpu_has_work(CPUState *cs)
{
#ifndef CONFIG_USER_ONLY
cc->has_work = xtensa_cpu_has_work;
cc->dump_state = xtensa_cpu_dump_state;
cc->set_pc = xtensa_cpu_set_pc;
+ cc->get_pc = xtensa_cpu_get_pc;
cc->gdb_read_register = xtensa_cpu_gdb_read_register;
cc->gdb_write_register = xtensa_cpu_gdb_write_register;
cc->gdb_stop_before_watchpoint = true;