#include <sys/time.h>
#include "xc_private.h"
+#include "xc_bitops.h"
#include "xc_dom.h"
#include "xg_private.h"
#include "xg_save_restore.h"
#define SUPER_PAGE_START(pfn) (((pfn) & (SUPERPAGE_NR_PFNS-1)) == 0 )
-/*
-** During (live) save/migrate, we maintain a number of bitmaps to track
-** which pages we have to send, to fixup, and to skip.
-*/
-
-#define BITS_PER_LONG (sizeof(unsigned long) * 8)
-#define BITS_TO_LONGS(bits) (((bits)+BITS_PER_LONG-1)/BITS_PER_LONG)
-#define BITMAP_SIZE (BITS_TO_LONGS(dinfo->p2m_size) * sizeof(unsigned long))
-
-#define BITMAP_ENTRY(_nr,_bmap) \
- ((volatile unsigned long *)(_bmap))[(_nr)/BITS_PER_LONG]
-
-#define BITMAP_SHIFT(_nr) ((_nr) % BITS_PER_LONG)
-
-#define ORDER_LONG (sizeof(unsigned long) == 4 ? 5 : 6)
-
-static inline int test_bit (int nr, volatile void * addr)
-{
- return (BITMAP_ENTRY(nr, addr) >> BITMAP_SHIFT(nr)) & 1;
-}
-
-static inline void clear_bit (int nr, volatile void * addr)
-{
- BITMAP_ENTRY(nr, addr) &= ~(1UL << BITMAP_SHIFT(nr));
-}
-
-static inline void set_bit ( int nr, volatile void * addr)
-{
- BITMAP_ENTRY(nr, addr) |= (1UL << BITMAP_SHIFT(nr));
-}
-
-/* Returns the hamming weight (i.e. the number of bits set) in a N-bit word */
-static inline unsigned int hweight32(unsigned int w)
-{
- unsigned int res = (w & 0x55555555) + ((w >> 1) & 0x55555555);
- res = (res & 0x33333333) + ((res >> 2) & 0x33333333);
- res = (res & 0x0F0F0F0F) + ((res >> 4) & 0x0F0F0F0F);
- res = (res & 0x00FF00FF) + ((res >> 8) & 0x00FF00FF);
- return (res & 0x0000FFFF) + ((res >> 16) & 0x0000FFFF);
-}
-
-static inline int count_bits ( int nr, volatile void *addr)
-{
- int i, count = 0;
- volatile unsigned long *p = (volatile unsigned long *)addr;
- /* We know that the array is padded to unsigned long. */
- for ( i = 0; i < (nr / (sizeof(unsigned long)*8)); i++, p++ )
- count += hweight32(*p);
- return count;
-}
-
static uint64_t tv_to_us(struct timeval *new)
{
return (new->tv_sec * 1000000) + new->tv_usec;
sent_last_iter = dinfo->p2m_size;
/* Setup to_send / to_fix and to_skip bitmaps */
- to_send = xc_hypercall_buffer_alloc_pages(xch, to_send, NRPAGES(BITMAP_SIZE));
- to_skip = xc_hypercall_buffer_alloc_pages(xch, to_skip, NRPAGES(BITMAP_SIZE));
- to_fix = calloc(1, BITMAP_SIZE);
+ to_send = xc_hypercall_buffer_alloc_pages(xch, to_send, NRPAGES(bitmap_size(dinfo->p2m_size)));
+ to_skip = xc_hypercall_buffer_alloc_pages(xch, to_skip, NRPAGES(bitmap_size(dinfo->p2m_size)));
+ to_fix = calloc(1, bitmap_size(dinfo->p2m_size));
if ( !to_send || !to_fix || !to_skip )
{
goto out;
}
- memset(to_send, 0xff, BITMAP_SIZE);
+ memset(to_send, 0xff, bitmap_size(dinfo->p2m_size));
if ( hvm )
{
if ( last_iter && debug )
{
int id = XC_SAVE_ID_ENABLE_VERIFY_MODE;
- memset(to_send, 0xff, BITMAP_SIZE);
+ memset(to_send, 0xff, bitmap_size(dinfo->p2m_size));
debug = 0;
DPRINTF("Entering debug resend-all mode\n");
if ( ctx->live_m2p )
munmap(ctx->live_m2p, M2P_SIZE(ctx->max_mfn));
- xc_hypercall_buffer_free_pages(xch, to_send, NRPAGES(BITMAP_SIZE));
- xc_hypercall_buffer_free_pages(xch, to_skip, NRPAGES(BITMAP_SIZE));
+ xc_hypercall_buffer_free_pages(xch, to_send, NRPAGES(bitmap_size(dinfo->p2m_size)));
+ xc_hypercall_buffer_free_pages(xch, to_skip, NRPAGES(bitmap_size(dinfo->p2m_size)));
free(pfn_type);
free(pfn_batch);
+++ /dev/null
-#ifndef _X86_BITOPS_H
-#define _X86_BITOPS_H
-
-/*
- * Copyright 1992, Linus Torvalds.
- */
-
-//#include <xen/config.h>
-
-#ifdef CONFIG_SMP
-#define LOCK_PREFIX "lock ; "
-#else
-#define LOCK_PREFIX ""
-#endif
-
-/*
- * We specify the memory operand as both input and output because the memory
- * operand is both read from and written to. Since the operand is in fact a
- * word array, we also specify "memory" in the clobbers list to indicate that
- * words other than the one directly addressed by the memory operand may be
- * modified. We don't use "+m" because the gcc manual says that it should be
- * used only when the constraint allows the operand to reside in a register.
- */
-
-#define ADDR (*(volatile long *) addr)
-#define CONST_ADDR (*(const volatile long *) addr)
-
-extern void __bitop_bad_size(void);
-#define bitop_bad_size(addr) (sizeof(*(addr)) < 4)
-
-/**
- * set_bit - Atomically set a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * This function is atomic and may not be reordered. See __set_bit()
- * if you do not require the atomic guarantees.
- * Note that @nr may be almost arbitrarily large; this function is not
- * restricted to acting on a single-word quantity.
- */
-static inline void set_bit(int nr, volatile void *addr)
-{
- asm volatile (
- LOCK_PREFIX
- "btsl %1,%0"
- : "=m" (ADDR)
- : "Ir" (nr), "m" (ADDR) : "memory");
-}
-#define set_bit(nr, addr) ({ \
- if ( bitop_bad_size(addr) ) __bitop_bad_size(); \
- set_bit(nr, addr); \
-})
-
-/**
- * __set_bit - Set a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * Unlike set_bit(), this function is non-atomic and may be reordered.
- * If it's called on the same region of memory simultaneously, the effect
- * may be that only one operation succeeds.
- */
-static inline void __set_bit(int nr, volatile void *addr)
-{
- asm volatile (
- "btsl %1,%0"
- : "=m" (ADDR)
- : "Ir" (nr), "m" (ADDR) : "memory");
-}
-#define __set_bit(nr, addr) ({ \
- if ( bitop_bad_size(addr) ) __bitop_bad_size(); \
- __set_bit(nr, addr); \
-})
-
-/**
- * clear_bit - Clears a bit in memory
- * @nr: Bit to clear
- * @addr: Address to start counting from
- *
- * clear_bit() is atomic and may not be reordered. However, it does
- * not contain a memory barrier, so if it is used for locking purposes,
- * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
- * in order to ensure changes are visible on other processors.
- */
-static inline void clear_bit(int nr, volatile void *addr)
-{
- asm volatile (
- LOCK_PREFIX
- "btrl %1,%0"
- : "=m" (ADDR)
- : "Ir" (nr), "m" (ADDR) : "memory");
-}
-#define clear_bit(nr, addr) ({ \
- if ( bitop_bad_size(addr) ) __bitop_bad_size(); \
- clear_bit(nr, addr); \
-})
-
-/**
- * __clear_bit - Clears a bit in memory
- * @nr: Bit to clear
- * @addr: Address to start counting from
- *
- * Unlike clear_bit(), this function is non-atomic and may be reordered.
- * If it's called on the same region of memory simultaneously, the effect
- * may be that only one operation succeeds.
- */
-static inline void __clear_bit(int nr, volatile void *addr)
-{
- asm volatile (
- "btrl %1,%0"
- : "=m" (ADDR)
- : "Ir" (nr), "m" (ADDR) : "memory");
-}
-#define __clear_bit(nr, addr) ({ \
- if ( bitop_bad_size(addr) ) __bitop_bad_size(); \
- __clear_bit(nr, addr); \
-})
-
-#define smp_mb__before_clear_bit() ((void)0)
-#define smp_mb__after_clear_bit() ((void)0)
-
-/**
- * __change_bit - Toggle a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * Unlike change_bit(), this function is non-atomic and may be reordered.
- * If it's called on the same region of memory simultaneously, the effect
- * may be that only one operation succeeds.
- */
-static inline void __change_bit(int nr, volatile void *addr)
-{
- asm volatile (
- "btcl %1,%0"
- : "=m" (ADDR)
- : "Ir" (nr), "m" (ADDR) : "memory");
-}
-#define __change_bit(nr, addr) ({ \
- if ( bitop_bad_size(addr) ) __bitop_bad_size(); \
- __change_bit(nr, addr); \
-})
-
-/**
- * change_bit - Toggle a bit in memory
- * @nr: Bit to clear
- * @addr: Address to start counting from
- *
- * change_bit() is atomic and may not be reordered.
- * Note that @nr may be almost arbitrarily large; this function is not
- * restricted to acting on a single-word quantity.
- */
-static inline void change_bit(int nr, volatile void *addr)
-{
- asm volatile (
- LOCK_PREFIX
- "btcl %1,%0"
- : "=m" (ADDR)
- : "Ir" (nr), "m" (ADDR) : "memory");
-}
-#define change_bit(nr, addr) ({ \
- if ( bitop_bad_size(addr) ) __bitop_bad_size(); \
- change_bit(nr, addr); \
-})
-
-/**
- * test_and_set_bit - Set a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
-static inline int test_and_set_bit(int nr, volatile void *addr)
-{
- int oldbit;
-
- asm volatile (
- LOCK_PREFIX
- "btsl %2,%1\n\tsbbl %0,%0"
- : "=r" (oldbit), "=m" (ADDR)
- : "Ir" (nr), "m" (ADDR) : "memory");
- return oldbit;
-}
-#define test_and_set_bit(nr, addr) ({ \
- if ( bitop_bad_size(addr) ) __bitop_bad_size(); \
- test_and_set_bit(nr, addr); \
-})
-
-/**
- * __test_and_set_bit - Set a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is non-atomic and can be reordered.
- * If two examples of this operation race, one can appear to succeed
- * but actually fail. You must protect multiple accesses with a lock.
- */
-static inline int __test_and_set_bit(int nr, volatile void *addr)
-{
- int oldbit;
-
- asm volatile (
- "btsl %2,%1\n\tsbbl %0,%0"
- : "=r" (oldbit), "=m" (ADDR)
- : "Ir" (nr), "m" (ADDR) : "memory");
- return oldbit;
-}
-#define __test_and_set_bit(nr, addr) ({ \
- if ( bitop_bad_size(addr) ) __bitop_bad_size(); \
- __test_and_set_bit(nr, addr); \
-})
-
-/**
- * test_and_clear_bit - Clear a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
-static inline int test_and_clear_bit(int nr, volatile void *addr)
-{
- int oldbit;
-
- asm volatile (
- LOCK_PREFIX
- "btrl %2,%1\n\tsbbl %0,%0"
- : "=r" (oldbit), "=m" (ADDR)
- : "Ir" (nr), "m" (ADDR) : "memory");
- return oldbit;
-}
-#define test_and_clear_bit(nr, addr) ({ \
- if ( bitop_bad_size(addr) ) __bitop_bad_size(); \
- test_and_clear_bit(nr, addr); \
-})
-
-/**
- * __test_and_clear_bit - Clear a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is non-atomic and can be reordered.
- * If two examples of this operation race, one can appear to succeed
- * but actually fail. You must protect multiple accesses with a lock.
- */
-static inline int __test_and_clear_bit(int nr, volatile void *addr)
-{
- int oldbit;
-
- asm volatile (
- "btrl %2,%1\n\tsbbl %0,%0"
- : "=r" (oldbit), "=m" (ADDR)
- : "Ir" (nr), "m" (ADDR) : "memory");
- return oldbit;
-}
-#define __test_and_clear_bit(nr, addr) ({ \
- if ( bitop_bad_size(addr) ) __bitop_bad_size(); \
- __test_and_clear_bit(nr, addr); \
-})
-
-/* WARNING: non atomic and it can be reordered! */
-static inline int __test_and_change_bit(int nr, volatile void *addr)
-{
- int oldbit;
-
- asm volatile (
- "btcl %2,%1\n\tsbbl %0,%0"
- : "=r" (oldbit), "=m" (ADDR)
- : "Ir" (nr), "m" (ADDR) : "memory");
- return oldbit;
-}
-#define __test_and_change_bit(nr, addr) ({ \
- if ( bitop_bad_size(addr) ) __bitop_bad_size(); \
- __test_and_change_bit(nr, addr); \
-})
-
-/**
- * test_and_change_bit - Change a bit and return its new value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is atomic and cannot be reordered.
- * It also implies a memory barrier.
- */
-static inline int test_and_change_bit(int nr, volatile void *addr)
-{
- int oldbit;
-
- asm volatile (
- LOCK_PREFIX
- "btcl %2,%1\n\tsbbl %0,%0"
- : "=r" (oldbit), "=m" (ADDR)
- : "Ir" (nr), "m" (ADDR) : "memory");
- return oldbit;
-}
-#define test_and_change_bit(nr, addr) ({ \
- if ( bitop_bad_size(addr) ) __bitop_bad_size(); \
- test_and_change_bit(nr, addr); \
-})
-
-static inline int constant_test_bit(int nr, const volatile void *addr)
-{
- return ((1U << (nr & 31)) &
- (((const volatile unsigned int *)addr)[nr >> 5])) != 0;
-}
-
-static inline int variable_test_bit(int nr, const volatile void *addr)
-{
- int oldbit;
-
- asm volatile (
- "btl %2,%1\n\tsbbl %0,%0"
- : "=r" (oldbit)
- : "m" (CONST_ADDR), "Ir" (nr) : "memory" );
- return oldbit;
-}
-
-#define test_bit(nr, addr) ({ \
- if ( bitop_bad_size(addr) ) __bitop_bad_size(); \
- (__builtin_constant_p(nr) ? \
- constant_test_bit((nr),(addr)) : \
- variable_test_bit((nr),(addr))); \
-})
-
-extern unsigned int __find_first_bit(
- const unsigned long *addr, unsigned int size);
-extern unsigned int __find_next_bit(
- const unsigned long *addr, unsigned int size, unsigned int offset);
-extern unsigned int __find_first_zero_bit(
- const unsigned long *addr, unsigned int size);
-extern unsigned int __find_next_zero_bit(
- const unsigned long *addr, unsigned int size, unsigned int offset);
-
-static inline unsigned int __scanbit(unsigned long val, unsigned long max)
-{
- asm ( "bsf %1,%0 ; cmovz %2,%0" : "=&r" (val) : "r" (val), "r" (max) );
- return (unsigned int)val;
-}
-
-/**
- * find_first_bit - find the first set bit in a memory region
- * @addr: The address to start the search at
- * @size: The maximum size to search
- *
- * Returns the bit-number of the first set bit, not the number of the byte
- * containing a bit.
- */
-#define find_first_bit(addr,size) \
-((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
- (__scanbit(*(const unsigned long *)addr, size)) : \
- __find_first_bit(addr,size)))
-
-/**
- * find_next_bit - find the first set bit in a memory region
- * @addr: The address to base the search on
- * @offset: The bitnumber to start searching at
- * @size: The maximum size to search
- */
-#define find_next_bit(addr,size,off) \
-((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
- ((off) + (__scanbit((*(const unsigned long *)addr) >> (off), size))) : \
- __find_next_bit(addr,size,off)))
-
-/**
- * find_first_zero_bit - find the first zero bit in a memory region
- * @addr: The address to start the search at
- * @size: The maximum size to search
- *
- * Returns the bit-number of the first zero bit, not the number of the byte
- * containing a bit.
- */
-#define find_first_zero_bit(addr,size) \
-((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
- (__scanbit(~*(const unsigned long *)addr, size)) : \
- __find_first_zero_bit(addr,size)))
-
-/**
- * find_next_zero_bit - find the first zero bit in a memory region
- * @addr: The address to base the search on
- * @offset: The bitnumber to start searching at
- * @size: The maximum size to search
- */
-#define find_next_zero_bit(addr,size,off) \
-((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
- ((off)+(__scanbit(~(((*(const unsigned long *)addr)) >> (off)), size))) : \
- __find_next_zero_bit(addr,size,off)))
-
-
-/**
- * find_first_set_bit - find the first set bit in @word
- * @word: the word to search
- *
- * Returns the bit-number of the first set bit. The input must *not* be zero.
- */
-static inline unsigned int find_first_set_bit(unsigned long word)
-{
- asm ( "bsf %1,%0" : "=r" (word) : "r" (word) );
- return (unsigned int)word;
-}
-
-/**
- * ffs - find first bit set
- * @x: the word to search
- *
- * This is defined the same way as the libc and compiler builtin ffs routines.
- */
-#if 0
-static inline int ffs(unsigned long x)
-{
- long r;
-
- asm ( "bsf %1,%0\n\t"
- "jnz 1f\n\t"
- "mov $-1,%0\n"
- "1:" : "=r" (r) : "rm" (x));
- return (int)r+1;
-}
-#endif
-
-/**
- * fls - find last bit set
- * @x: the word to search
- *
- * This is defined the same way as ffs.
- */
-static inline int fls(unsigned long x)
-{
- long r;
-
- asm ( "bsr %1,%0\n\t"
- "jnz 1f\n\t"
- "mov $-1,%0\n"
- "1:" : "=r" (r) : "rm" (x));
- return (int)r+1;
-}
-
-/**
- * hweightN - returns the hamming weight of a N-bit word
- * @x: the word to weigh
- *
- * The Hamming Weight of a number is the total number of bits set in it.
- */
-#define hweight64(x) generic_hweight64(x)
-#define hweight32(x) generic_hweight32(x)
-#define hweight16(x) generic_hweight16(x)
-#define hweight8(x) generic_hweight8(x)
-
-#endif /* _X86_BITOPS_H */