### spec-ctrl (x86)
> `= List of [ <bool>, xen=<bool>, {pv,hvm,msr-sc,rsb,md-clear}=<bool>,
> bti-thunk=retpoline|lfence|jmp, {ibrs,ibpb,ssbd,eager-fpu,
-> l1d-flush,branch-harden,srb-lock}=<bool> ]`
+> l1d-flush,branch-harden,srb-lock,unpriv-mmio}=<bool> ]`
Controls for speculative execution sidechannel mitigations. By default, Xen
will pick the most appropriate mitigations based on compiled in support,
On hardware supporting SRBDS_CTRL, the `srb-lock=` option can be used to force
or prevent Xen from protect the Special Register Buffer from leaking stale
data. By default, Xen will enable this mitigation, except on parts where MDS
-is fixed and TAA is fixed/mitigated (in which case, there is believed to be no
-way for an attacker to obtain the stale data).
+is fixed and TAA is fixed/mitigated and there are no unprivileged MMIO
+mappings (in which case, there is believed to be no way for an attacker to
+obtain stale data).
+
+The `unpriv-mmio=` boolean indicates whether the system has (or will have)
+less than fully privileged domains granted access to MMIO devices. By
+default, this option is disabled. If enabled, Xen will use the `FB_CLEAR`
+and/or `SRBDS_CTRL` functionality available in the Intel May 2022 microcode
+release to mitigate cross-domain leakage of data via the MMIO Stale Data
+vulnerabilities.
### sync_console
> `= <boolean>`
static int8_t __initdata opt_srb_lock = -1;
uint64_t __read_mostly default_xen_mcu_opt_ctrl;
+static bool __initdata opt_unpriv_mmio;
+static bool __read_mostly opt_fb_clear_mmio;
static int __init parse_spec_ctrl(const char *s)
{
opt_branch_harden = val;
else if ( (val = parse_boolean("srb-lock", s, ss)) >= 0 )
opt_srb_lock = val;
+ else if ( (val = parse_boolean("unpriv-mmio", s, ss)) >= 0 )
+ opt_unpriv_mmio = val;
else
rc = -EINVAL;
opt_srb_lock ? " SRB_LOCK+" : " SRB_LOCK-",
opt_ibpb ? " IBPB" : "",
opt_l1d_flush ? " L1D_FLUSH" : "",
- opt_md_clear_pv || opt_md_clear_hvm ? " VERW" : "",
+ opt_md_clear_pv || opt_md_clear_hvm ||
+ opt_fb_clear_mmio ? " VERW" : "",
opt_branch_harden ? " BRANCH_HARDEN" : "");
/* L1TF diagnostics, printed if vulnerable or PV shadowing is in use. */
{
bool pv = is_pv_domain(d);
- d->arch.verw = pv ? opt_md_clear_pv : opt_md_clear_hvm;
+ d->arch.verw =
+ (pv ? opt_md_clear_pv : opt_md_clear_hvm) ||
+ (opt_fb_clear_mmio && is_iommu_enabled(d));
}
void __init init_speculation_mitigations(void)
mds_calculations(caps);
+ /*
+ * Parts which enumerate FB_CLEAR are those which are post-MDS_NO and have
+ * reintroduced the VERW fill buffer flushing side effect because of a
+ * susceptibility to FBSDP.
+ *
+ * If unprivileged guests have (or will have) MMIO mappings, we can
+ * mitigate cross-domain leakage of fill buffer data by issuing VERW on
+ * the return-to-guest path.
+ */
+ if ( opt_unpriv_mmio )
+ opt_fb_clear_mmio = caps & ARCH_CAPS_FB_CLEAR;
+
/*
* By default, enable PV and HVM mitigations on MDS-vulnerable hardware.
* This will only be a token effort for MLPDS/MFBDS when HT is enabled,
boot_cpu_has(X86_FEATURE_MD_CLEAR));
/*
- * Enable MDS defences as applicable. The Idle blocks need using if
- * either PV or HVM defences are used.
+ * Enable MDS/MMIO defences as applicable. The Idle blocks need using if
+ * either the PV or HVM MDS defences are used, or if we may give MMIO
+ * access to untrusted guests.
*
* HVM is more complicated. The MD_CLEAR microcode extends L1D_FLUSH with
* equivalent semantics to avoid needing to perform both flushes on the
- * HVM path. Therefore, we don't need VERW in addition to L1D_FLUSH.
+ * HVM path. Therefore, we don't need VERW in addition to L1D_FLUSH (for
+ * MDS mitigations. L1D_FLUSH is not safe for MMIO mitigations.)
*
* After calculating the appropriate idle setting, simplify
* opt_md_clear_hvm to mean just "should we VERW on the way into HVM
* guests", so spec_ctrl_init_domain() can calculate suitable settings.
*/
- if ( opt_md_clear_pv || opt_md_clear_hvm )
+ if ( opt_md_clear_pv || opt_md_clear_hvm || opt_fb_clear_mmio )
setup_force_cpu_cap(X86_FEATURE_SC_VERW_IDLE);
opt_md_clear_hvm &= !(caps & ARCH_CAPS_SKIP_L1DFL) && !opt_l1d_flush;
* On some SRBDS-affected hardware, it may be safe to relax srb-lock
* by default.
*
- * On parts which enumerate MDS_NO and not TAA_NO, TSX is the only way
- * to access the Fill Buffer. If TSX isn't available (inc. SKU
- * reasons on some models), or TSX is explicitly disabled, then there
- * is no need for the extra overhead to protect RDRAND/RDSEED.
+ * All parts with SRBDS_CTRL suffer SSDP, the mechanism by which stale
+ * RNG data becomes available to other contexts. To recover the data,
+ * an attacker needs to use:
+ * - SBDS (MDS or TAA to sample the cores fill buffer)
+ * - SBDR (Architecturally retrieve stale transaction buffer contents)
+ * - DRPW (Architecturally latch stale fill buffer data)
+ *
+ * On MDS_NO parts, and with TAA_NO or TSX unavailable/disabled, and
+ * there is no unprivileged MMIO access, the RNG data doesn't need
+ * protecting.
*/
- if ( opt_srb_lock == -1 &&
+ if ( opt_srb_lock == -1 && !opt_unpriv_mmio &&
(caps & (ARCH_CAPS_MDS_NO|ARCH_CAPS_TAA_NO)) == ARCH_CAPS_MDS_NO &&
(!cpu_has_hle || ((caps & ARCH_CAPS_TSX_CTRL) && opt_tsx == 0)) )
opt_srb_lock = 0;