/* This is global for now so that private implementations can reach it */
DEFINE_PER_CPU_READ_MOSTLY(struct sched_resource *, sched_res);
static DEFINE_PER_CPU_READ_MOSTLY(unsigned int, sched_res_idx);
+DEFINE_RCU_READ_LOCK(sched_res_rculock);
/* Scratch space for cpumasks. */
DEFINE_PER_CPU(cpumask_t, cpumask_scratch);
void vcpu_runstate_get(struct vcpu *v, struct vcpu_runstate_info *runstate)
{
- spinlock_t *lock = likely(v == current)
- ? NULL : unit_schedule_lock_irq(v->sched_unit);
+ spinlock_t *lock;
s_time_t delta;
+ rcu_read_lock(&sched_res_rculock);
+
+ lock = likely(v == current) ? NULL : unit_schedule_lock_irq(v->sched_unit);
memcpy(runstate, &v->runstate, sizeof(*runstate));
delta = NOW() - runstate->state_entry_time;
if ( delta > 0 )
if ( unlikely(lock != NULL) )
unit_schedule_unlock_irq(lock, v->sched_unit);
+
+ rcu_read_unlock(&sched_res_rculock);
}
uint64_t get_cpu_idle_time(unsigned int cpu)
return 0;
}
+ rcu_read_lock(&sched_res_rculock);
+
/* The first vcpu of an unit can be set via sched_set_res(). */
sched_set_res(unit, get_sched_res(processor));
if ( unit->priv == NULL )
{
sched_free_unit(unit, v);
+ rcu_read_unlock(&sched_res_rculock);
return 1;
}
sched_insert_unit(dom_scheduler(d), unit);
}
+ rcu_read_unlock(&sched_res_rculock);
+
return 0;
}
struct scheduler *old_ops;
void *old_domdata;
unsigned int gran = cpupool_get_granularity(c);
+ int ret = 0;
for_each_vcpu ( d, v )
{
return -EBUSY;
}
+ rcu_read_lock(&sched_res_rculock);
+
domdata = sched_alloc_domdata(c->sched, d);
if ( IS_ERR(domdata) )
- return PTR_ERR(domdata);
+ {
+ ret = PTR_ERR(domdata);
+ goto out;
+ }
unit_priv = xzalloc_array(void *, DIV_ROUND_UP(d->max_vcpus, gran));
if ( unit_priv == NULL )
{
sched_free_domdata(c->sched, domdata);
- return -ENOMEM;
+ ret = -ENOMEM;
+ goto out;
}
unit_idx = 0;
sched_free_udata(c->sched, unit_priv[unit_idx]);
xfree(unit_priv);
sched_free_domdata(c->sched, domdata);
- return -ENOMEM;
+ ret = -ENOMEM;
+ goto out;
}
unit_idx++;
}
xfree(unit_priv);
- return 0;
+out:
+ rcu_read_unlock(&sched_res_rculock);
+
+ return ret;
}
void sched_destroy_vcpu(struct vcpu *v)
*/
if ( unit->vcpu_list == v )
{
+ rcu_read_lock(&sched_res_rculock);
+
sched_remove_unit(vcpu_scheduler(v), unit);
sched_free_udata(vcpu_scheduler(v), unit->priv);
sched_free_unit(unit, v);
+
+ rcu_read_unlock(&sched_res_rculock);
}
}
SCHED_STAT_CRANK(dom_init);
TRACE_1D(TRC_SCHED_DOM_ADD, d->domain_id);
+ rcu_read_lock(&sched_res_rculock);
+
sdom = sched_alloc_domdata(dom_scheduler(d), d);
+
+ rcu_read_unlock(&sched_res_rculock);
+
if ( IS_ERR(sdom) )
return PTR_ERR(sdom);
SCHED_STAT_CRANK(dom_destroy);
TRACE_1D(TRC_SCHED_DOM_REM, d->domain_id);
+ rcu_read_lock(&sched_res_rculock);
+
sched_free_domdata(dom_scheduler(d), d->sched_priv);
d->sched_priv = NULL;
+ rcu_read_unlock(&sched_res_rculock);
+
cpupool_rm_domain(d);
}
}
TRACE_2D(TRC_SCHED_SLEEP, v->domain->domain_id, v->vcpu_id);
+ rcu_read_lock(&sched_res_rculock);
+
lock = unit_schedule_lock_irqsave(v->sched_unit, &flags);
vcpu_sleep_nosync_locked(v);
unit_schedule_unlock_irqrestore(lock, flags, v->sched_unit);
+
+ rcu_read_unlock(&sched_res_rculock);
}
void vcpu_sleep_sync(struct vcpu *v)
TRACE_2D(TRC_SCHED_WAKE, v->domain->domain_id, v->vcpu_id);
+ rcu_read_lock(&sched_res_rculock);
+
lock = unit_schedule_lock_irqsave(unit, &flags);
if ( likely(vcpu_runnable(v)) )
}
unit_schedule_unlock_irqrestore(lock, flags, unit);
+
+ rcu_read_unlock(&sched_res_rculock);
}
void vcpu_unblock(struct vcpu *v)
unsigned int old_cpu = unit->res->master_cpu;
struct vcpu *v;
+ rcu_read_lock(&sched_res_rculock);
+
/*
* Transfer urgency status to new CPU before switching CPUs, as
* once the switch occurs, v->is_urgent is no longer protected by
* pointer can't change while the current lock is held.
*/
sched_migrate(unit_scheduler(unit), unit, new_cpu);
+
+ rcu_read_unlock(&sched_res_rculock);
}
/*
ASSERT(system_state == SYS_STATE_resume);
+ rcu_read_lock(&sched_res_rculock);
+
for_each_sched_unit ( d, unit )
{
spinlock_t *lock;
sched_move_irqs(unit);
}
+ rcu_read_unlock(&sched_res_rculock);
+
domain_update_node_affinity(d);
}
cpumask_t online_affinity;
int ret = 0;
+ rcu_read_lock(&sched_res_rculock);
+
c = get_sched_res(cpu)->cpupool;
if ( c == NULL )
- return ret;
+ goto out;
for_each_domain_in_cpupool ( d, c )
{
}
}
+out:
+ rcu_read_unlock(&sched_res_rculock);
+
return ret;
}
static void sched_set_affinity(
struct sched_unit *unit, const cpumask_t *hard, const cpumask_t *soft)
{
+ rcu_read_lock(&sched_res_rculock);
sched_adjust_affinity(dom_scheduler(unit->domain), unit, hard, soft);
+ rcu_read_unlock(&sched_res_rculock);
if ( hard )
cpumask_copy(unit->cpu_hard_affinity, hard);
spinlock_t *lock;
int ret = 0;
+ rcu_read_lock(&sched_res_rculock);
+
lock = unit_schedule_lock_irq(unit);
if ( v->affinity_broken )
sched_unit_migrate_finish(unit);
+ rcu_read_unlock(&sched_res_rculock);
+
return ret;
}
long vcpu_yield(void)
{
struct vcpu * v=current;
- spinlock_t *lock = unit_schedule_lock_irq(v->sched_unit);
+ spinlock_t *lock;
+
+ rcu_read_lock(&sched_res_rculock);
+ lock = unit_schedule_lock_irq(v->sched_unit);
sched_yield(vcpu_scheduler(v), v->sched_unit);
unit_schedule_unlock_irq(lock, v->sched_unit);
+ rcu_read_unlock(&sched_res_rculock);
+
SCHED_STAT_CRANK(vcpu_yield);
TRACE_2D(TRC_SCHED_YIELD, current->domain->domain_id, current->vcpu_id);
int ret = -EINVAL;
bool migrate;
+ rcu_read_lock(&sched_res_rculock);
+
lock = unit_schedule_lock_irq(unit);
if ( cpu == NR_CPUS )
if ( migrate )
sched_unit_migrate_finish(unit);
+ rcu_read_unlock(&sched_res_rculock);
+
return ret;
}
/* NB: the pluggable scheduler code needs to take care
* of locking by itself. */
+ rcu_read_lock(&sched_res_rculock);
+
if ( (ret = sched_adjust_dom(dom_scheduler(d), d, op)) == 0 )
TRACE_1D(TRC_SCHED_ADJDOM, d->domain_id);
+ rcu_read_unlock(&sched_res_rculock);
+
return ret;
}
if ( pool == NULL )
return -ESRCH;
+ rcu_read_lock(&sched_res_rculock);
+
rc = ((op->sched_id == pool->sched->sched_id)
? sched_adjust_cpupool(pool->sched, op) : -EINVAL);
+ rcu_read_unlock(&sched_res_rculock);
+
cpupool_put(pool);
return rc;
void sched_context_switched(struct vcpu *vprev, struct vcpu *vnext)
{
struct sched_unit *next = vnext->sched_unit;
- struct sched_resource *sr = get_sched_res(smp_processor_id());
+ struct sched_resource *sr;
+
+ rcu_read_lock(&sched_res_rculock);
+
+ sr = get_sched_res(smp_processor_id());
if ( atomic_read(&next->rendezvous_out_cnt) )
{
if ( is_idle_vcpu(vprev) && vprev != vnext )
vprev->sched_unit = sr->sched_unit_idle;
+
+ rcu_read_unlock(&sched_res_rculock);
}
static void sched_context_switch(struct vcpu *vprev, struct vcpu *vnext,
vnext->sched_unit =
get_sched_res(smp_processor_id())->sched_unit_idle;
+ rcu_read_unlock(&sched_res_rculock);
+
trace_continue_running(vnext);
return continue_running(vprev);
}
vcpu_periodic_timer_work(vnext);
+ rcu_read_unlock(&sched_res_rculock);
+
context_switch(vprev, vnext);
}
ASSERT_NOT_IN_ATOMIC();
+ rcu_read_lock(&sched_res_rculock);
+
lock = pcpu_schedule_lock_irq(cpu);
now = NOW();
{
pcpu_schedule_unlock_irq(lock, cpu);
+ rcu_read_unlock(&sched_res_rculock);
+
/* Check for failed forced context switch. */
if ( do_softirq )
raise_softirq(SCHEDULE_SOFTIRQ);
struct sched_resource *sr;
spinlock_t *lock;
int cpu = smp_processor_id();
- unsigned int gran = get_sched_res(cpu)->granularity;
+ unsigned int gran;
ASSERT_NOT_IN_ATOMIC();
SCHED_STAT_CRANK(sched_run);
+ rcu_read_lock(&sched_res_rculock);
+
sr = get_sched_res(cpu);
+ gran = sr->granularity;
lock = pcpu_schedule_lock_irq(cpu);
*/
pcpu_schedule_unlock_irq(lock, cpu);
+ rcu_read_unlock(&sched_res_rculock);
+
raise_softirq(SCHEDULE_SOFTIRQ);
return sched_slave();
}
return 0;
}
+static void sched_res_free(struct rcu_head *head)
+{
+ struct sched_resource *sr = container_of(head, struct sched_resource, rcu);
+
+ xfree(sr);
+}
+
static void cpu_schedule_down(unsigned int cpu)
{
- struct sched_resource *sr = get_sched_res(cpu);
+ struct sched_resource *sr;
+
+ rcu_read_lock(&sched_res_rculock);
+
+ sr = get_sched_res(cpu);
kill_timer(&sr->s_timer);
set_sched_res(cpu, NULL);
- xfree(sr);
+ call_rcu(&sr->rcu, sched_res_free);
+
+ rcu_read_unlock(&sched_res_rculock);
}
void sched_rm_cpu(unsigned int cpu)
unsigned int cpu = (unsigned long)hcpu;
int rc = 0;
+ rcu_read_lock(&sched_res_rculock);
+
/*
* From the scheduler perspective, bringing up a pCPU requires
* allocating and initializing the per-pCPU scheduler specific data,
break;
}
+ rcu_read_unlock(&sched_res_rculock);
+
return !rc ? NOTIFY_DONE : notifier_from_errno(rc);
}
idle_domain->max_vcpus = nr_cpu_ids;
if ( vcpu_create(idle_domain, 0) == NULL )
BUG();
+
+ rcu_read_lock(&sched_res_rculock);
+
get_sched_res(0)->curr = idle_vcpu[0]->sched_unit;
get_sched_res(0)->sched_unit_idle = idle_vcpu[0]->sched_unit;
+
+ rcu_read_unlock(&sched_res_rculock);
}
/*
struct vcpu *idle;
void *ppriv, *vpriv;
struct scheduler *new_ops = c->sched;
- struct sched_resource *sr = get_sched_res(cpu);
+ struct sched_resource *sr;
spinlock_t *old_lock, *new_lock;
unsigned long flags;
+ int ret = 0;
+
+ rcu_read_lock(&sched_res_rculock);
+
+ sr = get_sched_res(cpu);
ASSERT(cpumask_test_cpu(cpu, &cpupool_free_cpus));
ASSERT(!cpumask_test_cpu(cpu, c->cpu_valid));
idle = idle_vcpu[cpu];
ppriv = sched_alloc_pdata(new_ops, cpu);
if ( IS_ERR(ppriv) )
- return PTR_ERR(ppriv);
+ {
+ ret = PTR_ERR(ppriv);
+ goto out;
+ }
+
vpriv = sched_alloc_udata(new_ops, idle->sched_unit,
idle->domain->sched_priv);
if ( vpriv == NULL )
{
sched_free_pdata(new_ops, ppriv, cpu);
- return -ENOMEM;
+ ret = -ENOMEM;
+ goto out;
}
/*
/* The cpu is added to a pool, trigger it to go pick up some work */
cpu_raise_softirq(cpu, SCHEDULE_SOFTIRQ);
- return 0;
+out:
+ rcu_read_unlock(&sched_res_rculock);
+
+ return ret;
}
/*
{
struct vcpu *idle;
void *ppriv_old, *vpriv_old;
- struct sched_resource *sr = get_sched_res(cpu);
- struct scheduler *old_ops = sr->scheduler;
+ struct sched_resource *sr;
+ struct scheduler *old_ops;
spinlock_t *old_lock;
unsigned long flags;
+ rcu_read_lock(&sched_res_rculock);
+
+ sr = get_sched_res(cpu);
+ old_ops = sr->scheduler;
+
ASSERT(sr->cpupool != NULL);
ASSERT(cpumask_test_cpu(cpu, &cpupool_free_cpus));
ASSERT(!cpumask_test_cpu(cpu, sr->cpupool->cpu_valid));
sr->granularity = 1;
sr->cpupool = NULL;
+ rcu_read_unlock(&sched_res_rculock);
+
return 0;
}
/* Locking, if necessary, must be handled withing each scheduler */
+ rcu_read_lock(&sched_res_rculock);
+
if ( c != NULL )
{
sched = c->sched;
for_each_cpu (i, cpus)
sched_dump_cpu_state(sched, i);
}
+
+ rcu_read_unlock(&sched_res_rculock);
}
void sched_tick_suspend(void)
struct scheduler *sched;
unsigned int cpu = smp_processor_id();
+ rcu_read_lock(&sched_res_rculock);
+
sched = get_sched_res(cpu)->scheduler;
sched_do_tick_suspend(sched, cpu);
rcu_idle_enter(cpu);
rcu_idle_timer_start();
+
+ rcu_read_unlock(&sched_res_rculock);
}
void sched_tick_resume(void)
struct scheduler *sched;
unsigned int cpu = smp_processor_id();
+ rcu_read_lock(&sched_res_rculock);
+
rcu_idle_timer_stop();
rcu_idle_exit(cpu);
sched = get_sched_res(cpu)->scheduler;
sched_do_tick_resume(sched, cpu);
+
+ rcu_read_unlock(&sched_res_rculock);
}
void wait(void)