]> xenbits.xensource.com Git - people/julieng/freebsd.git/commitdiff
MFV r288408:
authormarkj <markj@FreeBSD.org>
Wed, 30 Sep 2015 05:24:22 +0000 (05:24 +0000)
committermarkj <markj@FreeBSD.org>
Wed, 30 Sep 2015 05:24:22 +0000 (05:24 +0000)
6266 harden dtrace_difo_chunksize() with respect to malicious DIF

illumos/illumos-gate@395c7a3dcfc66b8b671dc4b3c4a2f0ca26449922

Reviewed by: Alex Wilson <alex.wilson@joyent.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Author: Bryan Cantrill <bryan@joyent.com>

MFC after: 1 week

1  2 
cddl/contrib/opensolaris/cmd/dtrace/test/tst/common/privs/tst.kpriv.ksh
cddl/contrib/opensolaris/cmd/dtrace/test/tst/common/scalars/err.bigglobal.d
cddl/contrib/opensolaris/cmd/dtrace/test/tst/common/scalars/err.biglocal.d
sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c
sys/cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h

index 0000000000000000000000000000000000000000,0000000000000000000000000000000000000000..da776d042eb348eb232950cfe25297ca582dbbfd
new file mode 100644 (file)
--- /dev/null
--- /dev/null
@@@ -1,0 -1,0 +1,112 @@@
++#
++# This file and its contents are supplied under the terms of the
++# Common Development and Distribution License ("CDDL"), version 1.0.
++# You may only use this file in accordance with the terms of version
++# 1.0 of the CDDL.
++#
++# A full copy of the text of the CDDL should have accompanied this
++# source.  A copy of the CDDL is also available via the Internet at
++# http://www.illumos.org/license/CDDL.
++#
++
++#
++# Copyright (c) 2015, Joyent, Inc. All rights reserved.
++#
++
++err=/tmp/err.$$
++
++ppriv -s A=basic,dtrace_user $$
++
++#
++# When we lack dtrace_kernel, we expect to not be able to get at kernel memory
++# via any subroutine or other vector.
++#
++#     trace(func((void *)&\`utsname)); }
++/usr/sbin/dtrace -wq -Cs /dev/stdin 2> $err <<EOF
++
++#define FAIL \
++      printf("able to read kernel memory via %s!\n", badsubr); \
++      exit(2);
++
++#define CANTREAD1(func) \
++    BEGIN { badsubr = "func()"; func((void *)&\`utsname); FAIL }
++
++#define CANTREAD2(func, arg1) \
++    BEGIN { badsubr = "func()"; func((void *)&\`utsname, arg1); FAIL }
++
++#define CANTREAD2ARG1(func, arg0) \
++    BEGIN { badsubr = "func() (arg1)"; func(arg0, (void *)&\`utsname); FAIL }
++
++#define CANTREAD3(func, arg1, arg2) \
++    BEGIN { badsubr = "func()"; func((void *)&\`utsname, arg1, arg2); FAIL }
++
++CANTREAD1(mutex_owned)
++CANTREAD1(mutex_owner)
++CANTREAD1(mutex_type_adaptive)
++CANTREAD1(mutex_type_spin)
++CANTREAD1(rw_read_held)
++CANTREAD1(rw_write_held)
++CANTREAD1(rw_iswriter)
++CANTREAD3(bcopy, alloca(1), 1)
++CANTREAD1(msgsize)
++CANTREAD1(msgdsize)
++CANTREAD1(strlen)
++CANTREAD2(strchr, '!')
++CANTREAD2(strrchr, '!')
++CANTREAD2(strstr, "doogle")
++CANTREAD2ARG1(strstr, "doogle")
++CANTREAD2(index, "bagnoogle")
++CANTREAD2ARG1(index, "bagnoogle")
++CANTREAD2(rindex, "bagnoogle")
++CANTREAD2ARG1(rindex, "bagnoogle")
++CANTREAD2(strtok, "doogle")
++CANTREAD2ARG1(strtok, "doogle")
++CANTREAD2(json, "doogle")
++CANTREAD2ARG1(json, "doogle")
++CANTREAD1(toupper)
++CANTREAD1(tolower)
++CANTREAD2(ddi_pathname, 1)
++CANTREAD2(strjoin, "doogle")
++CANTREAD2ARG1(strjoin, "doogle")
++CANTREAD1(strtoll)
++CANTREAD1(dirname)
++CANTREAD1(basename)
++CANTREAD1(cleanpath)
++
++#if defined(__amd64)
++CANTREAD3(copyout, uregs[R_R9], 1)
++CANTREAD3(copyoutstr, uregs[R_R9], 1)
++#else
++#if defined(__i386)
++CANTREAD3(copyout, uregs[R_ESP], 1)
++CANTREAD3(copyoutstr, uregs[R_ESP], 1)
++#endif
++#endif
++
++BEGIN
++{
++      exit(0);
++}
++
++ERROR
++/arg4 != DTRACEFLT_KPRIV/
++{
++      printf("bad error code via %s (expected %d, found %d)\n",
++          badsubr, DTRACEFLT_KPRIV, arg4);
++      exit(3);
++}
++
++ERROR
++/arg4 == DTRACEFLT_KPRIV/
++{
++      printf("illegal kernel access properly prevented from %s\n", badsubr);
++}
++EOF
++
++status=$?
++
++if [[ $status -eq 1 ]]; then
++      cat $err
++fi
++
++exit $status
index 0000000000000000000000000000000000000000,0000000000000000000000000000000000000000..a50a759e4eb5671d98f9fe31b308532cd5b517a5
new file mode 100644 (file)
--- /dev/null
--- /dev/null
@@@ -1,0 -1,0 +1,26 @@@
++/*
++ * This file and its contents are supplied under the terms of the
++ * Common Development and Distribution License ("CDDL"), version 1.0.
++ * You may only use this file in accordance with the terms of version
++ * 1.0 of the CDDL.
++ *
++ * A full copy of the text of the CDDL should have accompanied this
++ * source.  A copy of the CDDL is also available via the Internet at
++ * http://www.illumos.org/license/CDDL.
++ */
++
++/*
++ * Copyright (c) 2015, Joyent, Inc. All rights reserved.
++ */
++
++struct mrbig {
++      char toomany[100000];
++};
++
++struct mrbig mrbig;
++
++BEGIN
++{
++      mrbig.toomany[0] = '!';
++      exit(0);
++}
index 0000000000000000000000000000000000000000,0000000000000000000000000000000000000000..08a2a4c2ed84f8bb01dc6e57ce3860807aa3992a
new file mode 100644 (file)
--- /dev/null
--- /dev/null
@@@ -1,0 -1,0 +1,26 @@@
++/*
++ * This file and its contents are supplied under the terms of the
++ * Common Development and Distribution License ("CDDL"), version 1.0.
++ * You may only use this file in accordance with the terms of version
++ * 1.0 of the CDDL.
++ *
++ * A full copy of the text of the CDDL should have accompanied this
++ * source.  A copy of the CDDL is also available via the Internet at
++ * http://www.illumos.org/license/CDDL.
++ */
++
++/*
++ * Copyright (c) 2015, Joyent, Inc. All rights reserved.
++ */
++
++struct mrbig {
++      char toomany[100000];
++};
++
++this struct mrbig mrbig;
++
++BEGIN
++{
++      this->mrbig.toomany[0] = '!';
++      exit(0);
++}
index cf2f7bbd144c5bdfd33cdfc162fccb7b31822750,0000000000000000000000000000000000000000..4b356d7b1a45f011006af496a6987c453bb84ec2
mode 100644,000000..100644
--- /dev/null
@@@ -1,18004 -1,0 +1,18055 @@@
- size_t                dtrace_global_maxsize = (16 * 1024);
 +/*
 + * CDDL HEADER START
 + *
 + * The contents of this file are subject to the terms of the
 + * Common Development and Distribution License (the "License").
 + * You may not use this file except in compliance with the License.
 + *
 + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 + * or http://www.opensolaris.org/os/licensing.
 + * See the License for the specific language governing permissions
 + * and limitations under the License.
 + *
 + * When distributing Covered Code, include this CDDL HEADER in each
 + * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 + * If applicable, add the following below this CDDL HEADER, with the
 + * fields enclosed by brackets "[]" replaced with your own identifying
 + * information: Portions Copyright [yyyy] [name of copyright owner]
 + *
 + * CDDL HEADER END
 + *
 + * $FreeBSD$
 + */
 +
 +/*
 + * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
 + * Copyright (c) 2015, Joyent, Inc. All rights reserved.
 + * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
 + */
 +
 +/*
 + * DTrace - Dynamic Tracing for Solaris
 + *
 + * This is the implementation of the Solaris Dynamic Tracing framework
 + * (DTrace).  The user-visible interface to DTrace is described at length in
 + * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
 + * library, the in-kernel DTrace framework, and the DTrace providers are
 + * described in the block comments in the <sys/dtrace.h> header file.  The
 + * internal architecture of DTrace is described in the block comments in the
 + * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
 + * implementation very much assume mastery of all of these sources; if one has
 + * an unanswered question about the implementation, one should consult them
 + * first.
 + *
 + * The functions here are ordered roughly as follows:
 + *
 + *   - Probe context functions
 + *   - Probe hashing functions
 + *   - Non-probe context utility functions
 + *   - Matching functions
 + *   - Provider-to-Framework API functions
 + *   - Probe management functions
 + *   - DIF object functions
 + *   - Format functions
 + *   - Predicate functions
 + *   - ECB functions
 + *   - Buffer functions
 + *   - Enabling functions
 + *   - DOF functions
 + *   - Anonymous enabling functions
 + *   - Consumer state functions
 + *   - Helper functions
 + *   - Hook functions
 + *   - Driver cookbook functions
 + *
 + * Each group of functions begins with a block comment labelled the "DTrace
 + * [Group] Functions", allowing one to find each block by searching forward
 + * on capital-f functions.
 + */
 +#include <sys/errno.h>
 +#ifndef illumos
 +#include <sys/time.h>
 +#endif
 +#include <sys/stat.h>
 +#include <sys/modctl.h>
 +#include <sys/conf.h>
 +#include <sys/systm.h>
 +#ifdef illumos
 +#include <sys/ddi.h>
 +#include <sys/sunddi.h>
 +#endif
 +#include <sys/cpuvar.h>
 +#include <sys/kmem.h>
 +#ifdef illumos
 +#include <sys/strsubr.h>
 +#endif
 +#include <sys/sysmacros.h>
 +#include <sys/dtrace_impl.h>
 +#include <sys/atomic.h>
 +#include <sys/cmn_err.h>
 +#ifdef illumos
 +#include <sys/mutex_impl.h>
 +#include <sys/rwlock_impl.h>
 +#endif
 +#include <sys/ctf_api.h>
 +#ifdef illumos
 +#include <sys/panic.h>
 +#include <sys/priv_impl.h>
 +#endif
 +#include <sys/policy.h>
 +#ifdef illumos
 +#include <sys/cred_impl.h>
 +#include <sys/procfs_isa.h>
 +#endif
 +#include <sys/taskq.h>
 +#ifdef illumos
 +#include <sys/mkdev.h>
 +#include <sys/kdi.h>
 +#endif
 +#include <sys/zone.h>
 +#include <sys/socket.h>
 +#include <netinet/in.h>
 +#include "strtolctype.h"
 +
 +/* FreeBSD includes: */
 +#ifndef illumos
 +#include <sys/callout.h>
 +#include <sys/ctype.h>
 +#include <sys/eventhandler.h>
 +#include <sys/limits.h>
 +#include <sys/kdb.h>
 +#include <sys/kernel.h>
 +#include <sys/malloc.h>
 +#include <sys/sysctl.h>
 +#include <sys/lock.h>
 +#include <sys/mutex.h>
 +#include <sys/rwlock.h>
 +#include <sys/sx.h>
 +#include <sys/dtrace_bsd.h>
 +#include <netinet/in.h>
 +#include "dtrace_cddl.h"
 +#include "dtrace_debug.c"
 +#endif
 +
 +/*
 + * DTrace Tunable Variables
 + *
 + * The following variables may be tuned by adding a line to /etc/system that
 + * includes both the name of the DTrace module ("dtrace") and the name of the
 + * variable.  For example:
 + *
 + *   set dtrace:dtrace_destructive_disallow = 1
 + *
 + * In general, the only variables that one should be tuning this way are those
 + * that affect system-wide DTrace behavior, and for which the default behavior
 + * is undesirable.  Most of these variables are tunable on a per-consumer
 + * basis using DTrace options, and need not be tuned on a system-wide basis.
 + * When tuning these variables, avoid pathological values; while some attempt
 + * is made to verify the integrity of these variables, they are not considered
 + * part of the supported interface to DTrace, and they are therefore not
 + * checked comprehensively.  Further, these variables should not be tuned
 + * dynamically via "mdb -kw" or other means; they should only be tuned via
 + * /etc/system.
 + */
 +int           dtrace_destructive_disallow = 0;
 +dtrace_optval_t       dtrace_nonroot_maxsize = (16 * 1024 * 1024);
 +size_t                dtrace_difo_maxsize = (256 * 1024);
 +dtrace_optval_t       dtrace_dof_maxsize = (8 * 1024 * 1024);
-               if (svar == NULL || svar->dtsv_size == 0)
++size_t                dtrace_statvar_maxsize = (16 * 1024);
 +size_t                dtrace_actions_max = (16 * 1024);
 +size_t                dtrace_retain_max = 1024;
 +dtrace_optval_t       dtrace_helper_actions_max = 128;
 +dtrace_optval_t       dtrace_helper_providers_max = 32;
 +dtrace_optval_t       dtrace_dstate_defsize = (1 * 1024 * 1024);
 +size_t                dtrace_strsize_default = 256;
 +dtrace_optval_t       dtrace_cleanrate_default = 9900990;             /* 101 hz */
 +dtrace_optval_t       dtrace_cleanrate_min = 200000;                  /* 5000 hz */
 +dtrace_optval_t       dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;  /* 1/minute */
 +dtrace_optval_t       dtrace_aggrate_default = NANOSEC;               /* 1 hz */
 +dtrace_optval_t       dtrace_statusrate_default = NANOSEC;            /* 1 hz */
 +dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;        /* 6/minute */
 +dtrace_optval_t       dtrace_switchrate_default = NANOSEC;            /* 1 hz */
 +dtrace_optval_t       dtrace_nspec_default = 1;
 +dtrace_optval_t       dtrace_specsize_default = 32 * 1024;
 +dtrace_optval_t dtrace_stackframes_default = 20;
 +dtrace_optval_t dtrace_ustackframes_default = 20;
 +dtrace_optval_t dtrace_jstackframes_default = 50;
 +dtrace_optval_t dtrace_jstackstrsize_default = 512;
 +int           dtrace_msgdsize_max = 128;
 +hrtime_t      dtrace_chill_max = MSEC2NSEC(500);              /* 500 ms */
 +hrtime_t      dtrace_chill_interval = NANOSEC;                /* 1000 ms */
 +int           dtrace_devdepth_max = 32;
 +int           dtrace_err_verbose;
 +hrtime_t      dtrace_deadman_interval = NANOSEC;
 +hrtime_t      dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
 +hrtime_t      dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
 +hrtime_t      dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
 +#ifndef illumos
 +int           dtrace_memstr_max = 4096;
 +#endif
 +
 +/*
 + * DTrace External Variables
 + *
 + * As dtrace(7D) is a kernel module, any DTrace variables are obviously
 + * available to DTrace consumers via the backtick (`) syntax.  One of these,
 + * dtrace_zero, is made deliberately so:  it is provided as a source of
 + * well-known, zero-filled memory.  While this variable is not documented,
 + * it is used by some translators as an implementation detail.
 + */
 +const char    dtrace_zero[256] = { 0 };       /* zero-filled memory */
 +
 +/*
 + * DTrace Internal Variables
 + */
 +#ifdef illumos
 +static dev_info_t     *dtrace_devi;           /* device info */
 +#endif
 +#ifdef illumos
 +static vmem_t         *dtrace_arena;          /* probe ID arena */
 +static vmem_t         *dtrace_minor;          /* minor number arena */
 +#else
 +static taskq_t                *dtrace_taskq;          /* task queue */
 +static struct unrhdr  *dtrace_arena;          /* Probe ID number.     */
 +#endif
 +static dtrace_probe_t **dtrace_probes;        /* array of all probes */
 +static int            dtrace_nprobes;         /* number of probes */
 +static dtrace_provider_t *dtrace_provider;    /* provider list */
 +static dtrace_meta_t  *dtrace_meta_pid;       /* user-land meta provider */
 +static int            dtrace_opens;           /* number of opens */
 +static int            dtrace_helpers;         /* number of helpers */
 +static int            dtrace_getf;            /* number of unpriv getf()s */
 +#ifdef illumos
 +static void           *dtrace_softstate;      /* softstate pointer */
 +#endif
 +static dtrace_hash_t  *dtrace_bymod;          /* probes hashed by module */
 +static dtrace_hash_t  *dtrace_byfunc;         /* probes hashed by function */
 +static dtrace_hash_t  *dtrace_byname;         /* probes hashed by name */
 +static dtrace_toxrange_t *dtrace_toxrange;    /* toxic range array */
 +static int            dtrace_toxranges;       /* number of toxic ranges */
 +static int            dtrace_toxranges_max;   /* size of toxic range array */
 +static dtrace_anon_t  dtrace_anon;            /* anonymous enabling */
 +static kmem_cache_t   *dtrace_state_cache;    /* cache for dynamic state */
 +static uint64_t               dtrace_vtime_references; /* number of vtimestamp refs */
 +static kthread_t      *dtrace_panicked;       /* panicking thread */
 +static dtrace_ecb_t   *dtrace_ecb_create_cache; /* cached created ECB */
 +static dtrace_genid_t dtrace_probegen;        /* current probe generation */
 +static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */
 +static dtrace_enabling_t *dtrace_retained;    /* list of retained enablings */
 +static dtrace_genid_t dtrace_retained_gen;    /* current retained enab gen */
 +static dtrace_dynvar_t        dtrace_dynhash_sink;    /* end of dynamic hash chains */
 +static int            dtrace_dynvar_failclean; /* dynvars failed to clean */
 +#ifndef illumos
 +static struct mtx     dtrace_unr_mtx;
 +MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
 +int           dtrace_in_probe;        /* non-zero if executing a probe */
 +#if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
 +uintptr_t     dtrace_in_probe_addr;   /* Address of invop when already in probe */
 +#endif
 +static eventhandler_tag       dtrace_kld_load_tag;
 +static eventhandler_tag       dtrace_kld_unload_try_tag;
 +#endif
 +
 +/*
 + * DTrace Locking
 + * DTrace is protected by three (relatively coarse-grained) locks:
 + *
 + * (1) dtrace_lock is required to manipulate essentially any DTrace state,
 + *     including enabling state, probes, ECBs, consumer state, helper state,
 + *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
 + *     probe context is lock-free -- synchronization is handled via the
 + *     dtrace_sync() cross call mechanism.
 + *
 + * (2) dtrace_provider_lock is required when manipulating provider state, or
 + *     when provider state must be held constant.
 + *
 + * (3) dtrace_meta_lock is required when manipulating meta provider state, or
 + *     when meta provider state must be held constant.
 + *
 + * The lock ordering between these three locks is dtrace_meta_lock before
 + * dtrace_provider_lock before dtrace_lock.  (In particular, there are
 + * several places where dtrace_provider_lock is held by the framework as it
 + * calls into the providers -- which then call back into the framework,
 + * grabbing dtrace_lock.)
 + *
 + * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
 + * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
 + * role as a coarse-grained lock; it is acquired before both of these locks.
 + * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
 + * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
 + * mod_lock is similar with respect to dtrace_provider_lock in that it must be
 + * acquired _between_ dtrace_provider_lock and dtrace_lock.
 + */
 +static kmutex_t               dtrace_lock;            /* probe state lock */
 +static kmutex_t               dtrace_provider_lock;   /* provider state lock */
 +static kmutex_t               dtrace_meta_lock;       /* meta-provider state lock */
 +
 +#ifndef illumos
 +/* XXX FreeBSD hacks. */
 +#define cr_suid               cr_svuid
 +#define cr_sgid               cr_svgid
 +#define       ipaddr_t        in_addr_t
 +#define mod_modname   pathname
 +#define vuprintf      vprintf
 +#define ttoproc(_a)   ((_a)->td_proc)
 +#define crgetzoneid(_a)       0
 +#define       NCPU            MAXCPU
 +#define SNOCD         0
 +#define CPU_ON_INTR(_a)       0
 +
 +#define PRIV_EFFECTIVE                (1 << 0)
 +#define PRIV_DTRACE_KERNEL    (1 << 1)
 +#define PRIV_DTRACE_PROC      (1 << 2)
 +#define PRIV_DTRACE_USER      (1 << 3)
 +#define PRIV_PROC_OWNER               (1 << 4)
 +#define PRIV_PROC_ZONE                (1 << 5)
 +#define PRIV_ALL              ~0
 +
 +SYSCTL_DECL(_debug_dtrace);
 +SYSCTL_DECL(_kern_dtrace);
 +#endif
 +
 +#ifdef illumos
 +#define curcpu        CPU->cpu_id
 +#endif
 +
 +
 +/*
 + * DTrace Provider Variables
 + *
 + * These are the variables relating to DTrace as a provider (that is, the
 + * provider of the BEGIN, END, and ERROR probes).
 + */
 +static dtrace_pattr_t dtrace_provider_attr = {
 +{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 +{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
 +{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
 +{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 +{ DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
 +};
 +
 +static void
 +dtrace_nullop(void)
 +{}
 +
 +static dtrace_pops_t  dtrace_provider_ops = {
 +      (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
 +      (void (*)(void *, modctl_t *))dtrace_nullop,
 +      (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 +      (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 +      (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 +      (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
 +      NULL,
 +      NULL,
 +      NULL,
 +      (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
 +};
 +
 +static dtrace_id_t    dtrace_probeid_begin;   /* special BEGIN probe */
 +static dtrace_id_t    dtrace_probeid_end;     /* special END probe */
 +dtrace_id_t           dtrace_probeid_error;   /* special ERROR probe */
 +
 +/*
 + * DTrace Helper Tracing Variables
 + *
 + * These variables should be set dynamically to enable helper tracing.  The
 + * only variables that should be set are dtrace_helptrace_enable (which should
 + * be set to a non-zero value to allocate helper tracing buffers on the next
 + * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
 + * non-zero value to deallocate helper tracing buffers on the next close of
 + * /dev/dtrace).  When (and only when) helper tracing is disabled, the
 + * buffer size may also be set via dtrace_helptrace_bufsize.
 + */
 +int                   dtrace_helptrace_enable = 0;
 +int                   dtrace_helptrace_disable = 0;
 +int                   dtrace_helptrace_bufsize = 16 * 1024 * 1024;
 +uint32_t              dtrace_helptrace_nlocals;
 +static dtrace_helptrace_t *dtrace_helptrace_buffer;
 +static uint32_t               dtrace_helptrace_next = 0;
 +static int            dtrace_helptrace_wrapped = 0;
 +
 +/*
 + * DTrace Error Hashing
 + *
 + * On DEBUG kernels, DTrace will track the errors that has seen in a hash
 + * table.  This is very useful for checking coverage of tests that are
 + * expected to induce DIF or DOF processing errors, and may be useful for
 + * debugging problems in the DIF code generator or in DOF generation .  The
 + * error hash may be examined with the ::dtrace_errhash MDB dcmd.
 + */
 +#ifdef DEBUG
 +static dtrace_errhash_t       dtrace_errhash[DTRACE_ERRHASHSZ];
 +static const char *dtrace_errlast;
 +static kthread_t *dtrace_errthread;
 +static kmutex_t dtrace_errlock;
 +#endif
 +
 +/*
 + * DTrace Macros and Constants
 + *
 + * These are various macros that are useful in various spots in the
 + * implementation, along with a few random constants that have no meaning
 + * outside of the implementation.  There is no real structure to this cpp
 + * mishmash -- but is there ever?
 + */
 +#define       DTRACE_HASHSTR(hash, probe)     \
 +      dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
 +
 +#define       DTRACE_HASHNEXT(hash, probe)    \
 +      (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
 +
 +#define       DTRACE_HASHPREV(hash, probe)    \
 +      (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
 +
 +#define       DTRACE_HASHEQ(hash, lhs, rhs)   \
 +      (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
 +          *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
 +
 +#define       DTRACE_AGGHASHSIZE_SLEW         17
 +
 +#define       DTRACE_V4MAPPED_OFFSET          (sizeof (uint32_t) * 3)
 +
 +/*
 + * The key for a thread-local variable consists of the lower 61 bits of the
 + * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
 + * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
 + * equal to a variable identifier.  This is necessary (but not sufficient) to
 + * assure that global associative arrays never collide with thread-local
 + * variables.  To guarantee that they cannot collide, we must also define the
 + * order for keying dynamic variables.  That order is:
 + *
 + *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
 + *
 + * Because the variable-key and the tls-key are in orthogonal spaces, there is
 + * no way for a global variable key signature to match a thread-local key
 + * signature.
 + */
 +#ifdef illumos
 +#define       DTRACE_TLS_THRKEY(where) { \
 +      uint_t intr = 0; \
 +      uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
 +      for (; actv; actv >>= 1) \
 +              intr++; \
 +      ASSERT(intr < (1 << 3)); \
 +      (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
 +          (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
 +}
 +#else
 +#define       DTRACE_TLS_THRKEY(where) { \
 +      solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
 +      uint_t intr = 0; \
 +      uint_t actv = _c->cpu_intr_actv; \
 +      for (; actv; actv >>= 1) \
 +              intr++; \
 +      ASSERT(intr < (1 << 3)); \
 +      (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
 +          (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
 +}
 +#endif
 +
 +#define       DT_BSWAP_8(x)   ((x) & 0xff)
 +#define       DT_BSWAP_16(x)  ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
 +#define       DT_BSWAP_32(x)  ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
 +#define       DT_BSWAP_64(x)  ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
 +
 +#define       DT_MASK_LO 0x00000000FFFFFFFFULL
 +
 +#define       DTRACE_STORE(type, tomax, offset, what) \
 +      *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
 +
 +#ifndef __x86
 +#define       DTRACE_ALIGNCHECK(addr, size, flags)                            \
 +      if (addr & (size - 1)) {                                        \
 +              *flags |= CPU_DTRACE_BADALIGN;                          \
 +              cpu_core[curcpu].cpuc_dtrace_illval = addr;     \
 +              return (0);                                             \
 +      }
 +#else
 +#define       DTRACE_ALIGNCHECK(addr, size, flags)
 +#endif
 +
 +/*
 + * Test whether a range of memory starting at testaddr of size testsz falls
 + * within the range of memory described by addr, sz.  We take care to avoid
 + * problems with overflow and underflow of the unsigned quantities, and
 + * disallow all negative sizes.  Ranges of size 0 are allowed.
 + */
 +#define       DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
 +      ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
 +      (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
 +      (testaddr) + (testsz) >= (testaddr))
 +
 +/*
 + * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
 + * alloc_sz on the righthand side of the comparison in order to avoid overflow
 + * or underflow in the comparison with it.  This is simpler than the INRANGE
 + * check above, because we know that the dtms_scratch_ptr is valid in the
 + * range.  Allocations of size zero are allowed.
 + */
 +#define       DTRACE_INSCRATCH(mstate, alloc_sz) \
 +      ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
 +      (mstate)->dtms_scratch_ptr >= (alloc_sz))
 +
 +#define       DTRACE_LOADFUNC(bits)                                           \
 +/*CSTYLED*/                                                           \
 +uint##bits##_t                                                                \
 +dtrace_load##bits(uintptr_t addr)                                     \
 +{                                                                     \
 +      size_t size = bits / NBBY;                                      \
 +      /*CSTYLED*/                                                     \
 +      uint##bits##_t rval;                                            \
 +      int i;                                                          \
 +      volatile uint16_t *flags = (volatile uint16_t *)                \
 +          &cpu_core[curcpu].cpuc_dtrace_flags;                        \
 +                                                                      \
 +      DTRACE_ALIGNCHECK(addr, size, flags);                           \
 +                                                                      \
 +      for (i = 0; i < dtrace_toxranges; i++) {                        \
 +              if (addr >= dtrace_toxrange[i].dtt_limit)               \
 +                      continue;                                       \
 +                                                                      \
 +              if (addr + size <= dtrace_toxrange[i].dtt_base)         \
 +                      continue;                                       \
 +                                                                      \
 +              /*                                                      \
 +               * This address falls within a toxic region; return 0.  \
 +               */                                                     \
 +              *flags |= CPU_DTRACE_BADADDR;                           \
 +              cpu_core[curcpu].cpuc_dtrace_illval = addr;             \
 +              return (0);                                             \
 +      }                                                               \
 +                                                                      \
 +      *flags |= CPU_DTRACE_NOFAULT;                                   \
 +      /*CSTYLED*/                                                     \
 +      rval = *((volatile uint##bits##_t *)addr);                      \
 +      *flags &= ~CPU_DTRACE_NOFAULT;                                  \
 +                                                                      \
 +      return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);               \
 +}
 +
 +#ifdef _LP64
 +#define       dtrace_loadptr  dtrace_load64
 +#else
 +#define       dtrace_loadptr  dtrace_load32
 +#endif
 +
 +#define       DTRACE_DYNHASH_FREE     0
 +#define       DTRACE_DYNHASH_SINK     1
 +#define       DTRACE_DYNHASH_VALID    2
 +
 +#define       DTRACE_MATCH_NEXT       0
 +#define       DTRACE_MATCH_DONE       1
 +#define       DTRACE_ANCHORED(probe)  ((probe)->dtpr_func[0] != '\0')
 +#define       DTRACE_STATE_ALIGN      64
 +
 +#define       DTRACE_FLAGS2FLT(flags)                                         \
 +      (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :           \
 +      ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :                \
 +      ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :            \
 +      ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :                \
 +      ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :                \
 +      ((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :         \
 +      ((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :         \
 +      ((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :       \
 +      ((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :         \
 +      DTRACEFLT_UNKNOWN)
 +
 +#define       DTRACEACT_ISSTRING(act)                                         \
 +      ((act)->dta_kind == DTRACEACT_DIFEXPR &&                        \
 +      (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
 +
 +/* Function prototype definitions: */
 +static size_t dtrace_strlen(const char *, size_t);
 +static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
 +static void dtrace_enabling_provide(dtrace_provider_t *);
 +static int dtrace_enabling_match(dtrace_enabling_t *, int *);
 +static void dtrace_enabling_matchall(void);
 +static void dtrace_enabling_reap(void);
 +static dtrace_state_t *dtrace_anon_grab(void);
 +static uint64_t dtrace_helper(int, dtrace_mstate_t *,
 +    dtrace_state_t *, uint64_t, uint64_t);
 +static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
 +static void dtrace_buffer_drop(dtrace_buffer_t *);
 +static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
 +static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
 +    dtrace_state_t *, dtrace_mstate_t *);
 +static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
 +    dtrace_optval_t);
 +static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
 +static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
 +uint16_t dtrace_load16(uintptr_t);
 +uint32_t dtrace_load32(uintptr_t);
 +uint64_t dtrace_load64(uintptr_t);
 +uint8_t dtrace_load8(uintptr_t);
 +void dtrace_dynvar_clean(dtrace_dstate_t *);
 +dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
 +    size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
 +uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
 +static int dtrace_priv_proc(dtrace_state_t *);
 +static void dtrace_getf_barrier(void);
 +
 +/*
 + * DTrace Probe Context Functions
 + *
 + * These functions are called from probe context.  Because probe context is
 + * any context in which C may be called, arbitrarily locks may be held,
 + * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
 + * As a result, functions called from probe context may only call other DTrace
 + * support functions -- they may not interact at all with the system at large.
 + * (Note that the ASSERT macro is made probe-context safe by redefining it in
 + * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
 + * loads are to be performed from probe context, they _must_ be in terms of
 + * the safe dtrace_load*() variants.
 + *
 + * Some functions in this block are not actually called from probe context;
 + * for these functions, there will be a comment above the function reading
 + * "Note:  not called from probe context."
 + */
 +void
 +dtrace_panic(const char *format, ...)
 +{
 +      va_list alist;
 +
 +      va_start(alist, format);
 +#ifdef __FreeBSD__
 +      vpanic(format, alist);
 +#else
 +      dtrace_vpanic(format, alist);
 +#endif
 +      va_end(alist);
 +}
 +
 +int
 +dtrace_assfail(const char *a, const char *f, int l)
 +{
 +      dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
 +
 +      /*
 +       * We just need something here that even the most clever compiler
 +       * cannot optimize away.
 +       */
 +      return (a[(uintptr_t)f]);
 +}
 +
 +/*
 + * Atomically increment a specified error counter from probe context.
 + */
 +static void
 +dtrace_error(uint32_t *counter)
 +{
 +      /*
 +       * Most counters stored to in probe context are per-CPU counters.
 +       * However, there are some error conditions that are sufficiently
 +       * arcane that they don't merit per-CPU storage.  If these counters
 +       * are incremented concurrently on different CPUs, scalability will be
 +       * adversely affected -- but we don't expect them to be white-hot in a
 +       * correctly constructed enabling...
 +       */
 +      uint32_t oval, nval;
 +
 +      do {
 +              oval = *counter;
 +
 +              if ((nval = oval + 1) == 0) {
 +                      /*
 +                       * If the counter would wrap, set it to 1 -- assuring
 +                       * that the counter is never zero when we have seen
 +                       * errors.  (The counter must be 32-bits because we
 +                       * aren't guaranteed a 64-bit compare&swap operation.)
 +                       * To save this code both the infamy of being fingered
 +                       * by a priggish news story and the indignity of being
 +                       * the target of a neo-puritan witch trial, we're
 +                       * carefully avoiding any colorful description of the
 +                       * likelihood of this condition -- but suffice it to
 +                       * say that it is only slightly more likely than the
 +                       * overflow of predicate cache IDs, as discussed in
 +                       * dtrace_predicate_create().
 +                       */
 +                      nval = 1;
 +              }
 +      } while (dtrace_cas32(counter, oval, nval) != oval);
 +}
 +
 +/*
 + * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
 + * uint8_t, a uint16_t, a uint32_t and a uint64_t.
 + */
 +DTRACE_LOADFUNC(8)
 +DTRACE_LOADFUNC(16)
 +DTRACE_LOADFUNC(32)
 +DTRACE_LOADFUNC(64)
 +
 +static int
 +dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
 +{
 +      if (dest < mstate->dtms_scratch_base)
 +              return (0);
 +
 +      if (dest + size < dest)
 +              return (0);
 +
 +      if (dest + size > mstate->dtms_scratch_ptr)
 +              return (0);
 +
 +      return (1);
 +}
 +
 +static int
 +dtrace_canstore_statvar(uint64_t addr, size_t sz,
 +    dtrace_statvar_t **svars, int nsvars)
 +{
 +      int i;
++      size_t maxglobalsize, maxlocalsize;
++
++      if (nsvars == 0)
++              return (0);
++
++      maxglobalsize = dtrace_statvar_maxsize;
++      maxlocalsize = (maxglobalsize + sizeof (uint64_t)) * NCPU;
 +
 +      for (i = 0; i < nsvars; i++) {
 +              dtrace_statvar_t *svar = svars[i];
++              uint8_t scope;
++              size_t size;
 +
-                   !dtrace_istoxic(kaddr, size)) {
++              if (svar == NULL || (size = svar->dtsv_size) == 0)
 +                      continue;
 +
++              scope = svar->dtsv_var.dtdv_scope;
++
++              /*
++               * We verify that our size is valid in the spirit of providing
++               * defense in depth:  we want to prevent attackers from using
++               * DTrace to escalate an orthogonal kernel heap corruption bug
++               * into the ability to store to arbitrary locations in memory.
++               */
++              VERIFY((scope == DIFV_SCOPE_GLOBAL && size < maxglobalsize) ||
++                  (scope == DIFV_SCOPE_LOCAL && size < maxlocalsize));
++
 +              if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
 +                      return (1);
 +      }
 +
 +      return (0);
 +}
 +
 +/*
 + * Check to see if the address is within a memory region to which a store may
 + * be issued.  This includes the DTrace scratch areas, and any DTrace variable
 + * region.  The caller of dtrace_canstore() is responsible for performing any
 + * alignment checks that are needed before stores are actually executed.
 + */
 +static int
 +dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 +    dtrace_vstate_t *vstate)
 +{
 +      /*
 +       * First, check to see if the address is in scratch space...
 +       */
 +      if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
 +          mstate->dtms_scratch_size))
 +              return (1);
 +
 +      /*
 +       * Now check to see if it's a dynamic variable.  This check will pick
 +       * up both thread-local variables and any global dynamically-allocated
 +       * variables.
 +       */
 +      if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
 +          vstate->dtvs_dynvars.dtds_size)) {
 +              dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
 +              uintptr_t base = (uintptr_t)dstate->dtds_base +
 +                  (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
 +              uintptr_t chunkoffs;
 +
 +              /*
 +               * Before we assume that we can store here, we need to make
 +               * sure that it isn't in our metadata -- storing to our
 +               * dynamic variable metadata would corrupt our state.  For
 +               * the range to not include any dynamic variable metadata,
 +               * it must:
 +               *
 +               *      (1) Start above the hash table that is at the base of
 +               *      the dynamic variable space
 +               *
 +               *      (2) Have a starting chunk offset that is beyond the
 +               *      dtrace_dynvar_t that is at the base of every chunk
 +               *
 +               *      (3) Not span a chunk boundary
 +               *
 +               */
 +              if (addr < base)
 +                      return (0);
 +
 +              chunkoffs = (addr - base) % dstate->dtds_chunksize;
 +
 +              if (chunkoffs < sizeof (dtrace_dynvar_t))
 +                      return (0);
 +
 +              if (chunkoffs + sz > dstate->dtds_chunksize)
 +                      return (0);
 +
 +              return (1);
 +      }
 +
 +      /*
 +       * Finally, check the static local and global variables.  These checks
 +       * take the longest, so we perform them last.
 +       */
 +      if (dtrace_canstore_statvar(addr, sz,
 +          vstate->dtvs_locals, vstate->dtvs_nlocals))
 +              return (1);
 +
 +      if (dtrace_canstore_statvar(addr, sz,
 +          vstate->dtvs_globals, vstate->dtvs_nglobals))
 +              return (1);
 +
 +      return (0);
 +}
 +
 +
 +/*
 + * Convenience routine to check to see if the address is within a memory
 + * region in which a load may be issued given the user's privilege level;
 + * if not, it sets the appropriate error flags and loads 'addr' into the
 + * illegal value slot.
 + *
 + * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
 + * appropriate memory access protection.
 + */
 +static int
 +dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 +    dtrace_vstate_t *vstate)
 +{
 +      volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
 +      file_t *fp;
 +
 +      /*
 +       * If we hold the privilege to read from kernel memory, then
 +       * everything is readable.
 +       */
 +      if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 +              return (1);
 +
 +      /*
 +       * You can obviously read that which you can store.
 +       */
 +      if (dtrace_canstore(addr, sz, mstate, vstate))
 +              return (1);
 +
 +      /*
 +       * We're allowed to read from our own string table.
 +       */
 +      if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
 +          mstate->dtms_difo->dtdo_strlen))
 +              return (1);
 +
 +      if (vstate->dtvs_state != NULL &&
 +          dtrace_priv_proc(vstate->dtvs_state)) {
 +              proc_t *p;
 +
 +              /*
 +               * When we have privileges to the current process, there are
 +               * several context-related kernel structures that are safe to
 +               * read, even absent the privilege to read from kernel memory.
 +               * These reads are safe because these structures contain only
 +               * state that (1) we're permitted to read, (2) is harmless or
 +               * (3) contains pointers to additional kernel state that we're
 +               * not permitted to read (and as such, do not present an
 +               * opportunity for privilege escalation).  Finally (and
 +               * critically), because of the nature of their relation with
 +               * the current thread context, the memory associated with these
 +               * structures cannot change over the duration of probe context,
 +               * and it is therefore impossible for this memory to be
 +               * deallocated and reallocated as something else while it's
 +               * being operated upon.
 +               */
 +              if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
 +                      return (1);
 +
 +              if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
 +                  sz, curthread->t_procp, sizeof (proc_t))) {
 +                      return (1);
 +              }
 +
 +              if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
 +                  curthread->t_cred, sizeof (cred_t))) {
 +                      return (1);
 +              }
 +
 +#ifdef illumos
 +              if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
 +                  &(p->p_pidp->pid_id), sizeof (pid_t))) {
 +                      return (1);
 +              }
 +
 +              if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
 +                  curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
 +                      return (1);
 +              }
 +#endif
 +      }
 +
 +      if ((fp = mstate->dtms_getf) != NULL) {
 +              uintptr_t psz = sizeof (void *);
 +              vnode_t *vp;
 +              vnodeops_t *op;
 +
 +              /*
 +               * When getf() returns a file_t, the enabling is implicitly
 +               * granted the (transient) right to read the returned file_t
 +               * as well as the v_path and v_op->vnop_name of the underlying
 +               * vnode.  These accesses are allowed after a successful
 +               * getf() because the members that they refer to cannot change
 +               * once set -- and the barrier logic in the kernel's closef()
 +               * path assures that the file_t and its referenced vode_t
 +               * cannot themselves be stale (that is, it impossible for
 +               * either dtms_getf itself or its f_vnode member to reference
 +               * freed memory).
 +               */
 +              if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
 +                      return (1);
 +
 +              if ((vp = fp->f_vnode) != NULL) {
 +#ifdef illumos
 +                      if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
 +                              return (1);
 +                      if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
 +                          vp->v_path, strlen(vp->v_path) + 1)) {
 +                              return (1);
 +                      }
 +#endif
 +
 +                      if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
 +                              return (1);
 +
 +#ifdef illumos
 +                      if ((op = vp->v_op) != NULL &&
 +                          DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
 +                              return (1);
 +                      }
 +
 +                      if (op != NULL && op->vnop_name != NULL &&
 +                          DTRACE_INRANGE(addr, sz, op->vnop_name,
 +                          strlen(op->vnop_name) + 1)) {
 +                              return (1);
 +                      }
 +#endif
 +              }
 +      }
 +
 +      DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
 +      *illval = addr;
 +      return (0);
 +}
 +
 +/*
 + * Convenience routine to check to see if a given string is within a memory
 + * region in which a load may be issued given the user's privilege level;
 + * this exists so that we don't need to issue unnecessary dtrace_strlen()
 + * calls in the event that the user has all privileges.
 + */
 +static int
 +dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
 +    dtrace_vstate_t *vstate)
 +{
 +      size_t strsz;
 +
 +      /*
 +       * If we hold the privilege to read from kernel memory, then
 +       * everything is readable.
 +       */
 +      if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 +              return (1);
 +
 +      strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
 +      if (dtrace_canload(addr, strsz, mstate, vstate))
 +              return (1);
 +
 +      return (0);
 +}
 +
 +/*
 + * Convenience routine to check to see if a given variable is within a memory
 + * region in which a load may be issued given the user's privilege level.
 + */
 +static int
 +dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
 +    dtrace_vstate_t *vstate)
 +{
 +      size_t sz;
 +      ASSERT(type->dtdt_flags & DIF_TF_BYREF);
 +
 +      /*
 +       * If we hold the privilege to read from kernel memory, then
 +       * everything is readable.
 +       */
 +      if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 +              return (1);
 +
 +      if (type->dtdt_kind == DIF_TYPE_STRING)
 +              sz = dtrace_strlen(src,
 +                  vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
 +      else
 +              sz = type->dtdt_size;
 +
 +      return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
 +}
 +
 +/*
 + * Convert a string to a signed integer using safe loads.
 + *
 + * NOTE: This function uses various macros from strtolctype.h to manipulate
 + * digit values, etc -- these have all been checked to ensure they make
 + * no additional function calls.
 + */
 +static int64_t
 +dtrace_strtoll(char *input, int base, size_t limit)
 +{
 +      uintptr_t pos = (uintptr_t)input;
 +      int64_t val = 0;
 +      int x;
 +      boolean_t neg = B_FALSE;
 +      char c, cc, ccc;
 +      uintptr_t end = pos + limit;
 +
 +      /*
 +       * Consume any whitespace preceding digits.
 +       */
 +      while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
 +              pos++;
 +
 +      /*
 +       * Handle an explicit sign if one is present.
 +       */
 +      if (c == '-' || c == '+') {
 +              if (c == '-')
 +                      neg = B_TRUE;
 +              c = dtrace_load8(++pos);
 +      }
 +
 +      /*
 +       * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
 +       * if present.
 +       */
 +      if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
 +          cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
 +              pos += 2;
 +              c = ccc;
 +      }
 +
 +      /*
 +       * Read in contiguous digits until the first non-digit character.
 +       */
 +      for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
 +          c = dtrace_load8(++pos))
 +              val = val * base + x;
 +
 +      return (neg ? -val : val);
 +}
 +
 +/*
 + * Compare two strings using safe loads.
 + */
 +static int
 +dtrace_strncmp(char *s1, char *s2, size_t limit)
 +{
 +      uint8_t c1, c2;
 +      volatile uint16_t *flags;
 +
 +      if (s1 == s2 || limit == 0)
 +              return (0);
 +
 +      flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
 +
 +      do {
 +              if (s1 == NULL) {
 +                      c1 = '\0';
 +              } else {
 +                      c1 = dtrace_load8((uintptr_t)s1++);
 +              }
 +
 +              if (s2 == NULL) {
 +                      c2 = '\0';
 +              } else {
 +                      c2 = dtrace_load8((uintptr_t)s2++);
 +              }
 +
 +              if (c1 != c2)
 +                      return (c1 - c2);
 +      } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
 +
 +      return (0);
 +}
 +
 +/*
 + * Compute strlen(s) for a string using safe memory accesses.  The additional
 + * len parameter is used to specify a maximum length to ensure completion.
 + */
 +static size_t
 +dtrace_strlen(const char *s, size_t lim)
 +{
 +      uint_t len;
 +
 +      for (len = 0; len != lim; len++) {
 +              if (dtrace_load8((uintptr_t)s++) == '\0')
 +                      break;
 +      }
 +
 +      return (len);
 +}
 +
 +/*
 + * Check if an address falls within a toxic region.
 + */
 +static int
 +dtrace_istoxic(uintptr_t kaddr, size_t size)
 +{
 +      uintptr_t taddr, tsize;
 +      int i;
 +
 +      for (i = 0; i < dtrace_toxranges; i++) {
 +              taddr = dtrace_toxrange[i].dtt_base;
 +              tsize = dtrace_toxrange[i].dtt_limit - taddr;
 +
 +              if (kaddr - taddr < tsize) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
 +                      cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
 +                      return (1);
 +              }
 +
 +              if (taddr - kaddr < size) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
 +                      cpu_core[curcpu].cpuc_dtrace_illval = taddr;
 +                      return (1);
 +              }
 +      }
 +
 +      return (0);
 +}
 +
 +/*
 + * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
 + * memory specified by the DIF program.  The dst is assumed to be safe memory
 + * that we can store to directly because it is managed by DTrace.  As with
 + * standard bcopy, overlapping copies are handled properly.
 + */
 +static void
 +dtrace_bcopy(const void *src, void *dst, size_t len)
 +{
 +      if (len != 0) {
 +              uint8_t *s1 = dst;
 +              const uint8_t *s2 = src;
 +
 +              if (s1 <= s2) {
 +                      do {
 +                              *s1++ = dtrace_load8((uintptr_t)s2++);
 +                      } while (--len != 0);
 +              } else {
 +                      s2 += len;
 +                      s1 += len;
 +
 +                      do {
 +                              *--s1 = dtrace_load8((uintptr_t)--s2);
 +                      } while (--len != 0);
 +              }
 +      }
 +}
 +
 +/*
 + * Copy src to dst using safe memory accesses, up to either the specified
 + * length, or the point that a nul byte is encountered.  The src is assumed to
 + * be unsafe memory specified by the DIF program.  The dst is assumed to be
 + * safe memory that we can store to directly because it is managed by DTrace.
 + * Unlike dtrace_bcopy(), overlapping regions are not handled.
 + */
 +static void
 +dtrace_strcpy(const void *src, void *dst, size_t len)
 +{
 +      if (len != 0) {
 +              uint8_t *s1 = dst, c;
 +              const uint8_t *s2 = src;
 +
 +              do {
 +                      *s1++ = c = dtrace_load8((uintptr_t)s2++);
 +              } while (--len != 0 && c != '\0');
 +      }
 +}
 +
 +/*
 + * Copy src to dst, deriving the size and type from the specified (BYREF)
 + * variable type.  The src is assumed to be unsafe memory specified by the DIF
 + * program.  The dst is assumed to be DTrace variable memory that is of the
 + * specified type; we assume that we can store to directly.
 + */
 +static void
 +dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
 +{
 +      ASSERT(type->dtdt_flags & DIF_TF_BYREF);
 +
 +      if (type->dtdt_kind == DIF_TYPE_STRING) {
 +              dtrace_strcpy(src, dst, type->dtdt_size);
 +      } else {
 +              dtrace_bcopy(src, dst, type->dtdt_size);
 +      }
 +}
 +
 +/*
 + * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
 + * unsafe memory specified by the DIF program.  The s2 data is assumed to be
 + * safe memory that we can access directly because it is managed by DTrace.
 + */
 +static int
 +dtrace_bcmp(const void *s1, const void *s2, size_t len)
 +{
 +      volatile uint16_t *flags;
 +
 +      flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
 +
 +      if (s1 == s2)
 +              return (0);
 +
 +      if (s1 == NULL || s2 == NULL)
 +              return (1);
 +
 +      if (s1 != s2 && len != 0) {
 +              const uint8_t *ps1 = s1;
 +              const uint8_t *ps2 = s2;
 +
 +              do {
 +                      if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
 +                              return (1);
 +              } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
 +      }
 +      return (0);
 +}
 +
 +/*
 + * Zero the specified region using a simple byte-by-byte loop.  Note that this
 + * is for safe DTrace-managed memory only.
 + */
 +static void
 +dtrace_bzero(void *dst, size_t len)
 +{
 +      uchar_t *cp;
 +
 +      for (cp = dst; len != 0; len--)
 +              *cp++ = 0;
 +}
 +
 +static void
 +dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
 +{
 +      uint64_t result[2];
 +
 +      result[0] = addend1[0] + addend2[0];
 +      result[1] = addend1[1] + addend2[1] +
 +          (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
 +
 +      sum[0] = result[0];
 +      sum[1] = result[1];
 +}
 +
 +/*
 + * Shift the 128-bit value in a by b. If b is positive, shift left.
 + * If b is negative, shift right.
 + */
 +static void
 +dtrace_shift_128(uint64_t *a, int b)
 +{
 +      uint64_t mask;
 +
 +      if (b == 0)
 +              return;
 +
 +      if (b < 0) {
 +              b = -b;
 +              if (b >= 64) {
 +                      a[0] = a[1] >> (b - 64);
 +                      a[1] = 0;
 +              } else {
 +                      a[0] >>= b;
 +                      mask = 1LL << (64 - b);
 +                      mask -= 1;
 +                      a[0] |= ((a[1] & mask) << (64 - b));
 +                      a[1] >>= b;
 +              }
 +      } else {
 +              if (b >= 64) {
 +                      a[1] = a[0] << (b - 64);
 +                      a[0] = 0;
 +              } else {
 +                      a[1] <<= b;
 +                      mask = a[0] >> (64 - b);
 +                      a[1] |= mask;
 +                      a[0] <<= b;
 +              }
 +      }
 +}
 +
 +/*
 + * The basic idea is to break the 2 64-bit values into 4 32-bit values,
 + * use native multiplication on those, and then re-combine into the
 + * resulting 128-bit value.
 + *
 + * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
 + *     hi1 * hi2 << 64 +
 + *     hi1 * lo2 << 32 +
 + *     hi2 * lo1 << 32 +
 + *     lo1 * lo2
 + */
 +static void
 +dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
 +{
 +      uint64_t hi1, hi2, lo1, lo2;
 +      uint64_t tmp[2];
 +
 +      hi1 = factor1 >> 32;
 +      hi2 = factor2 >> 32;
 +
 +      lo1 = factor1 & DT_MASK_LO;
 +      lo2 = factor2 & DT_MASK_LO;
 +
 +      product[0] = lo1 * lo2;
 +      product[1] = hi1 * hi2;
 +
 +      tmp[0] = hi1 * lo2;
 +      tmp[1] = 0;
 +      dtrace_shift_128(tmp, 32);
 +      dtrace_add_128(product, tmp, product);
 +
 +      tmp[0] = hi2 * lo1;
 +      tmp[1] = 0;
 +      dtrace_shift_128(tmp, 32);
 +      dtrace_add_128(product, tmp, product);
 +}
 +
 +/*
 + * This privilege check should be used by actions and subroutines to
 + * verify that the user credentials of the process that enabled the
 + * invoking ECB match the target credentials
 + */
 +static int
 +dtrace_priv_proc_common_user(dtrace_state_t *state)
 +{
 +      cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
 +
 +      /*
 +       * We should always have a non-NULL state cred here, since if cred
 +       * is null (anonymous tracing), we fast-path bypass this routine.
 +       */
 +      ASSERT(s_cr != NULL);
 +
 +      if ((cr = CRED()) != NULL &&
 +          s_cr->cr_uid == cr->cr_uid &&
 +          s_cr->cr_uid == cr->cr_ruid &&
 +          s_cr->cr_uid == cr->cr_suid &&
 +          s_cr->cr_gid == cr->cr_gid &&
 +          s_cr->cr_gid == cr->cr_rgid &&
 +          s_cr->cr_gid == cr->cr_sgid)
 +              return (1);
 +
 +      return (0);
 +}
 +
 +/*
 + * This privilege check should be used by actions and subroutines to
 + * verify that the zone of the process that enabled the invoking ECB
 + * matches the target credentials
 + */
 +static int
 +dtrace_priv_proc_common_zone(dtrace_state_t *state)
 +{
 +#ifdef illumos
 +      cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
 +
 +      /*
 +       * We should always have a non-NULL state cred here, since if cred
 +       * is null (anonymous tracing), we fast-path bypass this routine.
 +       */
 +      ASSERT(s_cr != NULL);
 +
 +      if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
 +              return (1);
 +
 +      return (0);
 +#else
 +      return (1);
 +#endif
 +}
 +
 +/*
 + * This privilege check should be used by actions and subroutines to
 + * verify that the process has not setuid or changed credentials.
 + */
 +static int
 +dtrace_priv_proc_common_nocd(void)
 +{
 +      proc_t *proc;
 +
 +      if ((proc = ttoproc(curthread)) != NULL &&
 +          !(proc->p_flag & SNOCD))
 +              return (1);
 +
 +      return (0);
 +}
 +
 +static int
 +dtrace_priv_proc_destructive(dtrace_state_t *state)
 +{
 +      int action = state->dts_cred.dcr_action;
 +
 +      if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
 +          dtrace_priv_proc_common_zone(state) == 0)
 +              goto bad;
 +
 +      if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
 +          dtrace_priv_proc_common_user(state) == 0)
 +              goto bad;
 +
 +      if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
 +          dtrace_priv_proc_common_nocd() == 0)
 +              goto bad;
 +
 +      return (1);
 +
 +bad:
 +      cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
 +
 +      return (0);
 +}
 +
 +static int
 +dtrace_priv_proc_control(dtrace_state_t *state)
 +{
 +      if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
 +              return (1);
 +
 +      if (dtrace_priv_proc_common_zone(state) &&
 +          dtrace_priv_proc_common_user(state) &&
 +          dtrace_priv_proc_common_nocd())
 +              return (1);
 +
 +      cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
 +
 +      return (0);
 +}
 +
 +static int
 +dtrace_priv_proc(dtrace_state_t *state)
 +{
 +      if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
 +              return (1);
 +
 +      cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
 +
 +      return (0);
 +}
 +
 +static int
 +dtrace_priv_kernel(dtrace_state_t *state)
 +{
 +      if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
 +              return (1);
 +
 +      cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
 +
 +      return (0);
 +}
 +
 +static int
 +dtrace_priv_kernel_destructive(dtrace_state_t *state)
 +{
 +      if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
 +              return (1);
 +
 +      cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
 +
 +      return (0);
 +}
 +
 +/*
 + * Determine if the dte_cond of the specified ECB allows for processing of
 + * the current probe to continue.  Note that this routine may allow continued
 + * processing, but with access(es) stripped from the mstate's dtms_access
 + * field.
 + */
 +static int
 +dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
 +    dtrace_ecb_t *ecb)
 +{
 +      dtrace_probe_t *probe = ecb->dte_probe;
 +      dtrace_provider_t *prov = probe->dtpr_provider;
 +      dtrace_pops_t *pops = &prov->dtpv_pops;
 +      int mode = DTRACE_MODE_NOPRIV_DROP;
 +
 +      ASSERT(ecb->dte_cond);
 +
 +#ifdef illumos
 +      if (pops->dtps_mode != NULL) {
 +              mode = pops->dtps_mode(prov->dtpv_arg,
 +                  probe->dtpr_id, probe->dtpr_arg);
 +
 +              ASSERT((mode & DTRACE_MODE_USER) ||
 +                  (mode & DTRACE_MODE_KERNEL));
 +              ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
 +                  (mode & DTRACE_MODE_NOPRIV_DROP));
 +      }
 +
 +      /*
 +       * If the dte_cond bits indicate that this consumer is only allowed to
 +       * see user-mode firings of this probe, call the provider's dtps_mode()
 +       * entry point to check that the probe was fired while in a user
 +       * context.  If that's not the case, use the policy specified by the
 +       * provider to determine if we drop the probe or merely restrict
 +       * operation.
 +       */
 +      if (ecb->dte_cond & DTRACE_COND_USERMODE) {
 +              ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
 +
 +              if (!(mode & DTRACE_MODE_USER)) {
 +                      if (mode & DTRACE_MODE_NOPRIV_DROP)
 +                              return (0);
 +
 +                      mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
 +              }
 +      }
 +#endif
 +
 +      /*
 +       * This is more subtle than it looks. We have to be absolutely certain
 +       * that CRED() isn't going to change out from under us so it's only
 +       * legit to examine that structure if we're in constrained situations.
 +       * Currently, the only times we'll this check is if a non-super-user
 +       * has enabled the profile or syscall providers -- providers that
 +       * allow visibility of all processes. For the profile case, the check
 +       * above will ensure that we're examining a user context.
 +       */
 +      if (ecb->dte_cond & DTRACE_COND_OWNER) {
 +              cred_t *cr;
 +              cred_t *s_cr = state->dts_cred.dcr_cred;
 +              proc_t *proc;
 +
 +              ASSERT(s_cr != NULL);
 +
 +              if ((cr = CRED()) == NULL ||
 +                  s_cr->cr_uid != cr->cr_uid ||
 +                  s_cr->cr_uid != cr->cr_ruid ||
 +                  s_cr->cr_uid != cr->cr_suid ||
 +                  s_cr->cr_gid != cr->cr_gid ||
 +                  s_cr->cr_gid != cr->cr_rgid ||
 +                  s_cr->cr_gid != cr->cr_sgid ||
 +                  (proc = ttoproc(curthread)) == NULL ||
 +                  (proc->p_flag & SNOCD)) {
 +                      if (mode & DTRACE_MODE_NOPRIV_DROP)
 +                              return (0);
 +
 +#ifdef illumos
 +                      mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
 +#endif
 +              }
 +      }
 +
 +#ifdef illumos
 +      /*
 +       * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
 +       * in our zone, check to see if our mode policy is to restrict rather
 +       * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
 +       * and DTRACE_ACCESS_ARGS
 +       */
 +      if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
 +              cred_t *cr;
 +              cred_t *s_cr = state->dts_cred.dcr_cred;
 +
 +              ASSERT(s_cr != NULL);
 +
 +              if ((cr = CRED()) == NULL ||
 +                  s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
 +                      if (mode & DTRACE_MODE_NOPRIV_DROP)
 +                              return (0);
 +
 +                      mstate->dtms_access &=
 +                          ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
 +              }
 +      }
 +#endif
 +
 +      return (1);
 +}
 +
 +/*
 + * Note:  not called from probe context.  This function is called
 + * asynchronously (and at a regular interval) from outside of probe context to
 + * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
 + * cleaning is explained in detail in <sys/dtrace_impl.h>.
 + */
 +void
 +dtrace_dynvar_clean(dtrace_dstate_t *dstate)
 +{
 +      dtrace_dynvar_t *dirty;
 +      dtrace_dstate_percpu_t *dcpu;
 +      dtrace_dynvar_t **rinsep;
 +      int i, j, work = 0;
 +
 +      for (i = 0; i < NCPU; i++) {
 +              dcpu = &dstate->dtds_percpu[i];
 +              rinsep = &dcpu->dtdsc_rinsing;
 +
 +              /*
 +               * If the dirty list is NULL, there is no dirty work to do.
 +               */
 +              if (dcpu->dtdsc_dirty == NULL)
 +                      continue;
 +
 +              if (dcpu->dtdsc_rinsing != NULL) {
 +                      /*
 +                       * If the rinsing list is non-NULL, then it is because
 +                       * this CPU was selected to accept another CPU's
 +                       * dirty list -- and since that time, dirty buffers
 +                       * have accumulated.  This is a highly unlikely
 +                       * condition, but we choose to ignore the dirty
 +                       * buffers -- they'll be picked up a future cleanse.
 +                       */
 +                      continue;
 +              }
 +
 +              if (dcpu->dtdsc_clean != NULL) {
 +                      /*
 +                       * If the clean list is non-NULL, then we're in a
 +                       * situation where a CPU has done deallocations (we
 +                       * have a non-NULL dirty list) but no allocations (we
 +                       * also have a non-NULL clean list).  We can't simply
 +                       * move the dirty list into the clean list on this
 +                       * CPU, yet we also don't want to allow this condition
 +                       * to persist, lest a short clean list prevent a
 +                       * massive dirty list from being cleaned (which in
 +                       * turn could lead to otherwise avoidable dynamic
 +                       * drops).  To deal with this, we look for some CPU
 +                       * with a NULL clean list, NULL dirty list, and NULL
 +                       * rinsing list -- and then we borrow this CPU to
 +                       * rinse our dirty list.
 +                       */
 +                      for (j = 0; j < NCPU; j++) {
 +                              dtrace_dstate_percpu_t *rinser;
 +
 +                              rinser = &dstate->dtds_percpu[j];
 +
 +                              if (rinser->dtdsc_rinsing != NULL)
 +                                      continue;
 +
 +                              if (rinser->dtdsc_dirty != NULL)
 +                                      continue;
 +
 +                              if (rinser->dtdsc_clean != NULL)
 +                                      continue;
 +
 +                              rinsep = &rinser->dtdsc_rinsing;
 +                              break;
 +                      }
 +
 +                      if (j == NCPU) {
 +                              /*
 +                               * We were unable to find another CPU that
 +                               * could accept this dirty list -- we are
 +                               * therefore unable to clean it now.
 +                               */
 +                              dtrace_dynvar_failclean++;
 +                              continue;
 +                      }
 +              }
 +
 +              work = 1;
 +
 +              /*
 +               * Atomically move the dirty list aside.
 +               */
 +              do {
 +                      dirty = dcpu->dtdsc_dirty;
 +
 +                      /*
 +                       * Before we zap the dirty list, set the rinsing list.
 +                       * (This allows for a potential assertion in
 +                       * dtrace_dynvar():  if a free dynamic variable appears
 +                       * on a hash chain, either the dirty list or the
 +                       * rinsing list for some CPU must be non-NULL.)
 +                       */
 +                      *rinsep = dirty;
 +                      dtrace_membar_producer();
 +              } while (dtrace_casptr(&dcpu->dtdsc_dirty,
 +                  dirty, NULL) != dirty);
 +      }
 +
 +      if (!work) {
 +              /*
 +               * We have no work to do; we can simply return.
 +               */
 +              return;
 +      }
 +
 +      dtrace_sync();
 +
 +      for (i = 0; i < NCPU; i++) {
 +              dcpu = &dstate->dtds_percpu[i];
 +
 +              if (dcpu->dtdsc_rinsing == NULL)
 +                      continue;
 +
 +              /*
 +               * We are now guaranteed that no hash chain contains a pointer
 +               * into this dirty list; we can make it clean.
 +               */
 +              ASSERT(dcpu->dtdsc_clean == NULL);
 +              dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
 +              dcpu->dtdsc_rinsing = NULL;
 +      }
 +
 +      /*
 +       * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
 +       * sure that all CPUs have seen all of the dtdsc_clean pointers.
 +       * This prevents a race whereby a CPU incorrectly decides that
 +       * the state should be something other than DTRACE_DSTATE_CLEAN
 +       * after dtrace_dynvar_clean() has completed.
 +       */
 +      dtrace_sync();
 +
 +      dstate->dtds_state = DTRACE_DSTATE_CLEAN;
 +}
 +
 +/*
 + * Depending on the value of the op parameter, this function looks-up,
 + * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
 + * allocation is requested, this function will return a pointer to a
 + * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
 + * variable can be allocated.  If NULL is returned, the appropriate counter
 + * will be incremented.
 + */
 +dtrace_dynvar_t *
 +dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
 +    dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
 +    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
 +{
 +      uint64_t hashval = DTRACE_DYNHASH_VALID;
 +      dtrace_dynhash_t *hash = dstate->dtds_hash;
 +      dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
 +      processorid_t me = curcpu, cpu = me;
 +      dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
 +      size_t bucket, ksize;
 +      size_t chunksize = dstate->dtds_chunksize;
 +      uintptr_t kdata, lock, nstate;
 +      uint_t i;
 +
 +      ASSERT(nkeys != 0);
 +
 +      /*
 +       * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
 +       * algorithm.  For the by-value portions, we perform the algorithm in
 +       * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
 +       * bit, and seems to have only a minute effect on distribution.  For
 +       * the by-reference data, we perform "One-at-a-time" iterating (safely)
 +       * over each referenced byte.  It's painful to do this, but it's much
 +       * better than pathological hash distribution.  The efficacy of the
 +       * hashing algorithm (and a comparison with other algorithms) may be
 +       * found by running the ::dtrace_dynstat MDB dcmd.
 +       */
 +      for (i = 0; i < nkeys; i++) {
 +              if (key[i].dttk_size == 0) {
 +                      uint64_t val = key[i].dttk_value;
 +
 +                      hashval += (val >> 48) & 0xffff;
 +                      hashval += (hashval << 10);
 +                      hashval ^= (hashval >> 6);
 +
 +                      hashval += (val >> 32) & 0xffff;
 +                      hashval += (hashval << 10);
 +                      hashval ^= (hashval >> 6);
 +
 +                      hashval += (val >> 16) & 0xffff;
 +                      hashval += (hashval << 10);
 +                      hashval ^= (hashval >> 6);
 +
 +                      hashval += val & 0xffff;
 +                      hashval += (hashval << 10);
 +                      hashval ^= (hashval >> 6);
 +              } else {
 +                      /*
 +                       * This is incredibly painful, but it beats the hell
 +                       * out of the alternative.
 +                       */
 +                      uint64_t j, size = key[i].dttk_size;
 +                      uintptr_t base = (uintptr_t)key[i].dttk_value;
 +
 +                      if (!dtrace_canload(base, size, mstate, vstate))
 +                              break;
 +
 +                      for (j = 0; j < size; j++) {
 +                              hashval += dtrace_load8(base + j);
 +                              hashval += (hashval << 10);
 +                              hashval ^= (hashval >> 6);
 +                      }
 +              }
 +      }
 +
 +      if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
 +              return (NULL);
 +
 +      hashval += (hashval << 3);
 +      hashval ^= (hashval >> 11);
 +      hashval += (hashval << 15);
 +
 +      /*
 +       * There is a remote chance (ideally, 1 in 2^31) that our hashval
 +       * comes out to be one of our two sentinel hash values.  If this
 +       * actually happens, we set the hashval to be a value known to be a
 +       * non-sentinel value.
 +       */
 +      if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
 +              hashval = DTRACE_DYNHASH_VALID;
 +
 +      /*
 +       * Yes, it's painful to do a divide here.  If the cycle count becomes
 +       * important here, tricks can be pulled to reduce it.  (However, it's
 +       * critical that hash collisions be kept to an absolute minimum;
 +       * they're much more painful than a divide.)  It's better to have a
 +       * solution that generates few collisions and still keeps things
 +       * relatively simple.
 +       */
 +      bucket = hashval % dstate->dtds_hashsize;
 +
 +      if (op == DTRACE_DYNVAR_DEALLOC) {
 +              volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
 +
 +              for (;;) {
 +                      while ((lock = *lockp) & 1)
 +                              continue;
 +
 +                      if (dtrace_casptr((volatile void *)lockp,
 +                          (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
 +                              break;
 +              }
 +
 +              dtrace_membar_producer();
 +      }
 +
 +top:
 +      prev = NULL;
 +      lock = hash[bucket].dtdh_lock;
 +
 +      dtrace_membar_consumer();
 +
 +      start = hash[bucket].dtdh_chain;
 +      ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
 +          start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
 +          op != DTRACE_DYNVAR_DEALLOC));
 +
 +      for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
 +              dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
 +              dtrace_key_t *dkey = &dtuple->dtt_key[0];
 +
 +              if (dvar->dtdv_hashval != hashval) {
 +                      if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
 +                              /*
 +                               * We've reached the sink, and therefore the
 +                               * end of the hash chain; we can kick out of
 +                               * the loop knowing that we have seen a valid
 +                               * snapshot of state.
 +                               */
 +                              ASSERT(dvar->dtdv_next == NULL);
 +                              ASSERT(dvar == &dtrace_dynhash_sink);
 +                              break;
 +                      }
 +
 +                      if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
 +                              /*
 +                               * We've gone off the rails:  somewhere along
 +                               * the line, one of the members of this hash
 +                               * chain was deleted.  Note that we could also
 +                               * detect this by simply letting this loop run
 +                               * to completion, as we would eventually hit
 +                               * the end of the dirty list.  However, we
 +                               * want to avoid running the length of the
 +                               * dirty list unnecessarily (it might be quite
 +                               * long), so we catch this as early as
 +                               * possible by detecting the hash marker.  In
 +                               * this case, we simply set dvar to NULL and
 +                               * break; the conditional after the loop will
 +                               * send us back to top.
 +                               */
 +                              dvar = NULL;
 +                              break;
 +                      }
 +
 +                      goto next;
 +              }
 +
 +              if (dtuple->dtt_nkeys != nkeys)
 +                      goto next;
 +
 +              for (i = 0; i < nkeys; i++, dkey++) {
 +                      if (dkey->dttk_size != key[i].dttk_size)
 +                              goto next; /* size or type mismatch */
 +
 +                      if (dkey->dttk_size != 0) {
 +                              if (dtrace_bcmp(
 +                                  (void *)(uintptr_t)key[i].dttk_value,
 +                                  (void *)(uintptr_t)dkey->dttk_value,
 +                                  dkey->dttk_size))
 +                                      goto next;
 +                      } else {
 +                              if (dkey->dttk_value != key[i].dttk_value)
 +                                      goto next;
 +                      }
 +              }
 +
 +              if (op != DTRACE_DYNVAR_DEALLOC)
 +                      return (dvar);
 +
 +              ASSERT(dvar->dtdv_next == NULL ||
 +                  dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
 +
 +              if (prev != NULL) {
 +                      ASSERT(hash[bucket].dtdh_chain != dvar);
 +                      ASSERT(start != dvar);
 +                      ASSERT(prev->dtdv_next == dvar);
 +                      prev->dtdv_next = dvar->dtdv_next;
 +              } else {
 +                      if (dtrace_casptr(&hash[bucket].dtdh_chain,
 +                          start, dvar->dtdv_next) != start) {
 +                              /*
 +                               * We have failed to atomically swing the
 +                               * hash table head pointer, presumably because
 +                               * of a conflicting allocation on another CPU.
 +                               * We need to reread the hash chain and try
 +                               * again.
 +                               */
 +                              goto top;
 +                      }
 +              }
 +
 +              dtrace_membar_producer();
 +
 +              /*
 +               * Now set the hash value to indicate that it's free.
 +               */
 +              ASSERT(hash[bucket].dtdh_chain != dvar);
 +              dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
 +
 +              dtrace_membar_producer();
 +
 +              /*
 +               * Set the next pointer to point at the dirty list, and
 +               * atomically swing the dirty pointer to the newly freed dvar.
 +               */
 +              do {
 +                      next = dcpu->dtdsc_dirty;
 +                      dvar->dtdv_next = next;
 +              } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
 +
 +              /*
 +               * Finally, unlock this hash bucket.
 +               */
 +              ASSERT(hash[bucket].dtdh_lock == lock);
 +              ASSERT(lock & 1);
 +              hash[bucket].dtdh_lock++;
 +
 +              return (NULL);
 +next:
 +              prev = dvar;
 +              continue;
 +      }
 +
 +      if (dvar == NULL) {
 +              /*
 +               * If dvar is NULL, it is because we went off the rails:
 +               * one of the elements that we traversed in the hash chain
 +               * was deleted while we were traversing it.  In this case,
 +               * we assert that we aren't doing a dealloc (deallocs lock
 +               * the hash bucket to prevent themselves from racing with
 +               * one another), and retry the hash chain traversal.
 +               */
 +              ASSERT(op != DTRACE_DYNVAR_DEALLOC);
 +              goto top;
 +      }
 +
 +      if (op != DTRACE_DYNVAR_ALLOC) {
 +              /*
 +               * If we are not to allocate a new variable, we want to
 +               * return NULL now.  Before we return, check that the value
 +               * of the lock word hasn't changed.  If it has, we may have
 +               * seen an inconsistent snapshot.
 +               */
 +              if (op == DTRACE_DYNVAR_NOALLOC) {
 +                      if (hash[bucket].dtdh_lock != lock)
 +                              goto top;
 +              } else {
 +                      ASSERT(op == DTRACE_DYNVAR_DEALLOC);
 +                      ASSERT(hash[bucket].dtdh_lock == lock);
 +                      ASSERT(lock & 1);
 +                      hash[bucket].dtdh_lock++;
 +              }
 +
 +              return (NULL);
 +      }
 +
 +      /*
 +       * We need to allocate a new dynamic variable.  The size we need is the
 +       * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
 +       * size of any auxiliary key data (rounded up to 8-byte alignment) plus
 +       * the size of any referred-to data (dsize).  We then round the final
 +       * size up to the chunksize for allocation.
 +       */
 +      for (ksize = 0, i = 0; i < nkeys; i++)
 +              ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
 +
 +      /*
 +       * This should be pretty much impossible, but could happen if, say,
 +       * strange DIF specified the tuple.  Ideally, this should be an
 +       * assertion and not an error condition -- but that requires that the
 +       * chunksize calculation in dtrace_difo_chunksize() be absolutely
 +       * bullet-proof.  (That is, it must not be able to be fooled by
 +       * malicious DIF.)  Given the lack of backwards branches in DIF,
 +       * solving this would presumably not amount to solving the Halting
 +       * Problem -- but it still seems awfully hard.
 +       */
 +      if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
 +          ksize + dsize > chunksize) {
 +              dcpu->dtdsc_drops++;
 +              return (NULL);
 +      }
 +
 +      nstate = DTRACE_DSTATE_EMPTY;
 +
 +      do {
 +retry:
 +              free = dcpu->dtdsc_free;
 +
 +              if (free == NULL) {
 +                      dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
 +                      void *rval;
 +
 +                      if (clean == NULL) {
 +                              /*
 +                               * We're out of dynamic variable space on
 +                               * this CPU.  Unless we have tried all CPUs,
 +                               * we'll try to allocate from a different
 +                               * CPU.
 +                               */
 +                              switch (dstate->dtds_state) {
 +                              case DTRACE_DSTATE_CLEAN: {
 +                                      void *sp = &dstate->dtds_state;
 +
 +                                      if (++cpu >= NCPU)
 +                                              cpu = 0;
 +
 +                                      if (dcpu->dtdsc_dirty != NULL &&
 +                                          nstate == DTRACE_DSTATE_EMPTY)
 +                                              nstate = DTRACE_DSTATE_DIRTY;
 +
 +                                      if (dcpu->dtdsc_rinsing != NULL)
 +                                              nstate = DTRACE_DSTATE_RINSING;
 +
 +                                      dcpu = &dstate->dtds_percpu[cpu];
 +
 +                                      if (cpu != me)
 +                                              goto retry;
 +
 +                                      (void) dtrace_cas32(sp,
 +                                          DTRACE_DSTATE_CLEAN, nstate);
 +
 +                                      /*
 +                                       * To increment the correct bean
 +                                       * counter, take another lap.
 +                                       */
 +                                      goto retry;
 +                              }
 +
 +                              case DTRACE_DSTATE_DIRTY:
 +                                      dcpu->dtdsc_dirty_drops++;
 +                                      break;
 +
 +                              case DTRACE_DSTATE_RINSING:
 +                                      dcpu->dtdsc_rinsing_drops++;
 +                                      break;
 +
 +                              case DTRACE_DSTATE_EMPTY:
 +                                      dcpu->dtdsc_drops++;
 +                                      break;
 +                              }
 +
 +                              DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
 +                              return (NULL);
 +                      }
 +
 +                      /*
 +                       * The clean list appears to be non-empty.  We want to
 +                       * move the clean list to the free list; we start by
 +                       * moving the clean pointer aside.
 +                       */
 +                      if (dtrace_casptr(&dcpu->dtdsc_clean,
 +                          clean, NULL) != clean) {
 +                              /*
 +                               * We are in one of two situations:
 +                               *
 +                               *  (a) The clean list was switched to the
 +                               *      free list by another CPU.
 +                               *
 +                               *  (b) The clean list was added to by the
 +                               *      cleansing cyclic.
 +                               *
 +                               * In either of these situations, we can
 +                               * just reattempt the free list allocation.
 +                               */
 +                              goto retry;
 +                      }
 +
 +                      ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
 +
 +                      /*
 +                       * Now we'll move the clean list to our free list.
 +                       * It's impossible for this to fail:  the only way
 +                       * the free list can be updated is through this
 +                       * code path, and only one CPU can own the clean list.
 +                       * Thus, it would only be possible for this to fail if
 +                       * this code were racing with dtrace_dynvar_clean().
 +                       * (That is, if dtrace_dynvar_clean() updated the clean
 +                       * list, and we ended up racing to update the free
 +                       * list.)  This race is prevented by the dtrace_sync()
 +                       * in dtrace_dynvar_clean() -- which flushes the
 +                       * owners of the clean lists out before resetting
 +                       * the clean lists.
 +                       */
 +                      dcpu = &dstate->dtds_percpu[me];
 +                      rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
 +                      ASSERT(rval == NULL);
 +                      goto retry;
 +              }
 +
 +              dvar = free;
 +              new_free = dvar->dtdv_next;
 +      } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
 +
 +      /*
 +       * We have now allocated a new chunk.  We copy the tuple keys into the
 +       * tuple array and copy any referenced key data into the data space
 +       * following the tuple array.  As we do this, we relocate dttk_value
 +       * in the final tuple to point to the key data address in the chunk.
 +       */
 +      kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
 +      dvar->dtdv_data = (void *)(kdata + ksize);
 +      dvar->dtdv_tuple.dtt_nkeys = nkeys;
 +
 +      for (i = 0; i < nkeys; i++) {
 +              dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
 +              size_t kesize = key[i].dttk_size;
 +
 +              if (kesize != 0) {
 +                      dtrace_bcopy(
 +                          (const void *)(uintptr_t)key[i].dttk_value,
 +                          (void *)kdata, kesize);
 +                      dkey->dttk_value = kdata;
 +                      kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
 +              } else {
 +                      dkey->dttk_value = key[i].dttk_value;
 +              }
 +
 +              dkey->dttk_size = kesize;
 +      }
 +
 +      ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
 +      dvar->dtdv_hashval = hashval;
 +      dvar->dtdv_next = start;
 +
 +      if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
 +              return (dvar);
 +
 +      /*
 +       * The cas has failed.  Either another CPU is adding an element to
 +       * this hash chain, or another CPU is deleting an element from this
 +       * hash chain.  The simplest way to deal with both of these cases
 +       * (though not necessarily the most efficient) is to free our
 +       * allocated block and re-attempt it all.  Note that the free is
 +       * to the dirty list and _not_ to the free list.  This is to prevent
 +       * races with allocators, above.
 +       */
 +      dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
 +
 +      dtrace_membar_producer();
 +
 +      do {
 +              free = dcpu->dtdsc_dirty;
 +              dvar->dtdv_next = free;
 +      } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
 +
 +      goto top;
 +}
 +
 +/*ARGSUSED*/
 +static void
 +dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
 +{
 +      if ((int64_t)nval < (int64_t)*oval)
 +              *oval = nval;
 +}
 +
 +/*ARGSUSED*/
 +static void
 +dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
 +{
 +      if ((int64_t)nval > (int64_t)*oval)
 +              *oval = nval;
 +}
 +
 +static void
 +dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
 +{
 +      int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
 +      int64_t val = (int64_t)nval;
 +
 +      if (val < 0) {
 +              for (i = 0; i < zero; i++) {
 +                      if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
 +                              quanta[i] += incr;
 +                              return;
 +                      }
 +              }
 +      } else {
 +              for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
 +                      if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
 +                              quanta[i - 1] += incr;
 +                              return;
 +                      }
 +              }
 +
 +              quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
 +              return;
 +      }
 +
 +      ASSERT(0);
 +}
 +
 +static void
 +dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
 +{
 +      uint64_t arg = *lquanta++;
 +      int32_t base = DTRACE_LQUANTIZE_BASE(arg);
 +      uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
 +      uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
 +      int32_t val = (int32_t)nval, level;
 +
 +      ASSERT(step != 0);
 +      ASSERT(levels != 0);
 +
 +      if (val < base) {
 +              /*
 +               * This is an underflow.
 +               */
 +              lquanta[0] += incr;
 +              return;
 +      }
 +
 +      level = (val - base) / step;
 +
 +      if (level < levels) {
 +              lquanta[level + 1] += incr;
 +              return;
 +      }
 +
 +      /*
 +       * This is an overflow.
 +       */
 +      lquanta[levels + 1] += incr;
 +}
 +
 +static int
 +dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
 +    uint16_t high, uint16_t nsteps, int64_t value)
 +{
 +      int64_t this = 1, last, next;
 +      int base = 1, order;
 +
 +      ASSERT(factor <= nsteps);
 +      ASSERT(nsteps % factor == 0);
 +
 +      for (order = 0; order < low; order++)
 +              this *= factor;
 +
 +      /*
 +       * If our value is less than our factor taken to the power of the
 +       * low order of magnitude, it goes into the zeroth bucket.
 +       */
 +      if (value < (last = this))
 +              return (0);
 +
 +      for (this *= factor; order <= high; order++) {
 +              int nbuckets = this > nsteps ? nsteps : this;
 +
 +              if ((next = this * factor) < this) {
 +                      /*
 +                       * We should not generally get log/linear quantizations
 +                       * with a high magnitude that allows 64-bits to
 +                       * overflow, but we nonetheless protect against this
 +                       * by explicitly checking for overflow, and clamping
 +                       * our value accordingly.
 +                       */
 +                      value = this - 1;
 +              }
 +
 +              if (value < this) {
 +                      /*
 +                       * If our value lies within this order of magnitude,
 +                       * determine its position by taking the offset within
 +                       * the order of magnitude, dividing by the bucket
 +                       * width, and adding to our (accumulated) base.
 +                       */
 +                      return (base + (value - last) / (this / nbuckets));
 +              }
 +
 +              base += nbuckets - (nbuckets / factor);
 +              last = this;
 +              this = next;
 +      }
 +
 +      /*
 +       * Our value is greater than or equal to our factor taken to the
 +       * power of one plus the high magnitude -- return the top bucket.
 +       */
 +      return (base);
 +}
 +
 +static void
 +dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
 +{
 +      uint64_t arg = *llquanta++;
 +      uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
 +      uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
 +      uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
 +      uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
 +
 +      llquanta[dtrace_aggregate_llquantize_bucket(factor,
 +          low, high, nsteps, nval)] += incr;
 +}
 +
 +/*ARGSUSED*/
 +static void
 +dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
 +{
 +      data[0]++;
 +      data[1] += nval;
 +}
 +
 +/*ARGSUSED*/
 +static void
 +dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
 +{
 +      int64_t snval = (int64_t)nval;
 +      uint64_t tmp[2];
 +
 +      data[0]++;
 +      data[1] += nval;
 +
 +      /*
 +       * What we want to say here is:
 +       *
 +       * data[2] += nval * nval;
 +       *
 +       * But given that nval is 64-bit, we could easily overflow, so
 +       * we do this as 128-bit arithmetic.
 +       */
 +      if (snval < 0)
 +              snval = -snval;
 +
 +      dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
 +      dtrace_add_128(data + 2, tmp, data + 2);
 +}
 +
 +/*ARGSUSED*/
 +static void
 +dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
 +{
 +      *oval = *oval + 1;
 +}
 +
 +/*ARGSUSED*/
 +static void
 +dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
 +{
 +      *oval += nval;
 +}
 +
 +/*
 + * Aggregate given the tuple in the principal data buffer, and the aggregating
 + * action denoted by the specified dtrace_aggregation_t.  The aggregation
 + * buffer is specified as the buf parameter.  This routine does not return
 + * failure; if there is no space in the aggregation buffer, the data will be
 + * dropped, and a corresponding counter incremented.
 + */
 +static void
 +dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
 +    intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
 +{
 +      dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
 +      uint32_t i, ndx, size, fsize;
 +      uint32_t align = sizeof (uint64_t) - 1;
 +      dtrace_aggbuffer_t *agb;
 +      dtrace_aggkey_t *key;
 +      uint32_t hashval = 0, limit, isstr;
 +      caddr_t tomax, data, kdata;
 +      dtrace_actkind_t action;
 +      dtrace_action_t *act;
 +      uintptr_t offs;
 +
 +      if (buf == NULL)
 +              return;
 +
 +      if (!agg->dtag_hasarg) {
 +              /*
 +               * Currently, only quantize() and lquantize() take additional
 +               * arguments, and they have the same semantics:  an increment
 +               * value that defaults to 1 when not present.  If additional
 +               * aggregating actions take arguments, the setting of the
 +               * default argument value will presumably have to become more
 +               * sophisticated...
 +               */
 +              arg = 1;
 +      }
 +
 +      action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
 +      size = rec->dtrd_offset - agg->dtag_base;
 +      fsize = size + rec->dtrd_size;
 +
 +      ASSERT(dbuf->dtb_tomax != NULL);
 +      data = dbuf->dtb_tomax + offset + agg->dtag_base;
 +
 +      if ((tomax = buf->dtb_tomax) == NULL) {
 +              dtrace_buffer_drop(buf);
 +              return;
 +      }
 +
 +      /*
 +       * The metastructure is always at the bottom of the buffer.
 +       */
 +      agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
 +          sizeof (dtrace_aggbuffer_t));
 +
 +      if (buf->dtb_offset == 0) {
 +              /*
 +               * We just kludge up approximately 1/8th of the size to be
 +               * buckets.  If this guess ends up being routinely
 +               * off-the-mark, we may need to dynamically readjust this
 +               * based on past performance.
 +               */
 +              uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
 +
 +              if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
 +                  (uintptr_t)tomax || hashsize == 0) {
 +                      /*
 +                       * We've been given a ludicrously small buffer;
 +                       * increment our drop count and leave.
 +                       */
 +                      dtrace_buffer_drop(buf);
 +                      return;
 +              }
 +
 +              /*
 +               * And now, a pathetic attempt to try to get a an odd (or
 +               * perchance, a prime) hash size for better hash distribution.
 +               */
 +              if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
 +                      hashsize -= DTRACE_AGGHASHSIZE_SLEW;
 +
 +              agb->dtagb_hashsize = hashsize;
 +              agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
 +                  agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
 +              agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
 +
 +              for (i = 0; i < agb->dtagb_hashsize; i++)
 +                      agb->dtagb_hash[i] = NULL;
 +      }
 +
 +      ASSERT(agg->dtag_first != NULL);
 +      ASSERT(agg->dtag_first->dta_intuple);
 +
 +      /*
 +       * Calculate the hash value based on the key.  Note that we _don't_
 +       * include the aggid in the hashing (but we will store it as part of
 +       * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
 +       * algorithm: a simple, quick algorithm that has no known funnels, and
 +       * gets good distribution in practice.  The efficacy of the hashing
 +       * algorithm (and a comparison with other algorithms) may be found by
 +       * running the ::dtrace_aggstat MDB dcmd.
 +       */
 +      for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
 +              i = act->dta_rec.dtrd_offset - agg->dtag_base;
 +              limit = i + act->dta_rec.dtrd_size;
 +              ASSERT(limit <= size);
 +              isstr = DTRACEACT_ISSTRING(act);
 +
 +              for (; i < limit; i++) {
 +                      hashval += data[i];
 +                      hashval += (hashval << 10);
 +                      hashval ^= (hashval >> 6);
 +
 +                      if (isstr && data[i] == '\0')
 +                              break;
 +              }
 +      }
 +
 +      hashval += (hashval << 3);
 +      hashval ^= (hashval >> 11);
 +      hashval += (hashval << 15);
 +
 +      /*
 +       * Yes, the divide here is expensive -- but it's generally the least
 +       * of the performance issues given the amount of data that we iterate
 +       * over to compute hash values, compare data, etc.
 +       */
 +      ndx = hashval % agb->dtagb_hashsize;
 +
 +      for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
 +              ASSERT((caddr_t)key >= tomax);
 +              ASSERT((caddr_t)key < tomax + buf->dtb_size);
 +
 +              if (hashval != key->dtak_hashval || key->dtak_size != size)
 +                      continue;
 +
 +              kdata = key->dtak_data;
 +              ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
 +
 +              for (act = agg->dtag_first; act->dta_intuple;
 +                  act = act->dta_next) {
 +                      i = act->dta_rec.dtrd_offset - agg->dtag_base;
 +                      limit = i + act->dta_rec.dtrd_size;
 +                      ASSERT(limit <= size);
 +                      isstr = DTRACEACT_ISSTRING(act);
 +
 +                      for (; i < limit; i++) {
 +                              if (kdata[i] != data[i])
 +                                      goto next;
 +
 +                              if (isstr && data[i] == '\0')
 +                                      break;
 +                      }
 +              }
 +
 +              if (action != key->dtak_action) {
 +                      /*
 +                       * We are aggregating on the same value in the same
 +                       * aggregation with two different aggregating actions.
 +                       * (This should have been picked up in the compiler,
 +                       * so we may be dealing with errant or devious DIF.)
 +                       * This is an error condition; we indicate as much,
 +                       * and return.
 +                       */
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
 +                      return;
 +              }
 +
 +              /*
 +               * This is a hit:  we need to apply the aggregator to
 +               * the value at this key.
 +               */
 +              agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
 +              return;
 +next:
 +              continue;
 +      }
 +
 +      /*
 +       * We didn't find it.  We need to allocate some zero-filled space,
 +       * link it into the hash table appropriately, and apply the aggregator
 +       * to the (zero-filled) value.
 +       */
 +      offs = buf->dtb_offset;
 +      while (offs & (align - 1))
 +              offs += sizeof (uint32_t);
 +
 +      /*
 +       * If we don't have enough room to both allocate a new key _and_
 +       * its associated data, increment the drop count and return.
 +       */
 +      if ((uintptr_t)tomax + offs + fsize >
 +          agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
 +              dtrace_buffer_drop(buf);
 +              return;
 +      }
 +
 +      /*CONSTCOND*/
 +      ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
 +      key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
 +      agb->dtagb_free -= sizeof (dtrace_aggkey_t);
 +
 +      key->dtak_data = kdata = tomax + offs;
 +      buf->dtb_offset = offs + fsize;
 +
 +      /*
 +       * Now copy the data across.
 +       */
 +      *((dtrace_aggid_t *)kdata) = agg->dtag_id;
 +
 +      for (i = sizeof (dtrace_aggid_t); i < size; i++)
 +              kdata[i] = data[i];
 +
 +      /*
 +       * Because strings are not zeroed out by default, we need to iterate
 +       * looking for actions that store strings, and we need to explicitly
 +       * pad these strings out with zeroes.
 +       */
 +      for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
 +              int nul;
 +
 +              if (!DTRACEACT_ISSTRING(act))
 +                      continue;
 +
 +              i = act->dta_rec.dtrd_offset - agg->dtag_base;
 +              limit = i + act->dta_rec.dtrd_size;
 +              ASSERT(limit <= size);
 +
 +              for (nul = 0; i < limit; i++) {
 +                      if (nul) {
 +                              kdata[i] = '\0';
 +                              continue;
 +                      }
 +
 +                      if (data[i] != '\0')
 +                              continue;
 +
 +                      nul = 1;
 +              }
 +      }
 +
 +      for (i = size; i < fsize; i++)
 +              kdata[i] = 0;
 +
 +      key->dtak_hashval = hashval;
 +      key->dtak_size = size;
 +      key->dtak_action = action;
 +      key->dtak_next = agb->dtagb_hash[ndx];
 +      agb->dtagb_hash[ndx] = key;
 +
 +      /*
 +       * Finally, apply the aggregator.
 +       */
 +      *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
 +      agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
 +}
 +
 +/*
 + * Given consumer state, this routine finds a speculation in the INACTIVE
 + * state and transitions it into the ACTIVE state.  If there is no speculation
 + * in the INACTIVE state, 0 is returned.  In this case, no error counter is
 + * incremented -- it is up to the caller to take appropriate action.
 + */
 +static int
 +dtrace_speculation(dtrace_state_t *state)
 +{
 +      int i = 0;
 +      dtrace_speculation_state_t current;
 +      uint32_t *stat = &state->dts_speculations_unavail, count;
 +
 +      while (i < state->dts_nspeculations) {
 +              dtrace_speculation_t *spec = &state->dts_speculations[i];
 +
 +              current = spec->dtsp_state;
 +
 +              if (current != DTRACESPEC_INACTIVE) {
 +                      if (current == DTRACESPEC_COMMITTINGMANY ||
 +                          current == DTRACESPEC_COMMITTING ||
 +                          current == DTRACESPEC_DISCARDING)
 +                              stat = &state->dts_speculations_busy;
 +                      i++;
 +                      continue;
 +              }
 +
 +              if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
 +                  current, DTRACESPEC_ACTIVE) == current)
 +                      return (i + 1);
 +      }
 +
 +      /*
 +       * We couldn't find a speculation.  If we found as much as a single
 +       * busy speculation buffer, we'll attribute this failure as "busy"
 +       * instead of "unavail".
 +       */
 +      do {
 +              count = *stat;
 +      } while (dtrace_cas32(stat, count, count + 1) != count);
 +
 +      return (0);
 +}
 +
 +/*
 + * This routine commits an active speculation.  If the specified speculation
 + * is not in a valid state to perform a commit(), this routine will silently do
 + * nothing.  The state of the specified speculation is transitioned according
 + * to the state transition diagram outlined in <sys/dtrace_impl.h>
 + */
 +static void
 +dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
 +    dtrace_specid_t which)
 +{
 +      dtrace_speculation_t *spec;
 +      dtrace_buffer_t *src, *dest;
 +      uintptr_t daddr, saddr, dlimit, slimit;
 +      dtrace_speculation_state_t current, new = 0;
 +      intptr_t offs;
 +      uint64_t timestamp;
 +
 +      if (which == 0)
 +              return;
 +
 +      if (which > state->dts_nspeculations) {
 +              cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
 +              return;
 +      }
 +
 +      spec = &state->dts_speculations[which - 1];
 +      src = &spec->dtsp_buffer[cpu];
 +      dest = &state->dts_buffer[cpu];
 +
 +      do {
 +              current = spec->dtsp_state;
 +
 +              if (current == DTRACESPEC_COMMITTINGMANY)
 +                      break;
 +
 +              switch (current) {
 +              case DTRACESPEC_INACTIVE:
 +              case DTRACESPEC_DISCARDING:
 +                      return;
 +
 +              case DTRACESPEC_COMMITTING:
 +                      /*
 +                       * This is only possible if we are (a) commit()'ing
 +                       * without having done a prior speculate() on this CPU
 +                       * and (b) racing with another commit() on a different
 +                       * CPU.  There's nothing to do -- we just assert that
 +                       * our offset is 0.
 +                       */
 +                      ASSERT(src->dtb_offset == 0);
 +                      return;
 +
 +              case DTRACESPEC_ACTIVE:
 +                      new = DTRACESPEC_COMMITTING;
 +                      break;
 +
 +              case DTRACESPEC_ACTIVEONE:
 +                      /*
 +                       * This speculation is active on one CPU.  If our
 +                       * buffer offset is non-zero, we know that the one CPU
 +                       * must be us.  Otherwise, we are committing on a
 +                       * different CPU from the speculate(), and we must
 +                       * rely on being asynchronously cleaned.
 +                       */
 +                      if (src->dtb_offset != 0) {
 +                              new = DTRACESPEC_COMMITTING;
 +                              break;
 +                      }
 +                      /*FALLTHROUGH*/
 +
 +              case DTRACESPEC_ACTIVEMANY:
 +                      new = DTRACESPEC_COMMITTINGMANY;
 +                      break;
 +
 +              default:
 +                      ASSERT(0);
 +              }
 +      } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
 +          current, new) != current);
 +
 +      /*
 +       * We have set the state to indicate that we are committing this
 +       * speculation.  Now reserve the necessary space in the destination
 +       * buffer.
 +       */
 +      if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
 +          sizeof (uint64_t), state, NULL)) < 0) {
 +              dtrace_buffer_drop(dest);
 +              goto out;
 +      }
 +
 +      /*
 +       * We have sufficient space to copy the speculative buffer into the
 +       * primary buffer.  First, modify the speculative buffer, filling
 +       * in the timestamp of all entries with the current time.  The data
 +       * must have the commit() time rather than the time it was traced,
 +       * so that all entries in the primary buffer are in timestamp order.
 +       */
 +      timestamp = dtrace_gethrtime();
 +      saddr = (uintptr_t)src->dtb_tomax;
 +      slimit = saddr + src->dtb_offset;
 +      while (saddr < slimit) {
 +              size_t size;
 +              dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
 +
 +              if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
 +                      saddr += sizeof (dtrace_epid_t);
 +                      continue;
 +              }
 +              ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
 +              size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
 +
 +              ASSERT3U(saddr + size, <=, slimit);
 +              ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
 +              ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
 +
 +              DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
 +
 +              saddr += size;
 +      }
 +
 +      /*
 +       * Copy the buffer across.  (Note that this is a
 +       * highly subobtimal bcopy(); in the unlikely event that this becomes
 +       * a serious performance issue, a high-performance DTrace-specific
 +       * bcopy() should obviously be invented.)
 +       */
 +      daddr = (uintptr_t)dest->dtb_tomax + offs;
 +      dlimit = daddr + src->dtb_offset;
 +      saddr = (uintptr_t)src->dtb_tomax;
 +
 +      /*
 +       * First, the aligned portion.
 +       */
 +      while (dlimit - daddr >= sizeof (uint64_t)) {
 +              *((uint64_t *)daddr) = *((uint64_t *)saddr);
 +
 +              daddr += sizeof (uint64_t);
 +              saddr += sizeof (uint64_t);
 +      }
 +
 +      /*
 +       * Now any left-over bit...
 +       */
 +      while (dlimit - daddr)
 +              *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
 +
 +      /*
 +       * Finally, commit the reserved space in the destination buffer.
 +       */
 +      dest->dtb_offset = offs + src->dtb_offset;
 +
 +out:
 +      /*
 +       * If we're lucky enough to be the only active CPU on this speculation
 +       * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
 +       */
 +      if (current == DTRACESPEC_ACTIVE ||
 +          (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
 +              uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
 +                  DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
 +
 +              ASSERT(rval == DTRACESPEC_COMMITTING);
 +      }
 +
 +      src->dtb_offset = 0;
 +      src->dtb_xamot_drops += src->dtb_drops;
 +      src->dtb_drops = 0;
 +}
 +
 +/*
 + * This routine discards an active speculation.  If the specified speculation
 + * is not in a valid state to perform a discard(), this routine will silently
 + * do nothing.  The state of the specified speculation is transitioned
 + * according to the state transition diagram outlined in <sys/dtrace_impl.h>
 + */
 +static void
 +dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
 +    dtrace_specid_t which)
 +{
 +      dtrace_speculation_t *spec;
 +      dtrace_speculation_state_t current, new = 0;
 +      dtrace_buffer_t *buf;
 +
 +      if (which == 0)
 +              return;
 +
 +      if (which > state->dts_nspeculations) {
 +              cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
 +              return;
 +      }
 +
 +      spec = &state->dts_speculations[which - 1];
 +      buf = &spec->dtsp_buffer[cpu];
 +
 +      do {
 +              current = spec->dtsp_state;
 +
 +              switch (current) {
 +              case DTRACESPEC_INACTIVE:
 +              case DTRACESPEC_COMMITTINGMANY:
 +              case DTRACESPEC_COMMITTING:
 +              case DTRACESPEC_DISCARDING:
 +                      return;
 +
 +              case DTRACESPEC_ACTIVE:
 +              case DTRACESPEC_ACTIVEMANY:
 +                      new = DTRACESPEC_DISCARDING;
 +                      break;
 +
 +              case DTRACESPEC_ACTIVEONE:
 +                      if (buf->dtb_offset != 0) {
 +                              new = DTRACESPEC_INACTIVE;
 +                      } else {
 +                              new = DTRACESPEC_DISCARDING;
 +                      }
 +                      break;
 +
 +              default:
 +                      ASSERT(0);
 +              }
 +      } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
 +          current, new) != current);
 +
 +      buf->dtb_offset = 0;
 +      buf->dtb_drops = 0;
 +}
 +
 +/*
 + * Note:  not called from probe context.  This function is called
 + * asynchronously from cross call context to clean any speculations that are
 + * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
 + * transitioned back to the INACTIVE state until all CPUs have cleaned the
 + * speculation.
 + */
 +static void
 +dtrace_speculation_clean_here(dtrace_state_t *state)
 +{
 +      dtrace_icookie_t cookie;
 +      processorid_t cpu = curcpu;
 +      dtrace_buffer_t *dest = &state->dts_buffer[cpu];
 +      dtrace_specid_t i;
 +
 +      cookie = dtrace_interrupt_disable();
 +
 +      if (dest->dtb_tomax == NULL) {
 +              dtrace_interrupt_enable(cookie);
 +              return;
 +      }
 +
 +      for (i = 0; i < state->dts_nspeculations; i++) {
 +              dtrace_speculation_t *spec = &state->dts_speculations[i];
 +              dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
 +
 +              if (src->dtb_tomax == NULL)
 +                      continue;
 +
 +              if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
 +                      src->dtb_offset = 0;
 +                      continue;
 +              }
 +
 +              if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
 +                      continue;
 +
 +              if (src->dtb_offset == 0)
 +                      continue;
 +
 +              dtrace_speculation_commit(state, cpu, i + 1);
 +      }
 +
 +      dtrace_interrupt_enable(cookie);
 +}
 +
 +/*
 + * Note:  not called from probe context.  This function is called
 + * asynchronously (and at a regular interval) to clean any speculations that
 + * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
 + * is work to be done, it cross calls all CPUs to perform that work;
 + * COMMITMANY and DISCARDING speculations may not be transitioned back to the
 + * INACTIVE state until they have been cleaned by all CPUs.
 + */
 +static void
 +dtrace_speculation_clean(dtrace_state_t *state)
 +{
 +      int work = 0, rv;
 +      dtrace_specid_t i;
 +
 +      for (i = 0; i < state->dts_nspeculations; i++) {
 +              dtrace_speculation_t *spec = &state->dts_speculations[i];
 +
 +              ASSERT(!spec->dtsp_cleaning);
 +
 +              if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
 +                  spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
 +                      continue;
 +
 +              work++;
 +              spec->dtsp_cleaning = 1;
 +      }
 +
 +      if (!work)
 +              return;
 +
 +      dtrace_xcall(DTRACE_CPUALL,
 +          (dtrace_xcall_t)dtrace_speculation_clean_here, state);
 +
 +      /*
 +       * We now know that all CPUs have committed or discarded their
 +       * speculation buffers, as appropriate.  We can now set the state
 +       * to inactive.
 +       */
 +      for (i = 0; i < state->dts_nspeculations; i++) {
 +              dtrace_speculation_t *spec = &state->dts_speculations[i];
 +              dtrace_speculation_state_t current, new;
 +
 +              if (!spec->dtsp_cleaning)
 +                      continue;
 +
 +              current = spec->dtsp_state;
 +              ASSERT(current == DTRACESPEC_DISCARDING ||
 +                  current == DTRACESPEC_COMMITTINGMANY);
 +
 +              new = DTRACESPEC_INACTIVE;
 +
 +              rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
 +              ASSERT(rv == current);
 +              spec->dtsp_cleaning = 0;
 +      }
 +}
 +
 +/*
 + * Called as part of a speculate() to get the speculative buffer associated
 + * with a given speculation.  Returns NULL if the specified speculation is not
 + * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
 + * the active CPU is not the specified CPU -- the speculation will be
 + * atomically transitioned into the ACTIVEMANY state.
 + */
 +static dtrace_buffer_t *
 +dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
 +    dtrace_specid_t which)
 +{
 +      dtrace_speculation_t *spec;
 +      dtrace_speculation_state_t current, new = 0;
 +      dtrace_buffer_t *buf;
 +
 +      if (which == 0)
 +              return (NULL);
 +
 +      if (which > state->dts_nspeculations) {
 +              cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
 +              return (NULL);
 +      }
 +
 +      spec = &state->dts_speculations[which - 1];
 +      buf = &spec->dtsp_buffer[cpuid];
 +
 +      do {
 +              current = spec->dtsp_state;
 +
 +              switch (current) {
 +              case DTRACESPEC_INACTIVE:
 +              case DTRACESPEC_COMMITTINGMANY:
 +              case DTRACESPEC_DISCARDING:
 +                      return (NULL);
 +
 +              case DTRACESPEC_COMMITTING:
 +                      ASSERT(buf->dtb_offset == 0);
 +                      return (NULL);
 +
 +              case DTRACESPEC_ACTIVEONE:
 +                      /*
 +                       * This speculation is currently active on one CPU.
 +                       * Check the offset in the buffer; if it's non-zero,
 +                       * that CPU must be us (and we leave the state alone).
 +                       * If it's zero, assume that we're starting on a new
 +                       * CPU -- and change the state to indicate that the
 +                       * speculation is active on more than one CPU.
 +                       */
 +                      if (buf->dtb_offset != 0)
 +                              return (buf);
 +
 +                      new = DTRACESPEC_ACTIVEMANY;
 +                      break;
 +
 +              case DTRACESPEC_ACTIVEMANY:
 +                      return (buf);
 +
 +              case DTRACESPEC_ACTIVE:
 +                      new = DTRACESPEC_ACTIVEONE;
 +                      break;
 +
 +              default:
 +                      ASSERT(0);
 +              }
 +      } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
 +          current, new) != current);
 +
 +      ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
 +      return (buf);
 +}
 +
 +/*
 + * Return a string.  In the event that the user lacks the privilege to access
 + * arbitrary kernel memory, we copy the string out to scratch memory so that we
 + * don't fail access checking.
 + *
 + * dtrace_dif_variable() uses this routine as a helper for various
 + * builtin values such as 'execname' and 'probefunc.'
 + */
 +uintptr_t
 +dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
 +    dtrace_mstate_t *mstate)
 +{
 +      uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
 +      uintptr_t ret;
 +      size_t strsz;
 +
 +      /*
 +       * The easy case: this probe is allowed to read all of memory, so
 +       * we can just return this as a vanilla pointer.
 +       */
 +      if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
 +              return (addr);
 +
 +      /*
 +       * This is the tougher case: we copy the string in question from
 +       * kernel memory into scratch memory and return it that way: this
 +       * ensures that we won't trip up when access checking tests the
 +       * BYREF return value.
 +       */
 +      strsz = dtrace_strlen((char *)addr, size) + 1;
 +
 +      if (mstate->dtms_scratch_ptr + strsz >
 +          mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
 +              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +              return (0);
 +      }
 +
 +      dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
 +          strsz);
 +      ret = mstate->dtms_scratch_ptr;
 +      mstate->dtms_scratch_ptr += strsz;
 +      return (ret);
 +}
 +
 +/*
 + * Return a string from a memoy address which is known to have one or
 + * more concatenated, individually zero terminated, sub-strings.
 + * In the event that the user lacks the privilege to access
 + * arbitrary kernel memory, we copy the string out to scratch memory so that we
 + * don't fail access checking.
 + *
 + * dtrace_dif_variable() uses this routine as a helper for various
 + * builtin values such as 'execargs'.
 + */
 +static uintptr_t
 +dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
 +    dtrace_mstate_t *mstate)
 +{
 +      char *p;
 +      size_t i;
 +      uintptr_t ret;
 +
 +      if (mstate->dtms_scratch_ptr + strsz >
 +          mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
 +              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +              return (0);
 +      }
 +
 +      dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
 +          strsz);
 +
 +      /* Replace sub-string termination characters with a space. */
 +      for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
 +          p++, i++)
 +              if (*p == '\0')
 +                      *p = ' ';
 +
 +      ret = mstate->dtms_scratch_ptr;
 +      mstate->dtms_scratch_ptr += strsz;
 +      return (ret);
 +}
 +
 +/*
 + * This function implements the DIF emulator's variable lookups.  The emulator
 + * passes a reserved variable identifier and optional built-in array index.
 + */
 +static uint64_t
 +dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
 +    uint64_t ndx)
 +{
 +      /*
 +       * If we're accessing one of the uncached arguments, we'll turn this
 +       * into a reference in the args array.
 +       */
 +      if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
 +              ndx = v - DIF_VAR_ARG0;
 +              v = DIF_VAR_ARGS;
 +      }
 +
 +      switch (v) {
 +      case DIF_VAR_ARGS:
 +              ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
 +              if (ndx >= sizeof (mstate->dtms_arg) /
 +                  sizeof (mstate->dtms_arg[0])) {
 +                      int aframes = mstate->dtms_probe->dtpr_aframes + 2;
 +                      dtrace_provider_t *pv;
 +                      uint64_t val;
 +
 +                      pv = mstate->dtms_probe->dtpr_provider;
 +                      if (pv->dtpv_pops.dtps_getargval != NULL)
 +                              val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
 +                                  mstate->dtms_probe->dtpr_id,
 +                                  mstate->dtms_probe->dtpr_arg, ndx, aframes);
 +                      else
 +                              val = dtrace_getarg(ndx, aframes);
 +
 +                      /*
 +                       * This is regrettably required to keep the compiler
 +                       * from tail-optimizing the call to dtrace_getarg().
 +                       * The condition always evaluates to true, but the
 +                       * compiler has no way of figuring that out a priori.
 +                       * (None of this would be necessary if the compiler
 +                       * could be relied upon to _always_ tail-optimize
 +                       * the call to dtrace_getarg() -- but it can't.)
 +                       */
 +                      if (mstate->dtms_probe != NULL)
 +                              return (val);
 +
 +                      ASSERT(0);
 +              }
 +
 +              return (mstate->dtms_arg[ndx]);
 +
 +#ifdef illumos
 +      case DIF_VAR_UREGS: {
 +              klwp_t *lwp;
 +
 +              if (!dtrace_priv_proc(state))
 +                      return (0);
 +
 +              if ((lwp = curthread->t_lwp) == NULL) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
 +                      cpu_core[curcpu].cpuc_dtrace_illval = NULL;
 +                      return (0);
 +              }
 +
 +              return (dtrace_getreg(lwp->lwp_regs, ndx));
 +              return (0);
 +      }
 +#else
 +      case DIF_VAR_UREGS: {
 +              struct trapframe *tframe;
 +
 +              if (!dtrace_priv_proc(state))
 +                      return (0);
 +
 +              if ((tframe = curthread->td_frame) == NULL) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
 +                      cpu_core[curcpu].cpuc_dtrace_illval = 0;
 +                      return (0);
 +              }
 +
 +              return (dtrace_getreg(tframe, ndx));
 +      }
 +#endif
 +
 +      case DIF_VAR_CURTHREAD:
 +              if (!dtrace_priv_proc(state))
 +                      return (0);
 +              return ((uint64_t)(uintptr_t)curthread);
 +
 +      case DIF_VAR_TIMESTAMP:
 +              if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
 +                      mstate->dtms_timestamp = dtrace_gethrtime();
 +                      mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
 +              }
 +              return (mstate->dtms_timestamp);
 +
 +      case DIF_VAR_VTIMESTAMP:
 +              ASSERT(dtrace_vtime_references != 0);
 +              return (curthread->t_dtrace_vtime);
 +
 +      case DIF_VAR_WALLTIMESTAMP:
 +              if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
 +                      mstate->dtms_walltimestamp = dtrace_gethrestime();
 +                      mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
 +              }
 +              return (mstate->dtms_walltimestamp);
 +
 +#ifdef illumos
 +      case DIF_VAR_IPL:
 +              if (!dtrace_priv_kernel(state))
 +                      return (0);
 +              if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
 +                      mstate->dtms_ipl = dtrace_getipl();
 +                      mstate->dtms_present |= DTRACE_MSTATE_IPL;
 +              }
 +              return (mstate->dtms_ipl);
 +#endif
 +
 +      case DIF_VAR_EPID:
 +              ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
 +              return (mstate->dtms_epid);
 +
 +      case DIF_VAR_ID:
 +              ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
 +              return (mstate->dtms_probe->dtpr_id);
 +
 +      case DIF_VAR_STACKDEPTH:
 +              if (!dtrace_priv_kernel(state))
 +                      return (0);
 +              if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
 +                      int aframes = mstate->dtms_probe->dtpr_aframes + 2;
 +
 +                      mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
 +                      mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
 +              }
 +              return (mstate->dtms_stackdepth);
 +
 +      case DIF_VAR_USTACKDEPTH:
 +              if (!dtrace_priv_proc(state))
 +                      return (0);
 +              if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
 +                      /*
 +                       * See comment in DIF_VAR_PID.
 +                       */
 +                      if (DTRACE_ANCHORED(mstate->dtms_probe) &&
 +                          CPU_ON_INTR(CPU)) {
 +                              mstate->dtms_ustackdepth = 0;
 +                      } else {
 +                              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +                              mstate->dtms_ustackdepth =
 +                                  dtrace_getustackdepth();
 +                              DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +                      }
 +                      mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
 +              }
 +              return (mstate->dtms_ustackdepth);
 +
 +      case DIF_VAR_CALLER:
 +              if (!dtrace_priv_kernel(state))
 +                      return (0);
 +              if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
 +                      int aframes = mstate->dtms_probe->dtpr_aframes + 2;
 +
 +                      if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
 +                              /*
 +                               * If this is an unanchored probe, we are
 +                               * required to go through the slow path:
 +                               * dtrace_caller() only guarantees correct
 +                               * results for anchored probes.
 +                               */
 +                              pc_t caller[2] = {0, 0};
 +
 +                              dtrace_getpcstack(caller, 2, aframes,
 +                                  (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
 +                              mstate->dtms_caller = caller[1];
 +                      } else if ((mstate->dtms_caller =
 +                          dtrace_caller(aframes)) == -1) {
 +                              /*
 +                               * We have failed to do this the quick way;
 +                               * we must resort to the slower approach of
 +                               * calling dtrace_getpcstack().
 +                               */
 +                              pc_t caller = 0;
 +
 +                              dtrace_getpcstack(&caller, 1, aframes, NULL);
 +                              mstate->dtms_caller = caller;
 +                      }
 +
 +                      mstate->dtms_present |= DTRACE_MSTATE_CALLER;
 +              }
 +              return (mstate->dtms_caller);
 +
 +      case DIF_VAR_UCALLER:
 +              if (!dtrace_priv_proc(state))
 +                      return (0);
 +
 +              if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
 +                      uint64_t ustack[3];
 +
 +                      /*
 +                       * dtrace_getupcstack() fills in the first uint64_t
 +                       * with the current PID.  The second uint64_t will
 +                       * be the program counter at user-level.  The third
 +                       * uint64_t will contain the caller, which is what
 +                       * we're after.
 +                       */
 +                      ustack[2] = 0;
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +                      dtrace_getupcstack(ustack, 3);
 +                      DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +                      mstate->dtms_ucaller = ustack[2];
 +                      mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
 +              }
 +
 +              return (mstate->dtms_ucaller);
 +
 +      case DIF_VAR_PROBEPROV:
 +              ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
 +              return (dtrace_dif_varstr(
 +                  (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
 +                  state, mstate));
 +
 +      case DIF_VAR_PROBEMOD:
 +              ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
 +              return (dtrace_dif_varstr(
 +                  (uintptr_t)mstate->dtms_probe->dtpr_mod,
 +                  state, mstate));
 +
 +      case DIF_VAR_PROBEFUNC:
 +              ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
 +              return (dtrace_dif_varstr(
 +                  (uintptr_t)mstate->dtms_probe->dtpr_func,
 +                  state, mstate));
 +
 +      case DIF_VAR_PROBENAME:
 +              ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
 +              return (dtrace_dif_varstr(
 +                  (uintptr_t)mstate->dtms_probe->dtpr_name,
 +                  state, mstate));
 +
 +      case DIF_VAR_PID:
 +              if (!dtrace_priv_proc(state))
 +                      return (0);
 +
 +#ifdef illumos
 +              /*
 +               * Note that we are assuming that an unanchored probe is
 +               * always due to a high-level interrupt.  (And we're assuming
 +               * that there is only a single high level interrupt.)
 +               */
 +              if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
 +                      return (pid0.pid_id);
 +
 +              /*
 +               * It is always safe to dereference one's own t_procp pointer:
 +               * it always points to a valid, allocated proc structure.
 +               * Further, it is always safe to dereference the p_pidp member
 +               * of one's own proc structure.  (These are truisms becuase
 +               * threads and processes don't clean up their own state --
 +               * they leave that task to whomever reaps them.)
 +               */
 +              return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
 +#else
 +              return ((uint64_t)curproc->p_pid);
 +#endif
 +
 +      case DIF_VAR_PPID:
 +              if (!dtrace_priv_proc(state))
 +                      return (0);
 +
 +#ifdef illumos
 +              /*
 +               * See comment in DIF_VAR_PID.
 +               */
 +              if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
 +                      return (pid0.pid_id);
 +
 +              /*
 +               * It is always safe to dereference one's own t_procp pointer:
 +               * it always points to a valid, allocated proc structure.
 +               * (This is true because threads don't clean up their own
 +               * state -- they leave that task to whomever reaps them.)
 +               */
 +              return ((uint64_t)curthread->t_procp->p_ppid);
 +#else
 +              if (curproc->p_pid == proc0.p_pid)
 +                      return (curproc->p_pid);
 +              else
 +                      return (curproc->p_pptr->p_pid);
 +#endif
 +
 +      case DIF_VAR_TID:
 +#ifdef illumos
 +              /*
 +               * See comment in DIF_VAR_PID.
 +               */
 +              if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
 +                      return (0);
 +#endif
 +
 +              return ((uint64_t)curthread->t_tid);
 +
 +      case DIF_VAR_EXECARGS: {
 +              struct pargs *p_args = curthread->td_proc->p_args;
 +
 +              if (p_args == NULL)
 +                      return(0);
 +
 +              return (dtrace_dif_varstrz(
 +                  (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
 +      }
 +
 +      case DIF_VAR_EXECNAME:
 +#ifdef illumos
 +              if (!dtrace_priv_proc(state))
 +                      return (0);
 +
 +              /*
 +               * See comment in DIF_VAR_PID.
 +               */
 +              if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
 +                      return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
 +
 +              /*
 +               * It is always safe to dereference one's own t_procp pointer:
 +               * it always points to a valid, allocated proc structure.
 +               * (This is true because threads don't clean up their own
 +               * state -- they leave that task to whomever reaps them.)
 +               */
 +              return (dtrace_dif_varstr(
 +                  (uintptr_t)curthread->t_procp->p_user.u_comm,
 +                  state, mstate));
 +#else
 +              return (dtrace_dif_varstr(
 +                  (uintptr_t) curthread->td_proc->p_comm, state, mstate));
 +#endif
 +
 +      case DIF_VAR_ZONENAME:
 +#ifdef illumos
 +              if (!dtrace_priv_proc(state))
 +                      return (0);
 +
 +              /*
 +               * See comment in DIF_VAR_PID.
 +               */
 +              if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
 +                      return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
 +
 +              /*
 +               * It is always safe to dereference one's own t_procp pointer:
 +               * it always points to a valid, allocated proc structure.
 +               * (This is true because threads don't clean up their own
 +               * state -- they leave that task to whomever reaps them.)
 +               */
 +              return (dtrace_dif_varstr(
 +                  (uintptr_t)curthread->t_procp->p_zone->zone_name,
 +                  state, mstate));
 +#else
 +              return (0);
 +#endif
 +
 +      case DIF_VAR_UID:
 +              if (!dtrace_priv_proc(state))
 +                      return (0);
 +
 +#ifdef illumos
 +              /*
 +               * See comment in DIF_VAR_PID.
 +               */
 +              if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
 +                      return ((uint64_t)p0.p_cred->cr_uid);
 +
 +              /*
 +               * It is always safe to dereference one's own t_procp pointer:
 +               * it always points to a valid, allocated proc structure.
 +               * (This is true because threads don't clean up their own
 +               * state -- they leave that task to whomever reaps them.)
 +               *
 +               * Additionally, it is safe to dereference one's own process
 +               * credential, since this is never NULL after process birth.
 +               */
 +              return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
 +#else
 +              return ((uint64_t)curthread->td_ucred->cr_uid);
 +#endif
 +
 +      case DIF_VAR_GID:
 +              if (!dtrace_priv_proc(state))
 +                      return (0);
 +
 +#ifdef illumos
 +              /*
 +               * See comment in DIF_VAR_PID.
 +               */
 +              if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
 +                      return ((uint64_t)p0.p_cred->cr_gid);
 +
 +              /*
 +               * It is always safe to dereference one's own t_procp pointer:
 +               * it always points to a valid, allocated proc structure.
 +               * (This is true because threads don't clean up their own
 +               * state -- they leave that task to whomever reaps them.)
 +               *
 +               * Additionally, it is safe to dereference one's own process
 +               * credential, since this is never NULL after process birth.
 +               */
 +              return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
 +#else
 +              return ((uint64_t)curthread->td_ucred->cr_gid);
 +#endif
 +
 +      case DIF_VAR_ERRNO: {
 +#ifdef illumos
 +              klwp_t *lwp;
 +              if (!dtrace_priv_proc(state))
 +                      return (0);
 +
 +              /*
 +               * See comment in DIF_VAR_PID.
 +               */
 +              if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
 +                      return (0);
 +
 +              /*
 +               * It is always safe to dereference one's own t_lwp pointer in
 +               * the event that this pointer is non-NULL.  (This is true
 +               * because threads and lwps don't clean up their own state --
 +               * they leave that task to whomever reaps them.)
 +               */
 +              if ((lwp = curthread->t_lwp) == NULL)
 +                      return (0);
 +
 +              return ((uint64_t)lwp->lwp_errno);
 +#else
 +              return (curthread->td_errno);
 +#endif
 +      }
 +#ifndef illumos
 +      case DIF_VAR_CPU: {
 +              return curcpu;
 +      }
 +#endif
 +      default:
 +              DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
 +              return (0);
 +      }
 +}
 +
 +
 +typedef enum dtrace_json_state {
 +      DTRACE_JSON_REST = 1,
 +      DTRACE_JSON_OBJECT,
 +      DTRACE_JSON_STRING,
 +      DTRACE_JSON_STRING_ESCAPE,
 +      DTRACE_JSON_STRING_ESCAPE_UNICODE,
 +      DTRACE_JSON_COLON,
 +      DTRACE_JSON_COMMA,
 +      DTRACE_JSON_VALUE,
 +      DTRACE_JSON_IDENTIFIER,
 +      DTRACE_JSON_NUMBER,
 +      DTRACE_JSON_NUMBER_FRAC,
 +      DTRACE_JSON_NUMBER_EXP,
 +      DTRACE_JSON_COLLECT_OBJECT
 +} dtrace_json_state_t;
 +
 +/*
 + * This function possesses just enough knowledge about JSON to extract a single
 + * value from a JSON string and store it in the scratch buffer.  It is able
 + * to extract nested object values, and members of arrays by index.
 + *
 + * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
 + * be looked up as we descend into the object tree.  e.g.
 + *
 + *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
 + *       with nelems = 5.
 + *
 + * The run time of this function must be bounded above by strsize to limit the
 + * amount of work done in probe context.  As such, it is implemented as a
 + * simple state machine, reading one character at a time using safe loads
 + * until we find the requested element, hit a parsing error or run off the
 + * end of the object or string.
 + *
 + * As there is no way for a subroutine to return an error without interrupting
 + * clause execution, we simply return NULL in the event of a missing key or any
 + * other error condition.  Each NULL return in this function is commented with
 + * the error condition it represents -- parsing or otherwise.
 + *
 + * The set of states for the state machine closely matches the JSON
 + * specification (http://json.org/).  Briefly:
 + *
 + *   DTRACE_JSON_REST:
 + *     Skip whitespace until we find either a top-level Object, moving
 + *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
 + *
 + *   DTRACE_JSON_OBJECT:
 + *     Locate the next key String in an Object.  Sets a flag to denote
 + *     the next String as a key string and moves to DTRACE_JSON_STRING.
 + *
 + *   DTRACE_JSON_COLON:
 + *     Skip whitespace until we find the colon that separates key Strings
 + *     from their values.  Once found, move to DTRACE_JSON_VALUE.
 + *
 + *   DTRACE_JSON_VALUE:
 + *     Detects the type of the next value (String, Number, Identifier, Object
 + *     or Array) and routes to the states that process that type.  Here we also
 + *     deal with the element selector list if we are requested to traverse down
 + *     into the object tree.
 + *
 + *   DTRACE_JSON_COMMA:
 + *     Skip whitespace until we find the comma that separates key-value pairs
 + *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
 + *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
 + *     states return to this state at the end of their value, unless otherwise
 + *     noted.
 + *
 + *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
 + *     Processes a Number literal from the JSON, including any exponent
 + *     component that may be present.  Numbers are returned as strings, which
 + *     may be passed to strtoll() if an integer is required.
 + *
 + *   DTRACE_JSON_IDENTIFIER:
 + *     Processes a "true", "false" or "null" literal in the JSON.
 + *
 + *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
 + *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
 + *     Processes a String literal from the JSON, whether the String denotes
 + *     a key, a value or part of a larger Object.  Handles all escape sequences
 + *     present in the specification, including four-digit unicode characters,
 + *     but merely includes the escape sequence without converting it to the
 + *     actual escaped character.  If the String is flagged as a key, we
 + *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
 + *
 + *   DTRACE_JSON_COLLECT_OBJECT:
 + *     This state collects an entire Object (or Array), correctly handling
 + *     embedded strings.  If the full element selector list matches this nested
 + *     object, we return the Object in full as a string.  If not, we use this
 + *     state to skip to the next value at this level and continue processing.
 + *
 + * NOTE: This function uses various macros from strtolctype.h to manipulate
 + * digit values, etc -- these have all been checked to ensure they make
 + * no additional function calls.
 + */
 +static char *
 +dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
 +    char *dest)
 +{
 +      dtrace_json_state_t state = DTRACE_JSON_REST;
 +      int64_t array_elem = INT64_MIN;
 +      int64_t array_pos = 0;
 +      uint8_t escape_unicount = 0;
 +      boolean_t string_is_key = B_FALSE;
 +      boolean_t collect_object = B_FALSE;
 +      boolean_t found_key = B_FALSE;
 +      boolean_t in_array = B_FALSE;
 +      uint32_t braces = 0, brackets = 0;
 +      char *elem = elemlist;
 +      char *dd = dest;
 +      uintptr_t cur;
 +
 +      for (cur = json; cur < json + size; cur++) {
 +              char cc = dtrace_load8(cur);
 +              if (cc == '\0')
 +                      return (NULL);
 +
 +              switch (state) {
 +              case DTRACE_JSON_REST:
 +                      if (isspace(cc))
 +                              break;
 +
 +                      if (cc == '{') {
 +                              state = DTRACE_JSON_OBJECT;
 +                              break;
 +                      }
 +
 +                      if (cc == '[') {
 +                              in_array = B_TRUE;
 +                              array_pos = 0;
 +                              array_elem = dtrace_strtoll(elem, 10, size);
 +                              found_key = array_elem == 0 ? B_TRUE : B_FALSE;
 +                              state = DTRACE_JSON_VALUE;
 +                              break;
 +                      }
 +
 +                      /*
 +                       * ERROR: expected to find a top-level object or array.
 +                       */
 +                      return (NULL);
 +              case DTRACE_JSON_OBJECT:
 +                      if (isspace(cc))
 +                              break;
 +
 +                      if (cc == '"') {
 +                              state = DTRACE_JSON_STRING;
 +                              string_is_key = B_TRUE;
 +                              break;
 +                      }
 +
 +                      /*
 +                       * ERROR: either the object did not start with a key
 +                       * string, or we've run off the end of the object
 +                       * without finding the requested key.
 +                       */
 +                      return (NULL);
 +              case DTRACE_JSON_STRING:
 +                      if (cc == '\\') {
 +                              *dd++ = '\\';
 +                              state = DTRACE_JSON_STRING_ESCAPE;
 +                              break;
 +                      }
 +
 +                      if (cc == '"') {
 +                              if (collect_object) {
 +                                      /*
 +                                       * We don't reset the dest here, as
 +                                       * the string is part of a larger
 +                                       * object being collected.
 +                                       */
 +                                      *dd++ = cc;
 +                                      collect_object = B_FALSE;
 +                                      state = DTRACE_JSON_COLLECT_OBJECT;
 +                                      break;
 +                              }
 +                              *dd = '\0';
 +                              dd = dest; /* reset string buffer */
 +                              if (string_is_key) {
 +                                      if (dtrace_strncmp(dest, elem,
 +                                          size) == 0)
 +                                              found_key = B_TRUE;
 +                              } else if (found_key) {
 +                                      if (nelems > 1) {
 +                                              /*
 +                                               * We expected an object, not
 +                                               * this string.
 +                                               */
 +                                              return (NULL);
 +                                      }
 +                                      return (dest);
 +                              }
 +                              state = string_is_key ? DTRACE_JSON_COLON :
 +                                  DTRACE_JSON_COMMA;
 +                              string_is_key = B_FALSE;
 +                              break;
 +                      }
 +
 +                      *dd++ = cc;
 +                      break;
 +              case DTRACE_JSON_STRING_ESCAPE:
 +                      *dd++ = cc;
 +                      if (cc == 'u') {
 +                              escape_unicount = 0;
 +                              state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
 +                      } else {
 +                              state = DTRACE_JSON_STRING;
 +                      }
 +                      break;
 +              case DTRACE_JSON_STRING_ESCAPE_UNICODE:
 +                      if (!isxdigit(cc)) {
 +                              /*
 +                               * ERROR: invalid unicode escape, expected
 +                               * four valid hexidecimal digits.
 +                               */
 +                              return (NULL);
 +                      }
 +
 +                      *dd++ = cc;
 +                      if (++escape_unicount == 4)
 +                              state = DTRACE_JSON_STRING;
 +                      break;
 +              case DTRACE_JSON_COLON:
 +                      if (isspace(cc))
 +                              break;
 +
 +                      if (cc == ':') {
 +                              state = DTRACE_JSON_VALUE;
 +                              break;
 +                      }
 +
 +                      /*
 +                       * ERROR: expected a colon.
 +                       */
 +                      return (NULL);
 +              case DTRACE_JSON_COMMA:
 +                      if (isspace(cc))
 +                              break;
 +
 +                      if (cc == ',') {
 +                              if (in_array) {
 +                                      state = DTRACE_JSON_VALUE;
 +                                      if (++array_pos == array_elem)
 +                                              found_key = B_TRUE;
 +                              } else {
 +                                      state = DTRACE_JSON_OBJECT;
 +                              }
 +                              break;
 +                      }
 +
 +                      /*
 +                       * ERROR: either we hit an unexpected character, or
 +                       * we reached the end of the object or array without
 +                       * finding the requested key.
 +                       */
 +                      return (NULL);
 +              case DTRACE_JSON_IDENTIFIER:
 +                      if (islower(cc)) {
 +                              *dd++ = cc;
 +                              break;
 +                      }
 +
 +                      *dd = '\0';
 +                      dd = dest; /* reset string buffer */
 +
 +                      if (dtrace_strncmp(dest, "true", 5) == 0 ||
 +                          dtrace_strncmp(dest, "false", 6) == 0 ||
 +                          dtrace_strncmp(dest, "null", 5) == 0) {
 +                              if (found_key) {
 +                                      if (nelems > 1) {
 +                                              /*
 +                                               * ERROR: We expected an object,
 +                                               * not this identifier.
 +                                               */
 +                                              return (NULL);
 +                                      }
 +                                      return (dest);
 +                              } else {
 +                                      cur--;
 +                                      state = DTRACE_JSON_COMMA;
 +                                      break;
 +                              }
 +                      }
 +
 +                      /*
 +                       * ERROR: we did not recognise the identifier as one
 +                       * of those in the JSON specification.
 +                       */
 +                      return (NULL);
 +              case DTRACE_JSON_NUMBER:
 +                      if (cc == '.') {
 +                              *dd++ = cc;
 +                              state = DTRACE_JSON_NUMBER_FRAC;
 +                              break;
 +                      }
 +
 +                      if (cc == 'x' || cc == 'X') {
 +                              /*
 +                               * ERROR: specification explicitly excludes
 +                               * hexidecimal or octal numbers.
 +                               */
 +                              return (NULL);
 +                      }
 +
 +                      /* FALLTHRU */
 +              case DTRACE_JSON_NUMBER_FRAC:
 +                      if (cc == 'e' || cc == 'E') {
 +                              *dd++ = cc;
 +                              state = DTRACE_JSON_NUMBER_EXP;
 +                              break;
 +                      }
 +
 +                      if (cc == '+' || cc == '-') {
 +                              /*
 +                               * ERROR: expect sign as part of exponent only.
 +                               */
 +                              return (NULL);
 +                      }
 +                      /* FALLTHRU */
 +              case DTRACE_JSON_NUMBER_EXP:
 +                      if (isdigit(cc) || cc == '+' || cc == '-') {
 +                              *dd++ = cc;
 +                              break;
 +                      }
 +
 +                      *dd = '\0';
 +                      dd = dest; /* reset string buffer */
 +                      if (found_key) {
 +                              if (nelems > 1) {
 +                                      /*
 +                                       * ERROR: We expected an object, not
 +                                       * this number.
 +                                       */
 +                                      return (NULL);
 +                              }
 +                              return (dest);
 +                      }
 +
 +                      cur--;
 +                      state = DTRACE_JSON_COMMA;
 +                      break;
 +              case DTRACE_JSON_VALUE:
 +                      if (isspace(cc))
 +                              break;
 +
 +                      if (cc == '{' || cc == '[') {
 +                              if (nelems > 1 && found_key) {
 +                                      in_array = cc == '[' ? B_TRUE : B_FALSE;
 +                                      /*
 +                                       * If our element selector directs us
 +                                       * to descend into this nested object,
 +                                       * then move to the next selector
 +                                       * element in the list and restart the
 +                                       * state machine.
 +                                       */
 +                                      while (*elem != '\0')
 +                                              elem++;
 +                                      elem++; /* skip the inter-element NUL */
 +                                      nelems--;
 +                                      dd = dest;
 +                                      if (in_array) {
 +                                              state = DTRACE_JSON_VALUE;
 +                                              array_pos = 0;
 +                                              array_elem = dtrace_strtoll(
 +                                                  elem, 10, size);
 +                                              found_key = array_elem == 0 ?
 +                                                  B_TRUE : B_FALSE;
 +                                      } else {
 +                                              found_key = B_FALSE;
 +                                              state = DTRACE_JSON_OBJECT;
 +                                      }
 +                                      break;
 +                              }
 +
 +                              /*
 +                               * Otherwise, we wish to either skip this
 +                               * nested object or return it in full.
 +                               */
 +                              if (cc == '[')
 +                                      brackets = 1;
 +                              else
 +                                      braces = 1;
 +                              *dd++ = cc;
 +                              state = DTRACE_JSON_COLLECT_OBJECT;
 +                              break;
 +                      }
 +
 +                      if (cc == '"') {
 +                              state = DTRACE_JSON_STRING;
 +                              break;
 +                      }
 +
 +                      if (islower(cc)) {
 +                              /*
 +                               * Here we deal with true, false and null.
 +                               */
 +                              *dd++ = cc;
 +                              state = DTRACE_JSON_IDENTIFIER;
 +                              break;
 +                      }
 +
 +                      if (cc == '-' || isdigit(cc)) {
 +                              *dd++ = cc;
 +                              state = DTRACE_JSON_NUMBER;
 +                              break;
 +                      }
 +
 +                      /*
 +                       * ERROR: unexpected character at start of value.
 +                       */
 +                      return (NULL);
 +              case DTRACE_JSON_COLLECT_OBJECT:
 +                      if (cc == '\0')
 +                              /*
 +                               * ERROR: unexpected end of input.
 +                               */
 +                              return (NULL);
 +
 +                      *dd++ = cc;
 +                      if (cc == '"') {
 +                              collect_object = B_TRUE;
 +                              state = DTRACE_JSON_STRING;
 +                              break;
 +                      }
 +
 +                      if (cc == ']') {
 +                              if (brackets-- == 0) {
 +                                      /*
 +                                       * ERROR: unbalanced brackets.
 +                                       */
 +                                      return (NULL);
 +                              }
 +                      } else if (cc == '}') {
 +                              if (braces-- == 0) {
 +                                      /*
 +                                       * ERROR: unbalanced braces.
 +                                       */
 +                                      return (NULL);
 +                              }
 +                      } else if (cc == '{') {
 +                              braces++;
 +                      } else if (cc == '[') {
 +                              brackets++;
 +                      }
 +
 +                      if (brackets == 0 && braces == 0) {
 +                              if (found_key) {
 +                                      *dd = '\0';
 +                                      return (dest);
 +                              }
 +                              dd = dest; /* reset string buffer */
 +                              state = DTRACE_JSON_COMMA;
 +                      }
 +                      break;
 +              }
 +      }
 +      return (NULL);
 +}
 +
 +/*
 + * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
 + * Notice that we don't bother validating the proper number of arguments or
 + * their types in the tuple stack.  This isn't needed because all argument
 + * interpretation is safe because of our load safety -- the worst that can
 + * happen is that a bogus program can obtain bogus results.
 + */
 +static void
 +dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
 +    dtrace_key_t *tupregs, int nargs,
 +    dtrace_mstate_t *mstate, dtrace_state_t *state)
 +{
 +      volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
 +      volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
 +      dtrace_vstate_t *vstate = &state->dts_vstate;
 +
 +#ifdef illumos
 +      union {
 +              mutex_impl_t mi;
 +              uint64_t mx;
 +      } m;
 +
 +      union {
 +              krwlock_t ri;
 +              uintptr_t rw;
 +      } r;
 +#else
 +      struct thread *lowner;
 +      union {
 +              struct lock_object *li;
 +              uintptr_t lx;
 +      } l;
 +#endif
 +
 +      switch (subr) {
 +      case DIF_SUBR_RAND:
 +              regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
 +              break;
 +
 +#ifdef illumos
 +      case DIF_SUBR_MUTEX_OWNED:
 +              if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
 +                  mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              m.mx = dtrace_load64(tupregs[0].dttk_value);
 +              if (MUTEX_TYPE_ADAPTIVE(&m.mi))
 +                      regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
 +              else
 +                      regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
 +              break;
 +
 +      case DIF_SUBR_MUTEX_OWNER:
 +              if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
 +                  mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              m.mx = dtrace_load64(tupregs[0].dttk_value);
 +              if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
 +                  MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
 +                      regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
 +              else
 +                      regs[rd] = 0;
 +              break;
 +
 +      case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
 +              if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
 +                  mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              m.mx = dtrace_load64(tupregs[0].dttk_value);
 +              regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
 +              break;
 +
 +      case DIF_SUBR_MUTEX_TYPE_SPIN:
 +              if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
 +                  mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              m.mx = dtrace_load64(tupregs[0].dttk_value);
 +              regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
 +              break;
 +
 +      case DIF_SUBR_RW_READ_HELD: {
 +              uintptr_t tmp;
 +
 +              if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
 +                  mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              r.rw = dtrace_loadptr(tupregs[0].dttk_value);
 +              regs[rd] = _RW_READ_HELD(&r.ri, tmp);
 +              break;
 +      }
 +
 +      case DIF_SUBR_RW_WRITE_HELD:
 +              if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
 +                  mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              r.rw = dtrace_loadptr(tupregs[0].dttk_value);
 +              regs[rd] = _RW_WRITE_HELD(&r.ri);
 +              break;
 +
 +      case DIF_SUBR_RW_ISWRITER:
 +              if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
 +                  mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              r.rw = dtrace_loadptr(tupregs[0].dttk_value);
 +              regs[rd] = _RW_ISWRITER(&r.ri);
 +              break;
 +
 +#else /* !illumos */
 +      case DIF_SUBR_MUTEX_OWNED:
 +              if (!dtrace_canload(tupregs[0].dttk_value,
 +                      sizeof (struct lock_object), mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +              l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
 +              regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
 +              break;
 +
 +      case DIF_SUBR_MUTEX_OWNER:
 +              if (!dtrace_canload(tupregs[0].dttk_value,
 +                      sizeof (struct lock_object), mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +              l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
 +              LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
 +              regs[rd] = (uintptr_t)lowner;
 +              break;
 +
 +      case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
 +              if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
 +                  mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +              l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
 +              /* XXX - should be only LC_SLEEPABLE? */
 +              regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
 +                  (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
 +              break;
 +
 +      case DIF_SUBR_MUTEX_TYPE_SPIN:
 +              if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
 +                  mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +              l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
 +              regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
 +              break;
 +
 +      case DIF_SUBR_RW_READ_HELD: 
 +      case DIF_SUBR_SX_SHARED_HELD: 
 +              if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
 +                  mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +              l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
 +              regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
 +                  lowner == NULL;
 +              break;
 +
 +      case DIF_SUBR_RW_WRITE_HELD:
 +      case DIF_SUBR_SX_EXCLUSIVE_HELD:
 +              if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
 +                  mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +              l.lx = dtrace_loadptr(tupregs[0].dttk_value);
 +              LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
 +              regs[rd] = (lowner == curthread);
 +              break;
 +
 +      case DIF_SUBR_RW_ISWRITER:
 +      case DIF_SUBR_SX_ISEXCLUSIVE:
 +              if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
 +                  mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +              l.lx = dtrace_loadptr(tupregs[0].dttk_value);
 +              regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
 +                  lowner != NULL;
 +              break;
 +#endif /* illumos */
 +
 +      case DIF_SUBR_BCOPY: {
 +              /*
 +               * We need to be sure that the destination is in the scratch
 +               * region -- no other region is allowed.
 +               */
 +              uintptr_t src = tupregs[0].dttk_value;
 +              uintptr_t dest = tupregs[1].dttk_value;
 +              size_t size = tupregs[2].dttk_value;
 +
 +              if (!dtrace_inscratch(dest, size, mstate)) {
 +                      *flags |= CPU_DTRACE_BADADDR;
 +                      *illval = regs[rd];
 +                      break;
 +              }
 +
 +              if (!dtrace_canload(src, size, mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              dtrace_bcopy((void *)src, (void *)dest, size);
 +              break;
 +      }
 +
 +      case DIF_SUBR_ALLOCA:
 +      case DIF_SUBR_COPYIN: {
 +              uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
 +              uint64_t size =
 +                  tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
 +              size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
 +
 +              /*
 +               * This action doesn't require any credential checks since
 +               * probes will not activate in user contexts to which the
 +               * enabling user does not have permissions.
 +               */
 +
 +              /*
 +               * Rounding up the user allocation size could have overflowed
 +               * a large, bogus allocation (like -1ULL) to 0.
 +               */
 +              if (scratch_size < size ||
 +                  !DTRACE_INSCRATCH(mstate, scratch_size)) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              if (subr == DIF_SUBR_COPYIN) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +                      dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
 +                      DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +              }
 +
 +              mstate->dtms_scratch_ptr += scratch_size;
 +              regs[rd] = dest;
 +              break;
 +      }
 +
 +      case DIF_SUBR_COPYINTO: {
 +              uint64_t size = tupregs[1].dttk_value;
 +              uintptr_t dest = tupregs[2].dttk_value;
 +
 +              /*
 +               * This action doesn't require any credential checks since
 +               * probes will not activate in user contexts to which the
 +               * enabling user does not have permissions.
 +               */
 +              if (!dtrace_inscratch(dest, size, mstate)) {
 +                      *flags |= CPU_DTRACE_BADADDR;
 +                      *illval = regs[rd];
 +                      break;
 +              }
 +
 +              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +              dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
 +              DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +              break;
 +      }
 +
 +      case DIF_SUBR_COPYINSTR: {
 +              uintptr_t dest = mstate->dtms_scratch_ptr;
 +              uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
 +
 +              if (nargs > 1 && tupregs[1].dttk_value < size)
 +                      size = tupregs[1].dttk_value + 1;
 +
 +              /*
 +               * This action doesn't require any credential checks since
 +               * probes will not activate in user contexts to which the
 +               * enabling user does not have permissions.
 +               */
 +              if (!DTRACE_INSCRATCH(mstate, size)) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +              dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
 +              DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +
 +              ((char *)dest)[size - 1] = '\0';
 +              mstate->dtms_scratch_ptr += size;
 +              regs[rd] = dest;
 +              break;
 +      }
 +
 +#ifdef illumos
 +      case DIF_SUBR_MSGSIZE:
 +      case DIF_SUBR_MSGDSIZE: {
 +              uintptr_t baddr = tupregs[0].dttk_value, daddr;
 +              uintptr_t wptr, rptr;
 +              size_t count = 0;
 +              int cont = 0;
 +
 +              while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
 +
 +                      if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
 +                          vstate)) {
 +                              regs[rd] = 0;
 +                              break;
 +                      }
 +
 +                      wptr = dtrace_loadptr(baddr +
 +                          offsetof(mblk_t, b_wptr));
 +
 +                      rptr = dtrace_loadptr(baddr +
 +                          offsetof(mblk_t, b_rptr));
 +
 +                      if (wptr < rptr) {
 +                              *flags |= CPU_DTRACE_BADADDR;
 +                              *illval = tupregs[0].dttk_value;
 +                              break;
 +                      }
 +
 +                      daddr = dtrace_loadptr(baddr +
 +                          offsetof(mblk_t, b_datap));
 +
 +                      baddr = dtrace_loadptr(baddr +
 +                          offsetof(mblk_t, b_cont));
 +
 +                      /*
 +                       * We want to prevent against denial-of-service here,
 +                       * so we're only going to search the list for
 +                       * dtrace_msgdsize_max mblks.
 +                       */
 +                      if (cont++ > dtrace_msgdsize_max) {
 +                              *flags |= CPU_DTRACE_ILLOP;
 +                              break;
 +                      }
 +
 +                      if (subr == DIF_SUBR_MSGDSIZE) {
 +                              if (dtrace_load8(daddr +
 +                                  offsetof(dblk_t, db_type)) != M_DATA)
 +                                      continue;
 +                      }
 +
 +                      count += wptr - rptr;
 +              }
 +
 +              if (!(*flags & CPU_DTRACE_FAULT))
 +                      regs[rd] = count;
 +
 +              break;
 +      }
 +#endif
 +
 +      case DIF_SUBR_PROGENYOF: {
 +              pid_t pid = tupregs[0].dttk_value;
 +              proc_t *p;
 +              int rval = 0;
 +
 +              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +
 +              for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
 +#ifdef illumos
 +                      if (p->p_pidp->pid_id == pid) {
 +#else
 +                      if (p->p_pid == pid) {
 +#endif
 +                              rval = 1;
 +                              break;
 +                      }
 +              }
 +
 +              DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +
 +              regs[rd] = rval;
 +              break;
 +      }
 +
 +      case DIF_SUBR_SPECULATION:
 +              regs[rd] = dtrace_speculation(state);
 +              break;
 +
 +      case DIF_SUBR_COPYOUT: {
 +              uintptr_t kaddr = tupregs[0].dttk_value;
 +              uintptr_t uaddr = tupregs[1].dttk_value;
 +              uint64_t size = tupregs[2].dttk_value;
 +
 +              if (!dtrace_destructive_disallow &&
 +                  dtrace_priv_proc_control(state) &&
-                   !dtrace_istoxic(kaddr, size)) {
++                  !dtrace_istoxic(kaddr, size) &&
++                  dtrace_canload(kaddr, size, mstate, vstate)) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +                      dtrace_copyout(kaddr, uaddr, size, flags);
 +                      DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +              }
 +              break;
 +      }
 +
 +      case DIF_SUBR_COPYOUTSTR: {
 +              uintptr_t kaddr = tupregs[0].dttk_value;
 +              uintptr_t uaddr = tupregs[1].dttk_value;
 +              uint64_t size = tupregs[2].dttk_value;
 +
 +              if (!dtrace_destructive_disallow &&
 +                  dtrace_priv_proc_control(state) &&
-                       if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
-                           vt->dtdt_size > dtrace_global_maxsize) {
-                               err += efunc(i, "oversized by-ref global\n");
++                  !dtrace_istoxic(kaddr, size) &&
++                  dtrace_strcanload(kaddr, size, mstate, vstate)) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +                      dtrace_copyoutstr(kaddr, uaddr, size, flags);
 +                      DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +              }
 +              break;
 +      }
 +
 +      case DIF_SUBR_STRLEN: {
 +              size_t sz;
 +              uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
 +              sz = dtrace_strlen((char *)addr,
 +                  state->dts_options[DTRACEOPT_STRSIZE]);
 +
 +              if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              regs[rd] = sz;
 +
 +              break;
 +      }
 +
 +      case DIF_SUBR_STRCHR:
 +      case DIF_SUBR_STRRCHR: {
 +              /*
 +               * We're going to iterate over the string looking for the
 +               * specified character.  We will iterate until we have reached
 +               * the string length or we have found the character.  If this
 +               * is DIF_SUBR_STRRCHR, we will look for the last occurrence
 +               * of the specified character instead of the first.
 +               */
 +              uintptr_t saddr = tupregs[0].dttk_value;
 +              uintptr_t addr = tupregs[0].dttk_value;
 +              uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
 +              char c, target = (char)tupregs[1].dttk_value;
 +
 +              for (regs[rd] = 0; addr < limit; addr++) {
 +                      if ((c = dtrace_load8(addr)) == target) {
 +                              regs[rd] = addr;
 +
 +                              if (subr == DIF_SUBR_STRCHR)
 +                                      break;
 +                      }
 +
 +                      if (c == '\0')
 +                              break;
 +              }
 +
 +              if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              break;
 +      }
 +
 +      case DIF_SUBR_STRSTR:
 +      case DIF_SUBR_INDEX:
 +      case DIF_SUBR_RINDEX: {
 +              /*
 +               * We're going to iterate over the string looking for the
 +               * specified string.  We will iterate until we have reached
 +               * the string length or we have found the string.  (Yes, this
 +               * is done in the most naive way possible -- but considering
 +               * that the string we're searching for is likely to be
 +               * relatively short, the complexity of Rabin-Karp or similar
 +               * hardly seems merited.)
 +               */
 +              char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
 +              char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
 +              uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
 +              size_t len = dtrace_strlen(addr, size);
 +              size_t sublen = dtrace_strlen(substr, size);
 +              char *limit = addr + len, *orig = addr;
 +              int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
 +              int inc = 1;
 +
 +              regs[rd] = notfound;
 +
 +              if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
 +                  vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              /*
 +               * strstr() and index()/rindex() have similar semantics if
 +               * both strings are the empty string: strstr() returns a
 +               * pointer to the (empty) string, and index() and rindex()
 +               * both return index 0 (regardless of any position argument).
 +               */
 +              if (sublen == 0 && len == 0) {
 +                      if (subr == DIF_SUBR_STRSTR)
 +                              regs[rd] = (uintptr_t)addr;
 +                      else
 +                              regs[rd] = 0;
 +                      break;
 +              }
 +
 +              if (subr != DIF_SUBR_STRSTR) {
 +                      if (subr == DIF_SUBR_RINDEX) {
 +                              limit = orig - 1;
 +                              addr += len;
 +                              inc = -1;
 +                      }
 +
 +                      /*
 +                       * Both index() and rindex() take an optional position
 +                       * argument that denotes the starting position.
 +                       */
 +                      if (nargs == 3) {
 +                              int64_t pos = (int64_t)tupregs[2].dttk_value;
 +
 +                              /*
 +                               * If the position argument to index() is
 +                               * negative, Perl implicitly clamps it at
 +                               * zero.  This semantic is a little surprising
 +                               * given the special meaning of negative
 +                               * positions to similar Perl functions like
 +                               * substr(), but it appears to reflect a
 +                               * notion that index() can start from a
 +                               * negative index and increment its way up to
 +                               * the string.  Given this notion, Perl's
 +                               * rindex() is at least self-consistent in
 +                               * that it implicitly clamps positions greater
 +                               * than the string length to be the string
 +                               * length.  Where Perl completely loses
 +                               * coherence, however, is when the specified
 +                               * substring is the empty string ("").  In
 +                               * this case, even if the position is
 +                               * negative, rindex() returns 0 -- and even if
 +                               * the position is greater than the length,
 +                               * index() returns the string length.  These
 +                               * semantics violate the notion that index()
 +                               * should never return a value less than the
 +                               * specified position and that rindex() should
 +                               * never return a value greater than the
 +                               * specified position.  (One assumes that
 +                               * these semantics are artifacts of Perl's
 +                               * implementation and not the results of
 +                               * deliberate design -- it beggars belief that
 +                               * even Larry Wall could desire such oddness.)
 +                               * While in the abstract one would wish for
 +                               * consistent position semantics across
 +                               * substr(), index() and rindex() -- or at the
 +                               * very least self-consistent position
 +                               * semantics for index() and rindex() -- we
 +                               * instead opt to keep with the extant Perl
 +                               * semantics, in all their broken glory.  (Do
 +                               * we have more desire to maintain Perl's
 +                               * semantics than Perl does?  Probably.)
 +                               */
 +                              if (subr == DIF_SUBR_RINDEX) {
 +                                      if (pos < 0) {
 +                                              if (sublen == 0)
 +                                                      regs[rd] = 0;
 +                                              break;
 +                                      }
 +
 +                                      if (pos > len)
 +                                              pos = len;
 +                              } else {
 +                                      if (pos < 0)
 +                                              pos = 0;
 +
 +                                      if (pos >= len) {
 +                                              if (sublen == 0)
 +                                                      regs[rd] = len;
 +                                              break;
 +                                      }
 +                              }
 +
 +                              addr = orig + pos;
 +                      }
 +              }
 +
 +              for (regs[rd] = notfound; addr != limit; addr += inc) {
 +                      if (dtrace_strncmp(addr, substr, sublen) == 0) {
 +                              if (subr != DIF_SUBR_STRSTR) {
 +                                      /*
 +                                       * As D index() and rindex() are
 +                                       * modeled on Perl (and not on awk),
 +                                       * we return a zero-based (and not a
 +                                       * one-based) index.  (For you Perl
 +                                       * weenies: no, we're not going to add
 +                                       * $[ -- and shouldn't you be at a con
 +                                       * or something?)
 +                                       */
 +                                      regs[rd] = (uintptr_t)(addr - orig);
 +                                      break;
 +                              }
 +
 +                              ASSERT(subr == DIF_SUBR_STRSTR);
 +                              regs[rd] = (uintptr_t)addr;
 +                              break;
 +                      }
 +              }
 +
 +              break;
 +      }
 +
 +      case DIF_SUBR_STRTOK: {
 +              uintptr_t addr = tupregs[0].dttk_value;
 +              uintptr_t tokaddr = tupregs[1].dttk_value;
 +              uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
 +              uintptr_t limit, toklimit = tokaddr + size;
 +              uint8_t c = 0, tokmap[32];       /* 256 / 8 */
 +              char *dest = (char *)mstate->dtms_scratch_ptr;
 +              int i;
 +
 +              /*
 +               * Check both the token buffer and (later) the input buffer,
 +               * since both could be non-scratch addresses.
 +               */
 +              if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              if (!DTRACE_INSCRATCH(mstate, size)) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              if (addr == 0) {
 +                      /*
 +                       * If the address specified is NULL, we use our saved
 +                       * strtok pointer from the mstate.  Note that this
 +                       * means that the saved strtok pointer is _only_
 +                       * valid within multiple enablings of the same probe --
 +                       * it behaves like an implicit clause-local variable.
 +                       */
 +                      addr = mstate->dtms_strtok;
 +              } else {
 +                      /*
 +                       * If the user-specified address is non-NULL we must
 +                       * access check it.  This is the only time we have
 +                       * a chance to do so, since this address may reside
 +                       * in the string table of this clause-- future calls
 +                       * (when we fetch addr from mstate->dtms_strtok)
 +                       * would fail this access check.
 +                       */
 +                      if (!dtrace_strcanload(addr, size, mstate, vstate)) {
 +                              regs[rd] = 0;
 +                              break;
 +                      }
 +              }
 +
 +              /*
 +               * First, zero the token map, and then process the token
 +               * string -- setting a bit in the map for every character
 +               * found in the token string.
 +               */
 +              for (i = 0; i < sizeof (tokmap); i++)
 +                      tokmap[i] = 0;
 +
 +              for (; tokaddr < toklimit; tokaddr++) {
 +                      if ((c = dtrace_load8(tokaddr)) == '\0')
 +                              break;
 +
 +                      ASSERT((c >> 3) < sizeof (tokmap));
 +                      tokmap[c >> 3] |= (1 << (c & 0x7));
 +              }
 +
 +              for (limit = addr + size; addr < limit; addr++) {
 +                      /*
 +                       * We're looking for a character that is _not_ contained
 +                       * in the token string.
 +                       */
 +                      if ((c = dtrace_load8(addr)) == '\0')
 +                              break;
 +
 +                      if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
 +                              break;
 +              }
 +
 +              if (c == '\0') {
 +                      /*
 +                       * We reached the end of the string without finding
 +                       * any character that was not in the token string.
 +                       * We return NULL in this case, and we set the saved
 +                       * address to NULL as well.
 +                       */
 +                      regs[rd] = 0;
 +                      mstate->dtms_strtok = 0;
 +                      break;
 +              }
 +
 +              /*
 +               * From here on, we're copying into the destination string.
 +               */
 +              for (i = 0; addr < limit && i < size - 1; addr++) {
 +                      if ((c = dtrace_load8(addr)) == '\0')
 +                              break;
 +
 +                      if (tokmap[c >> 3] & (1 << (c & 0x7)))
 +                              break;
 +
 +                      ASSERT(i < size);
 +                      dest[i++] = c;
 +              }
 +
 +              ASSERT(i < size);
 +              dest[i] = '\0';
 +              regs[rd] = (uintptr_t)dest;
 +              mstate->dtms_scratch_ptr += size;
 +              mstate->dtms_strtok = addr;
 +              break;
 +      }
 +
 +      case DIF_SUBR_SUBSTR: {
 +              uintptr_t s = tupregs[0].dttk_value;
 +              uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
 +              char *d = (char *)mstate->dtms_scratch_ptr;
 +              int64_t index = (int64_t)tupregs[1].dttk_value;
 +              int64_t remaining = (int64_t)tupregs[2].dttk_value;
 +              size_t len = dtrace_strlen((char *)s, size);
 +              int64_t i;
 +
 +              if (!dtrace_canload(s, len + 1, mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              if (!DTRACE_INSCRATCH(mstate, size)) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              if (nargs <= 2)
 +                      remaining = (int64_t)size;
 +
 +              if (index < 0) {
 +                      index += len;
 +
 +                      if (index < 0 && index + remaining > 0) {
 +                              remaining += index;
 +                              index = 0;
 +                      }
 +              }
 +
 +              if (index >= len || index < 0) {
 +                      remaining = 0;
 +              } else if (remaining < 0) {
 +                      remaining += len - index;
 +              } else if (index + remaining > size) {
 +                      remaining = size - index;
 +              }
 +
 +              for (i = 0; i < remaining; i++) {
 +                      if ((d[i] = dtrace_load8(s + index + i)) == '\0')
 +                              break;
 +              }
 +
 +              d[i] = '\0';
 +
 +              mstate->dtms_scratch_ptr += size;
 +              regs[rd] = (uintptr_t)d;
 +              break;
 +      }
 +
 +      case DIF_SUBR_JSON: {
 +              uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
 +              uintptr_t json = tupregs[0].dttk_value;
 +              size_t jsonlen = dtrace_strlen((char *)json, size);
 +              uintptr_t elem = tupregs[1].dttk_value;
 +              size_t elemlen = dtrace_strlen((char *)elem, size);
 +
 +              char *dest = (char *)mstate->dtms_scratch_ptr;
 +              char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
 +              char *ee = elemlist;
 +              int nelems = 1;
 +              uintptr_t cur;
 +
 +              if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
 +                  !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              /*
 +               * Read the element selector and split it up into a packed list
 +               * of strings.
 +               */
 +              for (cur = elem; cur < elem + elemlen; cur++) {
 +                      char cc = dtrace_load8(cur);
 +
 +                      if (cur == elem && cc == '[') {
 +                              /*
 +                               * If the first element selector key is
 +                               * actually an array index then ignore the
 +                               * bracket.
 +                               */
 +                              continue;
 +                      }
 +
 +                      if (cc == ']')
 +                              continue;
 +
 +                      if (cc == '.' || cc == '[') {
 +                              nelems++;
 +                              cc = '\0';
 +                      }
 +
 +                      *ee++ = cc;
 +              }
 +              *ee++ = '\0';
 +
 +              if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
 +                  nelems, dest)) != 0)
 +                      mstate->dtms_scratch_ptr += jsonlen + 1;
 +              break;
 +      }
 +
 +      case DIF_SUBR_TOUPPER:
 +      case DIF_SUBR_TOLOWER: {
 +              uintptr_t s = tupregs[0].dttk_value;
 +              uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
 +              char *dest = (char *)mstate->dtms_scratch_ptr, c;
 +              size_t len = dtrace_strlen((char *)s, size);
 +              char lower, upper, convert;
 +              int64_t i;
 +
 +              if (subr == DIF_SUBR_TOUPPER) {
 +                      lower = 'a';
 +                      upper = 'z';
 +                      convert = 'A';
 +              } else {
 +                      lower = 'A';
 +                      upper = 'Z';
 +                      convert = 'a';
 +              }
 +
 +              if (!dtrace_canload(s, len + 1, mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              if (!DTRACE_INSCRATCH(mstate, size)) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              for (i = 0; i < size - 1; i++) {
 +                      if ((c = dtrace_load8(s + i)) == '\0')
 +                              break;
 +
 +                      if (c >= lower && c <= upper)
 +                              c = convert + (c - lower);
 +
 +                      dest[i] = c;
 +              }
 +
 +              ASSERT(i < size);
 +              dest[i] = '\0';
 +              regs[rd] = (uintptr_t)dest;
 +              mstate->dtms_scratch_ptr += size;
 +              break;
 +      }
 +
 +#ifdef illumos
 +      case DIF_SUBR_GETMAJOR:
 +#ifdef _LP64
 +              regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
 +#else
 +              regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
 +#endif
 +              break;
 +
 +      case DIF_SUBR_GETMINOR:
 +#ifdef _LP64
 +              regs[rd] = tupregs[0].dttk_value & MAXMIN64;
 +#else
 +              regs[rd] = tupregs[0].dttk_value & MAXMIN;
 +#endif
 +              break;
 +
 +      case DIF_SUBR_DDI_PATHNAME: {
 +              /*
 +               * This one is a galactic mess.  We are going to roughly
 +               * emulate ddi_pathname(), but it's made more complicated
 +               * by the fact that we (a) want to include the minor name and
 +               * (b) must proceed iteratively instead of recursively.
 +               */
 +              uintptr_t dest = mstate->dtms_scratch_ptr;
 +              uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
 +              char *start = (char *)dest, *end = start + size - 1;
 +              uintptr_t daddr = tupregs[0].dttk_value;
 +              int64_t minor = (int64_t)tupregs[1].dttk_value;
 +              char *s;
 +              int i, len, depth = 0;
 +
 +              /*
 +               * Due to all the pointer jumping we do and context we must
 +               * rely upon, we just mandate that the user must have kernel
 +               * read privileges to use this routine.
 +               */
 +              if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
 +                      *flags |= CPU_DTRACE_KPRIV;
 +                      *illval = daddr;
 +                      regs[rd] = 0;
 +              }
 +
 +              if (!DTRACE_INSCRATCH(mstate, size)) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              *end = '\0';
 +
 +              /*
 +               * We want to have a name for the minor.  In order to do this,
 +               * we need to walk the minor list from the devinfo.  We want
 +               * to be sure that we don't infinitely walk a circular list,
 +               * so we check for circularity by sending a scout pointer
 +               * ahead two elements for every element that we iterate over;
 +               * if the list is circular, these will ultimately point to the
 +               * same element.  You may recognize this little trick as the
 +               * answer to a stupid interview question -- one that always
 +               * seems to be asked by those who had to have it laboriously
 +               * explained to them, and who can't even concisely describe
 +               * the conditions under which one would be forced to resort to
 +               * this technique.  Needless to say, those conditions are
 +               * found here -- and probably only here.  Is this the only use
 +               * of this infamous trick in shipping, production code?  If it
 +               * isn't, it probably should be...
 +               */
 +              if (minor != -1) {
 +                      uintptr_t maddr = dtrace_loadptr(daddr +
 +                          offsetof(struct dev_info, devi_minor));
 +
 +                      uintptr_t next = offsetof(struct ddi_minor_data, next);
 +                      uintptr_t name = offsetof(struct ddi_minor_data,
 +                          d_minor) + offsetof(struct ddi_minor, name);
 +                      uintptr_t dev = offsetof(struct ddi_minor_data,
 +                          d_minor) + offsetof(struct ddi_minor, dev);
 +                      uintptr_t scout;
 +
 +                      if (maddr != NULL)
 +                              scout = dtrace_loadptr(maddr + next);
 +
 +                      while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
 +                              uint64_t m;
 +#ifdef _LP64
 +                              m = dtrace_load64(maddr + dev) & MAXMIN64;
 +#else
 +                              m = dtrace_load32(maddr + dev) & MAXMIN;
 +#endif
 +                              if (m != minor) {
 +                                      maddr = dtrace_loadptr(maddr + next);
 +
 +                                      if (scout == NULL)
 +                                              continue;
 +
 +                                      scout = dtrace_loadptr(scout + next);
 +
 +                                      if (scout == NULL)
 +                                              continue;
 +
 +                                      scout = dtrace_loadptr(scout + next);
 +
 +                                      if (scout == NULL)
 +                                              continue;
 +
 +                                      if (scout == maddr) {
 +                                              *flags |= CPU_DTRACE_ILLOP;
 +                                              break;
 +                                      }
 +
 +                                      continue;
 +                              }
 +
 +                              /*
 +                               * We have the minor data.  Now we need to
 +                               * copy the minor's name into the end of the
 +                               * pathname.
 +                               */
 +                              s = (char *)dtrace_loadptr(maddr + name);
 +                              len = dtrace_strlen(s, size);
 +
 +                              if (*flags & CPU_DTRACE_FAULT)
 +                                      break;
 +
 +                              if (len != 0) {
 +                                      if ((end -= (len + 1)) < start)
 +                                              break;
 +
 +                                      *end = ':';
 +                              }
 +
 +                              for (i = 1; i <= len; i++)
 +                                      end[i] = dtrace_load8((uintptr_t)s++);
 +                              break;
 +                      }
 +              }
 +
 +              while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
 +                      ddi_node_state_t devi_state;
 +
 +                      devi_state = dtrace_load32(daddr +
 +                          offsetof(struct dev_info, devi_node_state));
 +
 +                      if (*flags & CPU_DTRACE_FAULT)
 +                              break;
 +
 +                      if (devi_state >= DS_INITIALIZED) {
 +                              s = (char *)dtrace_loadptr(daddr +
 +                                  offsetof(struct dev_info, devi_addr));
 +                              len = dtrace_strlen(s, size);
 +
 +                              if (*flags & CPU_DTRACE_FAULT)
 +                                      break;
 +
 +                              if (len != 0) {
 +                                      if ((end -= (len + 1)) < start)
 +                                              break;
 +
 +                                      *end = '@';
 +                              }
 +
 +                              for (i = 1; i <= len; i++)
 +                                      end[i] = dtrace_load8((uintptr_t)s++);
 +                      }
 +
 +                      /*
 +                       * Now for the node name...
 +                       */
 +                      s = (char *)dtrace_loadptr(daddr +
 +                          offsetof(struct dev_info, devi_node_name));
 +
 +                      daddr = dtrace_loadptr(daddr +
 +                          offsetof(struct dev_info, devi_parent));
 +
 +                      /*
 +                       * If our parent is NULL (that is, if we're the root
 +                       * node), we're going to use the special path
 +                       * "devices".
 +                       */
 +                      if (daddr == 0)
 +                              s = "devices";
 +
 +                      len = dtrace_strlen(s, size);
 +                      if (*flags & CPU_DTRACE_FAULT)
 +                              break;
 +
 +                      if ((end -= (len + 1)) < start)
 +                              break;
 +
 +                      for (i = 1; i <= len; i++)
 +                              end[i] = dtrace_load8((uintptr_t)s++);
 +                      *end = '/';
 +
 +                      if (depth++ > dtrace_devdepth_max) {
 +                              *flags |= CPU_DTRACE_ILLOP;
 +                              break;
 +                      }
 +              }
 +
 +              if (end < start)
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +
 +              if (daddr == 0) {
 +                      regs[rd] = (uintptr_t)end;
 +                      mstate->dtms_scratch_ptr += size;
 +              }
 +
 +              break;
 +      }
 +#endif
 +
 +      case DIF_SUBR_STRJOIN: {
 +              char *d = (char *)mstate->dtms_scratch_ptr;
 +              uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
 +              uintptr_t s1 = tupregs[0].dttk_value;
 +              uintptr_t s2 = tupregs[1].dttk_value;
 +              int i = 0;
 +
 +              if (!dtrace_strcanload(s1, size, mstate, vstate) ||
 +                  !dtrace_strcanload(s2, size, mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              if (!DTRACE_INSCRATCH(mstate, size)) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              for (;;) {
 +                      if (i >= size) {
 +                              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                              regs[rd] = 0;
 +                              break;
 +                      }
 +
 +                      if ((d[i++] = dtrace_load8(s1++)) == '\0') {
 +                              i--;
 +                              break;
 +                      }
 +              }
 +
 +              for (;;) {
 +                      if (i >= size) {
 +                              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                              regs[rd] = 0;
 +                              break;
 +                      }
 +
 +                      if ((d[i++] = dtrace_load8(s2++)) == '\0')
 +                              break;
 +              }
 +
 +              if (i < size) {
 +                      mstate->dtms_scratch_ptr += i;
 +                      regs[rd] = (uintptr_t)d;
 +              }
 +
 +              break;
 +      }
 +
 +      case DIF_SUBR_STRTOLL: {
 +              uintptr_t s = tupregs[0].dttk_value;
 +              uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
 +              int base = 10;
 +
 +              if (nargs > 1) {
 +                      if ((base = tupregs[1].dttk_value) <= 1 ||
 +                          base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
 +                              *flags |= CPU_DTRACE_ILLOP;
 +                              break;
 +                      }
 +              }
 +
 +              if (!dtrace_strcanload(s, size, mstate, vstate)) {
 +                      regs[rd] = INT64_MIN;
 +                      break;
 +              }
 +
 +              regs[rd] = dtrace_strtoll((char *)s, base, size);
 +              break;
 +      }
 +
 +      case DIF_SUBR_LLTOSTR: {
 +              int64_t i = (int64_t)tupregs[0].dttk_value;
 +              uint64_t val, digit;
 +              uint64_t size = 65;     /* enough room for 2^64 in binary */
 +              char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
 +              int base = 10;
 +
 +              if (nargs > 1) {
 +                      if ((base = tupregs[1].dttk_value) <= 1 ||
 +                          base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
 +                              *flags |= CPU_DTRACE_ILLOP;
 +                              break;
 +                      }
 +              }
 +
 +              val = (base == 10 && i < 0) ? i * -1 : i;
 +
 +              if (!DTRACE_INSCRATCH(mstate, size)) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              for (*end-- = '\0'; val; val /= base) {
 +                      if ((digit = val % base) <= '9' - '0') {
 +                              *end-- = '0' + digit;
 +                      } else {
 +                              *end-- = 'a' + (digit - ('9' - '0') - 1);
 +                      }
 +              }
 +
 +              if (i == 0 && base == 16)
 +                      *end-- = '0';
 +
 +              if (base == 16)
 +                      *end-- = 'x';
 +
 +              if (i == 0 || base == 8 || base == 16)
 +                      *end-- = '0';
 +
 +              if (i < 0 && base == 10)
 +                      *end-- = '-';
 +
 +              regs[rd] = (uintptr_t)end + 1;
 +              mstate->dtms_scratch_ptr += size;
 +              break;
 +      }
 +
 +      case DIF_SUBR_HTONS:
 +      case DIF_SUBR_NTOHS:
 +#if BYTE_ORDER == BIG_ENDIAN
 +              regs[rd] = (uint16_t)tupregs[0].dttk_value;
 +#else
 +              regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
 +#endif
 +              break;
 +
 +
 +      case DIF_SUBR_HTONL:
 +      case DIF_SUBR_NTOHL:
 +#if BYTE_ORDER == BIG_ENDIAN
 +              regs[rd] = (uint32_t)tupregs[0].dttk_value;
 +#else
 +              regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
 +#endif
 +              break;
 +
 +
 +      case DIF_SUBR_HTONLL:
 +      case DIF_SUBR_NTOHLL:
 +#if BYTE_ORDER == BIG_ENDIAN
 +              regs[rd] = (uint64_t)tupregs[0].dttk_value;
 +#else
 +              regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
 +#endif
 +              break;
 +
 +
 +      case DIF_SUBR_DIRNAME:
 +      case DIF_SUBR_BASENAME: {
 +              char *dest = (char *)mstate->dtms_scratch_ptr;
 +              uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
 +              uintptr_t src = tupregs[0].dttk_value;
 +              int i, j, len = dtrace_strlen((char *)src, size);
 +              int lastbase = -1, firstbase = -1, lastdir = -1;
 +              int start, end;
 +
 +              if (!dtrace_canload(src, len + 1, mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              if (!DTRACE_INSCRATCH(mstate, size)) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              /*
 +               * The basename and dirname for a zero-length string is
 +               * defined to be "."
 +               */
 +              if (len == 0) {
 +                      len = 1;
 +                      src = (uintptr_t)".";
 +              }
 +
 +              /*
 +               * Start from the back of the string, moving back toward the
 +               * front until we see a character that isn't a slash.  That
 +               * character is the last character in the basename.
 +               */
 +              for (i = len - 1; i >= 0; i--) {
 +                      if (dtrace_load8(src + i) != '/')
 +                              break;
 +              }
 +
 +              if (i >= 0)
 +                      lastbase = i;
 +
 +              /*
 +               * Starting from the last character in the basename, move
 +               * towards the front until we find a slash.  The character
 +               * that we processed immediately before that is the first
 +               * character in the basename.
 +               */
 +              for (; i >= 0; i--) {
 +                      if (dtrace_load8(src + i) == '/')
 +                              break;
 +              }
 +
 +              if (i >= 0)
 +                      firstbase = i + 1;
 +
 +              /*
 +               * Now keep going until we find a non-slash character.  That
 +               * character is the last character in the dirname.
 +               */
 +              for (; i >= 0; i--) {
 +                      if (dtrace_load8(src + i) != '/')
 +                              break;
 +              }
 +
 +              if (i >= 0)
 +                      lastdir = i;
 +
 +              ASSERT(!(lastbase == -1 && firstbase != -1));
 +              ASSERT(!(firstbase == -1 && lastdir != -1));
 +
 +              if (lastbase == -1) {
 +                      /*
 +                       * We didn't find a non-slash character.  We know that
 +                       * the length is non-zero, so the whole string must be
 +                       * slashes.  In either the dirname or the basename
 +                       * case, we return '/'.
 +                       */
 +                      ASSERT(firstbase == -1);
 +                      firstbase = lastbase = lastdir = 0;
 +              }
 +
 +              if (firstbase == -1) {
 +                      /*
 +                       * The entire string consists only of a basename
 +                       * component.  If we're looking for dirname, we need
 +                       * to change our string to be just "."; if we're
 +                       * looking for a basename, we'll just set the first
 +                       * character of the basename to be 0.
 +                       */
 +                      if (subr == DIF_SUBR_DIRNAME) {
 +                              ASSERT(lastdir == -1);
 +                              src = (uintptr_t)".";
 +                              lastdir = 0;
 +                      } else {
 +                              firstbase = 0;
 +                      }
 +              }
 +
 +              if (subr == DIF_SUBR_DIRNAME) {
 +                      if (lastdir == -1) {
 +                              /*
 +                               * We know that we have a slash in the name --
 +                               * or lastdir would be set to 0, above.  And
 +                               * because lastdir is -1, we know that this
 +                               * slash must be the first character.  (That
 +                               * is, the full string must be of the form
 +                               * "/basename".)  In this case, the last
 +                               * character of the directory name is 0.
 +                               */
 +                              lastdir = 0;
 +                      }
 +
 +                      start = 0;
 +                      end = lastdir;
 +              } else {
 +                      ASSERT(subr == DIF_SUBR_BASENAME);
 +                      ASSERT(firstbase != -1 && lastbase != -1);
 +                      start = firstbase;
 +                      end = lastbase;
 +              }
 +
 +              for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
 +                      dest[j] = dtrace_load8(src + i);
 +
 +              dest[j] = '\0';
 +              regs[rd] = (uintptr_t)dest;
 +              mstate->dtms_scratch_ptr += size;
 +              break;
 +      }
 +
 +      case DIF_SUBR_GETF: {
 +              uintptr_t fd = tupregs[0].dttk_value;
 +              struct filedesc *fdp;
 +              file_t *fp;
 +
 +              if (!dtrace_priv_proc(state)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +              fdp = curproc->p_fd;
 +              FILEDESC_SLOCK(fdp);
 +              fp = fget_locked(fdp, fd);
 +              mstate->dtms_getf = fp;
 +              regs[rd] = (uintptr_t)fp;
 +              FILEDESC_SUNLOCK(fdp);
 +              break;
 +      }
 +
 +      case DIF_SUBR_CLEANPATH: {
 +              char *dest = (char *)mstate->dtms_scratch_ptr, c;
 +              uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
 +              uintptr_t src = tupregs[0].dttk_value;
 +              int i = 0, j = 0;
 +#ifdef illumos
 +              zone_t *z;
 +#endif
 +
 +              if (!dtrace_strcanload(src, size, mstate, vstate)) {
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              if (!DTRACE_INSCRATCH(mstate, size)) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +              /*
 +               * Move forward, loading each character.
 +               */
 +              do {
 +                      c = dtrace_load8(src + i++);
 +next:
 +                      if (j + 5 >= size)      /* 5 = strlen("/..c\0") */
 +                              break;
 +
 +                      if (c != '/') {
 +                              dest[j++] = c;
 +                              continue;
 +                      }
 +
 +                      c = dtrace_load8(src + i++);
 +
 +                      if (c == '/') {
 +                              /*
 +                               * We have two slashes -- we can just advance
 +                               * to the next character.
 +                               */
 +                              goto next;
 +                      }
 +
 +                      if (c != '.') {
 +                              /*
 +                               * This is not "." and it's not ".." -- we can
 +                               * just store the "/" and this character and
 +                               * drive on.
 +                               */
 +                              dest[j++] = '/';
 +                              dest[j++] = c;
 +                              continue;
 +                      }
 +
 +                      c = dtrace_load8(src + i++);
 +
 +                      if (c == '/') {
 +                              /*
 +                               * This is a "/./" component.  We're not going
 +                               * to store anything in the destination buffer;
 +                               * we're just going to go to the next component.
 +                               */
 +                              goto next;
 +                      }
 +
 +                      if (c != '.') {
 +                              /*
 +                               * This is not ".." -- we can just store the
 +                               * "/." and this character and continue
 +                               * processing.
 +                               */
 +                              dest[j++] = '/';
 +                              dest[j++] = '.';
 +                              dest[j++] = c;
 +                              continue;
 +                      }
 +
 +                      c = dtrace_load8(src + i++);
 +
 +                      if (c != '/' && c != '\0') {
 +                              /*
 +                               * This is not ".." -- it's "..[mumble]".
 +                               * We'll store the "/.." and this character
 +                               * and continue processing.
 +                               */
 +                              dest[j++] = '/';
 +                              dest[j++] = '.';
 +                              dest[j++] = '.';
 +                              dest[j++] = c;
 +                              continue;
 +                      }
 +
 +                      /*
 +                       * This is "/../" or "/..\0".  We need to back up
 +                       * our destination pointer until we find a "/".
 +                       */
 +                      i--;
 +                      while (j != 0 && dest[--j] != '/')
 +                              continue;
 +
 +                      if (c == '\0')
 +                              dest[++j] = '/';
 +              } while (c != '\0');
 +
 +              dest[j] = '\0';
 +
 +#ifdef illumos
 +              if (mstate->dtms_getf != NULL &&
 +                  !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
 +                  (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
 +                      /*
 +                       * If we've done a getf() as a part of this ECB and we
 +                       * don't have kernel access (and we're not in the global
 +                       * zone), check if the path we cleaned up begins with
 +                       * the zone's root path, and trim it off if so.  Note
 +                       * that this is an output cleanliness issue, not a
 +                       * security issue: knowing one's zone root path does
 +                       * not enable privilege escalation.
 +                       */
 +                      if (strstr(dest, z->zone_rootpath) == dest)
 +                              dest += strlen(z->zone_rootpath) - 1;
 +              }
 +#endif
 +
 +              regs[rd] = (uintptr_t)dest;
 +              mstate->dtms_scratch_ptr += size;
 +              break;
 +      }
 +
 +      case DIF_SUBR_INET_NTOA:
 +      case DIF_SUBR_INET_NTOA6:
 +      case DIF_SUBR_INET_NTOP: {
 +              size_t size;
 +              int af, argi, i;
 +              char *base, *end;
 +
 +              if (subr == DIF_SUBR_INET_NTOP) {
 +                      af = (int)tupregs[0].dttk_value;
 +                      argi = 1;
 +              } else {
 +                      af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
 +                      argi = 0;
 +              }
 +
 +              if (af == AF_INET) {
 +                      ipaddr_t ip4;
 +                      uint8_t *ptr8, val;
 +
 +                      /*
 +                       * Safely load the IPv4 address.
 +                       */
 +                      ip4 = dtrace_load32(tupregs[argi].dttk_value);
 +
 +                      /*
 +                       * Check an IPv4 string will fit in scratch.
 +                       */
 +                      size = INET_ADDRSTRLEN;
 +                      if (!DTRACE_INSCRATCH(mstate, size)) {
 +                              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                              regs[rd] = 0;
 +                              break;
 +                      }
 +                      base = (char *)mstate->dtms_scratch_ptr;
 +                      end = (char *)mstate->dtms_scratch_ptr + size - 1;
 +
 +                      /*
 +                       * Stringify as a dotted decimal quad.
 +                       */
 +                      *end-- = '\0';
 +                      ptr8 = (uint8_t *)&ip4;
 +                      for (i = 3; i >= 0; i--) {
 +                              val = ptr8[i];
 +
 +                              if (val == 0) {
 +                                      *end-- = '0';
 +                              } else {
 +                                      for (; val; val /= 10) {
 +                                              *end-- = '0' + (val % 10);
 +                                      }
 +                              }
 +
 +                              if (i > 0)
 +                                      *end-- = '.';
 +                      }
 +                      ASSERT(end + 1 >= base);
 +
 +              } else if (af == AF_INET6) {
 +                      struct in6_addr ip6;
 +                      int firstzero, tryzero, numzero, v6end;
 +                      uint16_t val;
 +                      const char digits[] = "0123456789abcdef";
 +
 +                      /*
 +                       * Stringify using RFC 1884 convention 2 - 16 bit
 +                       * hexadecimal values with a zero-run compression.
 +                       * Lower case hexadecimal digits are used.
 +                       *      eg, fe80::214:4fff:fe0b:76c8.
 +                       * The IPv4 embedded form is returned for inet_ntop,
 +                       * just the IPv4 string is returned for inet_ntoa6.
 +                       */
 +
 +                      /*
 +                       * Safely load the IPv6 address.
 +                       */
 +                      dtrace_bcopy(
 +                          (void *)(uintptr_t)tupregs[argi].dttk_value,
 +                          (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
 +
 +                      /*
 +                       * Check an IPv6 string will fit in scratch.
 +                       */
 +                      size = INET6_ADDRSTRLEN;
 +                      if (!DTRACE_INSCRATCH(mstate, size)) {
 +                              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                              regs[rd] = 0;
 +                              break;
 +                      }
 +                      base = (char *)mstate->dtms_scratch_ptr;
 +                      end = (char *)mstate->dtms_scratch_ptr + size - 1;
 +                      *end-- = '\0';
 +
 +                      /*
 +                       * Find the longest run of 16 bit zero values
 +                       * for the single allowed zero compression - "::".
 +                       */
 +                      firstzero = -1;
 +                      tryzero = -1;
 +                      numzero = 1;
 +                      for (i = 0; i < sizeof (struct in6_addr); i++) {
 +#ifdef illumos
 +                              if (ip6._S6_un._S6_u8[i] == 0 &&
 +#else
 +                              if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
 +#endif
 +                                  tryzero == -1 && i % 2 == 0) {
 +                                      tryzero = i;
 +                                      continue;
 +                              }
 +
 +                              if (tryzero != -1 &&
 +#ifdef illumos
 +                                  (ip6._S6_un._S6_u8[i] != 0 ||
 +#else
 +                                  (ip6.__u6_addr.__u6_addr8[i] != 0 ||
 +#endif
 +                                  i == sizeof (struct in6_addr) - 1)) {
 +
 +                                      if (i - tryzero <= numzero) {
 +                                              tryzero = -1;
 +                                              continue;
 +                                      }
 +
 +                                      firstzero = tryzero;
 +                                      numzero = i - i % 2 - tryzero;
 +                                      tryzero = -1;
 +
 +#ifdef illumos
 +                                      if (ip6._S6_un._S6_u8[i] == 0 &&
 +#else
 +                                      if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
 +#endif
 +                                          i == sizeof (struct in6_addr) - 1)
 +                                              numzero += 2;
 +                              }
 +                      }
 +                      ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
 +
 +                      /*
 +                       * Check for an IPv4 embedded address.
 +                       */
 +                      v6end = sizeof (struct in6_addr) - 2;
 +                      if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
 +                          IN6_IS_ADDR_V4COMPAT(&ip6)) {
 +                              for (i = sizeof (struct in6_addr) - 1;
 +                                  i >= DTRACE_V4MAPPED_OFFSET; i--) {
 +                                      ASSERT(end >= base);
 +
 +#ifdef illumos
 +                                      val = ip6._S6_un._S6_u8[i];
 +#else
 +                                      val = ip6.__u6_addr.__u6_addr8[i];
 +#endif
 +
 +                                      if (val == 0) {
 +                                              *end-- = '0';
 +                                      } else {
 +                                              for (; val; val /= 10) {
 +                                                      *end-- = '0' + val % 10;
 +                                              }
 +                                      }
 +
 +                                      if (i > DTRACE_V4MAPPED_OFFSET)
 +                                              *end-- = '.';
 +                              }
 +
 +                              if (subr == DIF_SUBR_INET_NTOA6)
 +                                      goto inetout;
 +
 +                              /*
 +                               * Set v6end to skip the IPv4 address that
 +                               * we have already stringified.
 +                               */
 +                              v6end = 10;
 +                      }
 +
 +                      /*
 +                       * Build the IPv6 string by working through the
 +                       * address in reverse.
 +                       */
 +                      for (i = v6end; i >= 0; i -= 2) {
 +                              ASSERT(end >= base);
 +
 +                              if (i == firstzero + numzero - 2) {
 +                                      *end-- = ':';
 +                                      *end-- = ':';
 +                                      i -= numzero - 2;
 +                                      continue;
 +                              }
 +
 +                              if (i < 14 && i != firstzero - 2)
 +                                      *end-- = ':';
 +
 +#ifdef illumos
 +                              val = (ip6._S6_un._S6_u8[i] << 8) +
 +                                  ip6._S6_un._S6_u8[i + 1];
 +#else
 +                              val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
 +                                  ip6.__u6_addr.__u6_addr8[i + 1];
 +#endif
 +
 +                              if (val == 0) {
 +                                      *end-- = '0';
 +                              } else {
 +                                      for (; val; val /= 16) {
 +                                              *end-- = digits[val % 16];
 +                                      }
 +                              }
 +                      }
 +                      ASSERT(end + 1 >= base);
 +
 +              } else {
 +                      /*
 +                       * The user didn't use AH_INET or AH_INET6.
 +                       */
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
 +                      regs[rd] = 0;
 +                      break;
 +              }
 +
 +inetout:      regs[rd] = (uintptr_t)end + 1;
 +              mstate->dtms_scratch_ptr += size;
 +              break;
 +      }
 +
 +      case DIF_SUBR_MEMREF: {
 +              uintptr_t size = 2 * sizeof(uintptr_t);
 +              uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
 +              size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
 +
 +              /* address and length */
 +              memref[0] = tupregs[0].dttk_value;
 +              memref[1] = tupregs[1].dttk_value;
 +
 +              regs[rd] = (uintptr_t) memref;
 +              mstate->dtms_scratch_ptr += scratch_size;
 +              break;
 +      }
 +
 +#ifndef illumos
 +      case DIF_SUBR_MEMSTR: {
 +              char *str = (char *)mstate->dtms_scratch_ptr;
 +              uintptr_t mem = tupregs[0].dttk_value;
 +              char c = tupregs[1].dttk_value;
 +              size_t size = tupregs[2].dttk_value;
 +              uint8_t n;
 +              int i;
 +
 +              regs[rd] = 0;
 +
 +              if (size == 0)
 +                      break;
 +
 +              if (!dtrace_canload(mem, size - 1, mstate, vstate))
 +                      break;
 +
 +              if (!DTRACE_INSCRATCH(mstate, size)) {
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                      break;
 +              }
 +
 +              if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
 +                      *flags |= CPU_DTRACE_ILLOP;
 +                      break;
 +              }
 +
 +              for (i = 0; i < size - 1; i++) {
 +                      n = dtrace_load8(mem++);
 +                      str[i] = (n == 0) ? c : n;
 +              }
 +              str[size - 1] = 0;
 +
 +              regs[rd] = (uintptr_t)str;
 +              mstate->dtms_scratch_ptr += size;
 +              break;
 +      }
 +#endif
 +
 +      case DIF_SUBR_TYPEREF: {
 +              uintptr_t size = 4 * sizeof(uintptr_t);
 +              uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
 +              size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
 +
 +              /* address, num_elements, type_str, type_len */
 +              typeref[0] = tupregs[0].dttk_value;
 +              typeref[1] = tupregs[1].dttk_value;
 +              typeref[2] = tupregs[2].dttk_value;
 +              typeref[3] = tupregs[3].dttk_value;
 +
 +              regs[rd] = (uintptr_t) typeref;
 +              mstate->dtms_scratch_ptr += scratch_size;
 +              break;
 +      }
 +      }
 +}
 +
 +/*
 + * Emulate the execution of DTrace IR instructions specified by the given
 + * DIF object.  This function is deliberately void of assertions as all of
 + * the necessary checks are handled by a call to dtrace_difo_validate().
 + */
 +static uint64_t
 +dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
 +    dtrace_vstate_t *vstate, dtrace_state_t *state)
 +{
 +      const dif_instr_t *text = difo->dtdo_buf;
 +      const uint_t textlen = difo->dtdo_len;
 +      const char *strtab = difo->dtdo_strtab;
 +      const uint64_t *inttab = difo->dtdo_inttab;
 +
 +      uint64_t rval = 0;
 +      dtrace_statvar_t *svar;
 +      dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
 +      dtrace_difv_t *v;
 +      volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
 +      volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
 +
 +      dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
 +      uint64_t regs[DIF_DIR_NREGS];
 +      uint64_t *tmp;
 +
 +      uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
 +      int64_t cc_r;
 +      uint_t pc = 0, id, opc = 0;
 +      uint8_t ttop = 0;
 +      dif_instr_t instr;
 +      uint_t r1, r2, rd;
 +
 +      /*
 +       * We stash the current DIF object into the machine state: we need it
 +       * for subsequent access checking.
 +       */
 +      mstate->dtms_difo = difo;
 +
 +      regs[DIF_REG_R0] = 0;           /* %r0 is fixed at zero */
 +
 +      while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
 +              opc = pc;
 +
 +              instr = text[pc++];
 +              r1 = DIF_INSTR_R1(instr);
 +              r2 = DIF_INSTR_R2(instr);
 +              rd = DIF_INSTR_RD(instr);
 +
 +              switch (DIF_INSTR_OP(instr)) {
 +              case DIF_OP_OR:
 +                      regs[rd] = regs[r1] | regs[r2];
 +                      break;
 +              case DIF_OP_XOR:
 +                      regs[rd] = regs[r1] ^ regs[r2];
 +                      break;
 +              case DIF_OP_AND:
 +                      regs[rd] = regs[r1] & regs[r2];
 +                      break;
 +              case DIF_OP_SLL:
 +                      regs[rd] = regs[r1] << regs[r2];
 +                      break;
 +              case DIF_OP_SRL:
 +                      regs[rd] = regs[r1] >> regs[r2];
 +                      break;
 +              case DIF_OP_SUB:
 +                      regs[rd] = regs[r1] - regs[r2];
 +                      break;
 +              case DIF_OP_ADD:
 +                      regs[rd] = regs[r1] + regs[r2];
 +                      break;
 +              case DIF_OP_MUL:
 +                      regs[rd] = regs[r1] * regs[r2];
 +                      break;
 +              case DIF_OP_SDIV:
 +                      if (regs[r2] == 0) {
 +                              regs[rd] = 0;
 +                              *flags |= CPU_DTRACE_DIVZERO;
 +                      } else {
 +                              regs[rd] = (int64_t)regs[r1] /
 +                                  (int64_t)regs[r2];
 +                      }
 +                      break;
 +
 +              case DIF_OP_UDIV:
 +                      if (regs[r2] == 0) {
 +                              regs[rd] = 0;
 +                              *flags |= CPU_DTRACE_DIVZERO;
 +                      } else {
 +                              regs[rd] = regs[r1] / regs[r2];
 +                      }
 +                      break;
 +
 +              case DIF_OP_SREM:
 +                      if (regs[r2] == 0) {
 +                              regs[rd] = 0;
 +                              *flags |= CPU_DTRACE_DIVZERO;
 +                      } else {
 +                              regs[rd] = (int64_t)regs[r1] %
 +                                  (int64_t)regs[r2];
 +                      }
 +                      break;
 +
 +              case DIF_OP_UREM:
 +                      if (regs[r2] == 0) {
 +                              regs[rd] = 0;
 +                              *flags |= CPU_DTRACE_DIVZERO;
 +                      } else {
 +                              regs[rd] = regs[r1] % regs[r2];
 +                      }
 +                      break;
 +
 +              case DIF_OP_NOT:
 +                      regs[rd] = ~regs[r1];
 +                      break;
 +              case DIF_OP_MOV:
 +                      regs[rd] = regs[r1];
 +                      break;
 +              case DIF_OP_CMP:
 +                      cc_r = regs[r1] - regs[r2];
 +                      cc_n = cc_r < 0;
 +                      cc_z = cc_r == 0;
 +                      cc_v = 0;
 +                      cc_c = regs[r1] < regs[r2];
 +                      break;
 +              case DIF_OP_TST:
 +                      cc_n = cc_v = cc_c = 0;
 +                      cc_z = regs[r1] == 0;
 +                      break;
 +              case DIF_OP_BA:
 +                      pc = DIF_INSTR_LABEL(instr);
 +                      break;
 +              case DIF_OP_BE:
 +                      if (cc_z)
 +                              pc = DIF_INSTR_LABEL(instr);
 +                      break;
 +              case DIF_OP_BNE:
 +                      if (cc_z == 0)
 +                              pc = DIF_INSTR_LABEL(instr);
 +                      break;
 +              case DIF_OP_BG:
 +                      if ((cc_z | (cc_n ^ cc_v)) == 0)
 +                              pc = DIF_INSTR_LABEL(instr);
 +                      break;
 +              case DIF_OP_BGU:
 +                      if ((cc_c | cc_z) == 0)
 +                              pc = DIF_INSTR_LABEL(instr);
 +                      break;
 +              case DIF_OP_BGE:
 +                      if ((cc_n ^ cc_v) == 0)
 +                              pc = DIF_INSTR_LABEL(instr);
 +                      break;
 +              case DIF_OP_BGEU:
 +                      if (cc_c == 0)
 +                              pc = DIF_INSTR_LABEL(instr);
 +                      break;
 +              case DIF_OP_BL:
 +                      if (cc_n ^ cc_v)
 +                              pc = DIF_INSTR_LABEL(instr);
 +                      break;
 +              case DIF_OP_BLU:
 +                      if (cc_c)
 +                              pc = DIF_INSTR_LABEL(instr);
 +                      break;
 +              case DIF_OP_BLE:
 +                      if (cc_z | (cc_n ^ cc_v))
 +                              pc = DIF_INSTR_LABEL(instr);
 +                      break;
 +              case DIF_OP_BLEU:
 +                      if (cc_c | cc_z)
 +                              pc = DIF_INSTR_LABEL(instr);
 +                      break;
 +              case DIF_OP_RLDSB:
 +                      if (!dtrace_canload(regs[r1], 1, mstate, vstate))
 +                              break;
 +                      /*FALLTHROUGH*/
 +              case DIF_OP_LDSB:
 +                      regs[rd] = (int8_t)dtrace_load8(regs[r1]);
 +                      break;
 +              case DIF_OP_RLDSH:
 +                      if (!dtrace_canload(regs[r1], 2, mstate, vstate))
 +                              break;
 +                      /*FALLTHROUGH*/
 +              case DIF_OP_LDSH:
 +                      regs[rd] = (int16_t)dtrace_load16(regs[r1]);
 +                      break;
 +              case DIF_OP_RLDSW:
 +                      if (!dtrace_canload(regs[r1], 4, mstate, vstate))
 +                              break;
 +                      /*FALLTHROUGH*/
 +              case DIF_OP_LDSW:
 +                      regs[rd] = (int32_t)dtrace_load32(regs[r1]);
 +                      break;
 +              case DIF_OP_RLDUB:
 +                      if (!dtrace_canload(regs[r1], 1, mstate, vstate))
 +                              break;
 +                      /*FALLTHROUGH*/
 +              case DIF_OP_LDUB:
 +                      regs[rd] = dtrace_load8(regs[r1]);
 +                      break;
 +              case DIF_OP_RLDUH:
 +                      if (!dtrace_canload(regs[r1], 2, mstate, vstate))
 +                              break;
 +                      /*FALLTHROUGH*/
 +              case DIF_OP_LDUH:
 +                      regs[rd] = dtrace_load16(regs[r1]);
 +                      break;
 +              case DIF_OP_RLDUW:
 +                      if (!dtrace_canload(regs[r1], 4, mstate, vstate))
 +                              break;
 +                      /*FALLTHROUGH*/
 +              case DIF_OP_LDUW:
 +                      regs[rd] = dtrace_load32(regs[r1]);
 +                      break;
 +              case DIF_OP_RLDX:
 +                      if (!dtrace_canload(regs[r1], 8, mstate, vstate))
 +                              break;
 +                      /*FALLTHROUGH*/
 +              case DIF_OP_LDX:
 +                      regs[rd] = dtrace_load64(regs[r1]);
 +                      break;
 +              case DIF_OP_ULDSB:
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +                      regs[rd] = (int8_t)
 +                          dtrace_fuword8((void *)(uintptr_t)regs[r1]);
 +                      DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +                      break;
 +              case DIF_OP_ULDSH:
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +                      regs[rd] = (int16_t)
 +                          dtrace_fuword16((void *)(uintptr_t)regs[r1]);
 +                      DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +                      break;
 +              case DIF_OP_ULDSW:
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +                      regs[rd] = (int32_t)
 +                          dtrace_fuword32((void *)(uintptr_t)regs[r1]);
 +                      DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +                      break;
 +              case DIF_OP_ULDUB:
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +                      regs[rd] =
 +                          dtrace_fuword8((void *)(uintptr_t)regs[r1]);
 +                      DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +                      break;
 +              case DIF_OP_ULDUH:
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +                      regs[rd] =
 +                          dtrace_fuword16((void *)(uintptr_t)regs[r1]);
 +                      DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +                      break;
 +              case DIF_OP_ULDUW:
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +                      regs[rd] =
 +                          dtrace_fuword32((void *)(uintptr_t)regs[r1]);
 +                      DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +                      break;
 +              case DIF_OP_ULDX:
 +                      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +                      regs[rd] =
 +                          dtrace_fuword64((void *)(uintptr_t)regs[r1]);
 +                      DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +                      break;
 +              case DIF_OP_RET:
 +                      rval = regs[rd];
 +                      pc = textlen;
 +                      break;
 +              case DIF_OP_NOP:
 +                      break;
 +              case DIF_OP_SETX:
 +                      regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
 +                      break;
 +              case DIF_OP_SETS:
 +                      regs[rd] = (uint64_t)(uintptr_t)
 +                          (strtab + DIF_INSTR_STRING(instr));
 +                      break;
 +              case DIF_OP_SCMP: {
 +                      size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
 +                      uintptr_t s1 = regs[r1];
 +                      uintptr_t s2 = regs[r2];
 +
 +                      if (s1 != 0 &&
 +                          !dtrace_strcanload(s1, sz, mstate, vstate))
 +                              break;
 +                      if (s2 != 0 &&
 +                          !dtrace_strcanload(s2, sz, mstate, vstate))
 +                              break;
 +
 +                      cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
 +
 +                      cc_n = cc_r < 0;
 +                      cc_z = cc_r == 0;
 +                      cc_v = cc_c = 0;
 +                      break;
 +              }
 +              case DIF_OP_LDGA:
 +                      regs[rd] = dtrace_dif_variable(mstate, state,
 +                          r1, regs[r2]);
 +                      break;
 +              case DIF_OP_LDGS:
 +                      id = DIF_INSTR_VAR(instr);
 +
 +                      if (id >= DIF_VAR_OTHER_UBASE) {
 +                              uintptr_t a;
 +
 +                              id -= DIF_VAR_OTHER_UBASE;
 +                              svar = vstate->dtvs_globals[id];
 +                              ASSERT(svar != NULL);
 +                              v = &svar->dtsv_var;
 +
 +                              if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
 +                                      regs[rd] = svar->dtsv_data;
 +                                      break;
 +                              }
 +
 +                              a = (uintptr_t)svar->dtsv_data;
 +
 +                              if (*(uint8_t *)a == UINT8_MAX) {
 +                                      /*
 +                                       * If the 0th byte is set to UINT8_MAX
 +                                       * then this is to be treated as a
 +                                       * reference to a NULL variable.
 +                                       */
 +                                      regs[rd] = 0;
 +                              } else {
 +                                      regs[rd] = a + sizeof (uint64_t);
 +                              }
 +
 +                              break;
 +                      }
 +
 +                      regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
 +                      break;
 +
 +              case DIF_OP_STGS:
 +                      id = DIF_INSTR_VAR(instr);
 +
 +                      ASSERT(id >= DIF_VAR_OTHER_UBASE);
 +                      id -= DIF_VAR_OTHER_UBASE;
 +
 +                      svar = vstate->dtvs_globals[id];
 +                      ASSERT(svar != NULL);
 +                      v = &svar->dtsv_var;
 +
 +                      if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
 +                              uintptr_t a = (uintptr_t)svar->dtsv_data;
 +
 +                              ASSERT(a != 0);
 +                              ASSERT(svar->dtsv_size != 0);
 +
 +                              if (regs[rd] == 0) {
 +                                      *(uint8_t *)a = UINT8_MAX;
 +                                      break;
 +                              } else {
 +                                      *(uint8_t *)a = 0;
 +                                      a += sizeof (uint64_t);
 +                              }
 +                              if (!dtrace_vcanload(
 +                                  (void *)(uintptr_t)regs[rd], &v->dtdv_type,
 +                                  mstate, vstate))
 +                                      break;
 +
 +                              dtrace_vcopy((void *)(uintptr_t)regs[rd],
 +                                  (void *)a, &v->dtdv_type);
 +                              break;
 +                      }
 +
 +                      svar->dtsv_data = regs[rd];
 +                      break;
 +
 +              case DIF_OP_LDTA:
 +                      /*
 +                       * There are no DTrace built-in thread-local arrays at
 +                       * present.  This opcode is saved for future work.
 +                       */
 +                      *flags |= CPU_DTRACE_ILLOP;
 +                      regs[rd] = 0;
 +                      break;
 +
 +              case DIF_OP_LDLS:
 +                      id = DIF_INSTR_VAR(instr);
 +
 +                      if (id < DIF_VAR_OTHER_UBASE) {
 +                              /*
 +                               * For now, this has no meaning.
 +                               */
 +                              regs[rd] = 0;
 +                              break;
 +                      }
 +
 +                      id -= DIF_VAR_OTHER_UBASE;
 +
 +                      ASSERT(id < vstate->dtvs_nlocals);
 +                      ASSERT(vstate->dtvs_locals != NULL);
 +
 +                      svar = vstate->dtvs_locals[id];
 +                      ASSERT(svar != NULL);
 +                      v = &svar->dtsv_var;
 +
 +                      if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
 +                              uintptr_t a = (uintptr_t)svar->dtsv_data;
 +                              size_t sz = v->dtdv_type.dtdt_size;
 +
 +                              sz += sizeof (uint64_t);
 +                              ASSERT(svar->dtsv_size == NCPU * sz);
 +                              a += curcpu * sz;
 +
 +                              if (*(uint8_t *)a == UINT8_MAX) {
 +                                      /*
 +                                       * If the 0th byte is set to UINT8_MAX
 +                                       * then this is to be treated as a
 +                                       * reference to a NULL variable.
 +                                       */
 +                                      regs[rd] = 0;
 +                              } else {
 +                                      regs[rd] = a + sizeof (uint64_t);
 +                              }
 +
 +                              break;
 +                      }
 +
 +                      ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
 +                      tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
 +                      regs[rd] = tmp[curcpu];
 +                      break;
 +
 +              case DIF_OP_STLS:
 +                      id = DIF_INSTR_VAR(instr);
 +
 +                      ASSERT(id >= DIF_VAR_OTHER_UBASE);
 +                      id -= DIF_VAR_OTHER_UBASE;
 +                      ASSERT(id < vstate->dtvs_nlocals);
 +
 +                      ASSERT(vstate->dtvs_locals != NULL);
 +                      svar = vstate->dtvs_locals[id];
 +                      ASSERT(svar != NULL);
 +                      v = &svar->dtsv_var;
 +
 +                      if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
 +                              uintptr_t a = (uintptr_t)svar->dtsv_data;
 +                              size_t sz = v->dtdv_type.dtdt_size;
 +
 +                              sz += sizeof (uint64_t);
 +                              ASSERT(svar->dtsv_size == NCPU * sz);
 +                              a += curcpu * sz;
 +
 +                              if (regs[rd] == 0) {
 +                                      *(uint8_t *)a = UINT8_MAX;
 +                                      break;
 +                              } else {
 +                                      *(uint8_t *)a = 0;
 +                                      a += sizeof (uint64_t);
 +                              }
 +
 +                              if (!dtrace_vcanload(
 +                                  (void *)(uintptr_t)regs[rd], &v->dtdv_type,
 +                                  mstate, vstate))
 +                                      break;
 +
 +                              dtrace_vcopy((void *)(uintptr_t)regs[rd],
 +                                  (void *)a, &v->dtdv_type);
 +                              break;
 +                      }
 +
 +                      ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
 +                      tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
 +                      tmp[curcpu] = regs[rd];
 +                      break;
 +
 +              case DIF_OP_LDTS: {
 +                      dtrace_dynvar_t *dvar;
 +                      dtrace_key_t *key;
 +
 +                      id = DIF_INSTR_VAR(instr);
 +                      ASSERT(id >= DIF_VAR_OTHER_UBASE);
 +                      id -= DIF_VAR_OTHER_UBASE;
 +                      v = &vstate->dtvs_tlocals[id];
 +
 +                      key = &tupregs[DIF_DTR_NREGS];
 +                      key[0].dttk_value = (uint64_t)id;
 +                      key[0].dttk_size = 0;
 +                      DTRACE_TLS_THRKEY(key[1].dttk_value);
 +                      key[1].dttk_size = 0;
 +
 +                      dvar = dtrace_dynvar(dstate, 2, key,
 +                          sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
 +                          mstate, vstate);
 +
 +                      if (dvar == NULL) {
 +                              regs[rd] = 0;
 +                              break;
 +                      }
 +
 +                      if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
 +                              regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
 +                      } else {
 +                              regs[rd] = *((uint64_t *)dvar->dtdv_data);
 +                      }
 +
 +                      break;
 +              }
 +
 +              case DIF_OP_STTS: {
 +                      dtrace_dynvar_t *dvar;
 +                      dtrace_key_t *key;
 +
 +                      id = DIF_INSTR_VAR(instr);
 +                      ASSERT(id >= DIF_VAR_OTHER_UBASE);
 +                      id -= DIF_VAR_OTHER_UBASE;
 +
 +                      key = &tupregs[DIF_DTR_NREGS];
 +                      key[0].dttk_value = (uint64_t)id;
 +                      key[0].dttk_size = 0;
 +                      DTRACE_TLS_THRKEY(key[1].dttk_value);
 +                      key[1].dttk_size = 0;
 +                      v = &vstate->dtvs_tlocals[id];
 +
 +                      dvar = dtrace_dynvar(dstate, 2, key,
 +                          v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
 +                          v->dtdv_type.dtdt_size : sizeof (uint64_t),
 +                          regs[rd] ? DTRACE_DYNVAR_ALLOC :
 +                          DTRACE_DYNVAR_DEALLOC, mstate, vstate);
 +
 +                      /*
 +                       * Given that we're storing to thread-local data,
 +                       * we need to flush our predicate cache.
 +                       */
 +                      curthread->t_predcache = 0;
 +
 +                      if (dvar == NULL)
 +                              break;
 +
 +                      if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
 +                              if (!dtrace_vcanload(
 +                                  (void *)(uintptr_t)regs[rd],
 +                                  &v->dtdv_type, mstate, vstate))
 +                                      break;
 +
 +                              dtrace_vcopy((void *)(uintptr_t)regs[rd],
 +                                  dvar->dtdv_data, &v->dtdv_type);
 +                      } else {
 +                              *((uint64_t *)dvar->dtdv_data) = regs[rd];
 +                      }
 +
 +                      break;
 +              }
 +
 +              case DIF_OP_SRA:
 +                      regs[rd] = (int64_t)regs[r1] >> regs[r2];
 +                      break;
 +
 +              case DIF_OP_CALL:
 +                      dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
 +                          regs, tupregs, ttop, mstate, state);
 +                      break;
 +
 +              case DIF_OP_PUSHTR:
 +                      if (ttop == DIF_DTR_NREGS) {
 +                              *flags |= CPU_DTRACE_TUPOFLOW;
 +                              break;
 +                      }
 +
 +                      if (r1 == DIF_TYPE_STRING) {
 +                              /*
 +                               * If this is a string type and the size is 0,
 +                               * we'll use the system-wide default string
 +                               * size.  Note that we are _not_ looking at
 +                               * the value of the DTRACEOPT_STRSIZE option;
 +                               * had this been set, we would expect to have
 +                               * a non-zero size value in the "pushtr".
 +                               */
 +                              tupregs[ttop].dttk_size =
 +                                  dtrace_strlen((char *)(uintptr_t)regs[rd],
 +                                  regs[r2] ? regs[r2] :
 +                                  dtrace_strsize_default) + 1;
 +                      } else {
++                              if (regs[r2] > LONG_MAX) {
++                                      *flags |= CPU_DTRACE_ILLOP;
++                                      break;
++                              }
++
 +                              tupregs[ttop].dttk_size = regs[r2];
 +                      }
 +
 +                      tupregs[ttop++].dttk_value = regs[rd];
 +                      break;
 +
 +              case DIF_OP_PUSHTV:
 +                      if (ttop == DIF_DTR_NREGS) {
 +                              *flags |= CPU_DTRACE_TUPOFLOW;
 +                              break;
 +                      }
 +
 +                      tupregs[ttop].dttk_value = regs[rd];
 +                      tupregs[ttop++].dttk_size = 0;
 +                      break;
 +
 +              case DIF_OP_POPTS:
 +                      if (ttop != 0)
 +                              ttop--;
 +                      break;
 +
 +              case DIF_OP_FLUSHTS:
 +                      ttop = 0;
 +                      break;
 +
 +              case DIF_OP_LDGAA:
 +              case DIF_OP_LDTAA: {
 +                      dtrace_dynvar_t *dvar;
 +                      dtrace_key_t *key = tupregs;
 +                      uint_t nkeys = ttop;
 +
 +                      id = DIF_INSTR_VAR(instr);
 +                      ASSERT(id >= DIF_VAR_OTHER_UBASE);
 +                      id -= DIF_VAR_OTHER_UBASE;
 +
 +                      key[nkeys].dttk_value = (uint64_t)id;
 +                      key[nkeys++].dttk_size = 0;
 +
 +                      if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
 +                              DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
 +                              key[nkeys++].dttk_size = 0;
 +                              v = &vstate->dtvs_tlocals[id];
 +                      } else {
 +                              v = &vstate->dtvs_globals[id]->dtsv_var;
 +                      }
 +
 +                      dvar = dtrace_dynvar(dstate, nkeys, key,
 +                          v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
 +                          v->dtdv_type.dtdt_size : sizeof (uint64_t),
 +                          DTRACE_DYNVAR_NOALLOC, mstate, vstate);
 +
 +                      if (dvar == NULL) {
 +                              regs[rd] = 0;
 +                              break;
 +                      }
 +
 +                      if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
 +                              regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
 +                      } else {
 +                              regs[rd] = *((uint64_t *)dvar->dtdv_data);
 +                      }
 +
 +                      break;
 +              }
 +
 +              case DIF_OP_STGAA:
 +              case DIF_OP_STTAA: {
 +                      dtrace_dynvar_t *dvar;
 +                      dtrace_key_t *key = tupregs;
 +                      uint_t nkeys = ttop;
 +
 +                      id = DIF_INSTR_VAR(instr);
 +                      ASSERT(id >= DIF_VAR_OTHER_UBASE);
 +                      id -= DIF_VAR_OTHER_UBASE;
 +
 +                      key[nkeys].dttk_value = (uint64_t)id;
 +                      key[nkeys++].dttk_size = 0;
 +
 +                      if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
 +                              DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
 +                              key[nkeys++].dttk_size = 0;
 +                              v = &vstate->dtvs_tlocals[id];
 +                      } else {
 +                              v = &vstate->dtvs_globals[id]->dtsv_var;
 +                      }
 +
 +                      dvar = dtrace_dynvar(dstate, nkeys, key,
 +                          v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
 +                          v->dtdv_type.dtdt_size : sizeof (uint64_t),
 +                          regs[rd] ? DTRACE_DYNVAR_ALLOC :
 +                          DTRACE_DYNVAR_DEALLOC, mstate, vstate);
 +
 +                      if (dvar == NULL)
 +                              break;
 +
 +                      if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
 +                              if (!dtrace_vcanload(
 +                                  (void *)(uintptr_t)regs[rd], &v->dtdv_type,
 +                                  mstate, vstate))
 +                                      break;
 +
 +                              dtrace_vcopy((void *)(uintptr_t)regs[rd],
 +                                  dvar->dtdv_data, &v->dtdv_type);
 +                      } else {
 +                              *((uint64_t *)dvar->dtdv_data) = regs[rd];
 +                      }
 +
 +                      break;
 +              }
 +
 +              case DIF_OP_ALLOCS: {
 +                      uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
 +                      size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
 +
 +                      /*
 +                       * Rounding up the user allocation size could have
 +                       * overflowed large, bogus allocations (like -1ULL) to
 +                       * 0.
 +                       */
 +                      if (size < regs[r1] ||
 +                          !DTRACE_INSCRATCH(mstate, size)) {
 +                              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +                              regs[rd] = 0;
 +                              break;
 +                      }
 +
 +                      dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
 +                      mstate->dtms_scratch_ptr += size;
 +                      regs[rd] = ptr;
 +                      break;
 +              }
 +
 +              case DIF_OP_COPYS:
 +                      if (!dtrace_canstore(regs[rd], regs[r2],
 +                          mstate, vstate)) {
 +                              *flags |= CPU_DTRACE_BADADDR;
 +                              *illval = regs[rd];
 +                              break;
 +                      }
 +
 +                      if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
 +                              break;
 +
 +                      dtrace_bcopy((void *)(uintptr_t)regs[r1],
 +                          (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
 +                      break;
 +
 +              case DIF_OP_STB:
 +                      if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
 +                              *flags |= CPU_DTRACE_BADADDR;
 +                              *illval = regs[rd];
 +                              break;
 +                      }
 +                      *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
 +                      break;
 +
 +              case DIF_OP_STH:
 +                      if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
 +                              *flags |= CPU_DTRACE_BADADDR;
 +                              *illval = regs[rd];
 +                              break;
 +                      }
 +                      if (regs[rd] & 1) {
 +                              *flags |= CPU_DTRACE_BADALIGN;
 +                              *illval = regs[rd];
 +                              break;
 +                      }
 +                      *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
 +                      break;
 +
 +              case DIF_OP_STW:
 +                      if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
 +                              *flags |= CPU_DTRACE_BADADDR;
 +                              *illval = regs[rd];
 +                              break;
 +                      }
 +                      if (regs[rd] & 3) {
 +                              *flags |= CPU_DTRACE_BADALIGN;
 +                              *illval = regs[rd];
 +                              break;
 +                      }
 +                      *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
 +                      break;
 +
 +              case DIF_OP_STX:
 +                      if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
 +                              *flags |= CPU_DTRACE_BADADDR;
 +                              *illval = regs[rd];
 +                              break;
 +                      }
 +                      if (regs[rd] & 7) {
 +                              *flags |= CPU_DTRACE_BADALIGN;
 +                              *illval = regs[rd];
 +                              break;
 +                      }
 +                      *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
 +                      break;
 +              }
 +      }
 +
 +      if (!(*flags & CPU_DTRACE_FAULT))
 +              return (rval);
 +
 +      mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
 +      mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
 +
 +      return (0);
 +}
 +
 +static void
 +dtrace_action_breakpoint(dtrace_ecb_t *ecb)
 +{
 +      dtrace_probe_t *probe = ecb->dte_probe;
 +      dtrace_provider_t *prov = probe->dtpr_provider;
 +      char c[DTRACE_FULLNAMELEN + 80], *str;
 +      char *msg = "dtrace: breakpoint action at probe ";
 +      char *ecbmsg = " (ecb ";
 +      uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
 +      uintptr_t val = (uintptr_t)ecb;
 +      int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
 +
 +      if (dtrace_destructive_disallow)
 +              return;
 +
 +      /*
 +       * It's impossible to be taking action on the NULL probe.
 +       */
 +      ASSERT(probe != NULL);
 +
 +      /*
 +       * This is a poor man's (destitute man's?) sprintf():  we want to
 +       * print the provider name, module name, function name and name of
 +       * the probe, along with the hex address of the ECB with the breakpoint
 +       * action -- all of which we must place in the character buffer by
 +       * hand.
 +       */
 +      while (*msg != '\0')
 +              c[i++] = *msg++;
 +
 +      for (str = prov->dtpv_name; *str != '\0'; str++)
 +              c[i++] = *str;
 +      c[i++] = ':';
 +
 +      for (str = probe->dtpr_mod; *str != '\0'; str++)
 +              c[i++] = *str;
 +      c[i++] = ':';
 +
 +      for (str = probe->dtpr_func; *str != '\0'; str++)
 +              c[i++] = *str;
 +      c[i++] = ':';
 +
 +      for (str = probe->dtpr_name; *str != '\0'; str++)
 +              c[i++] = *str;
 +
 +      while (*ecbmsg != '\0')
 +              c[i++] = *ecbmsg++;
 +
 +      while (shift >= 0) {
 +              mask = (uintptr_t)0xf << shift;
 +
 +              if (val >= ((uintptr_t)1 << shift))
 +                      c[i++] = "0123456789abcdef"[(val & mask) >> shift];
 +              shift -= 4;
 +      }
 +
 +      c[i++] = ')';
 +      c[i] = '\0';
 +
 +#ifdef illumos
 +      debug_enter(c);
 +#else
 +      kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
 +#endif
 +}
 +
 +static void
 +dtrace_action_panic(dtrace_ecb_t *ecb)
 +{
 +      dtrace_probe_t *probe = ecb->dte_probe;
 +
 +      /*
 +       * It's impossible to be taking action on the NULL probe.
 +       */
 +      ASSERT(probe != NULL);
 +
 +      if (dtrace_destructive_disallow)
 +              return;
 +
 +      if (dtrace_panicked != NULL)
 +              return;
 +
 +      if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
 +              return;
 +
 +      /*
 +       * We won the right to panic.  (We want to be sure that only one
 +       * thread calls panic() from dtrace_probe(), and that panic() is
 +       * called exactly once.)
 +       */
 +      dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
 +          probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
 +          probe->dtpr_func, probe->dtpr_name, (void *)ecb);
 +}
 +
 +static void
 +dtrace_action_raise(uint64_t sig)
 +{
 +      if (dtrace_destructive_disallow)
 +              return;
 +
 +      if (sig >= NSIG) {
 +              DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
 +              return;
 +      }
 +
 +#ifdef illumos
 +      /*
 +       * raise() has a queue depth of 1 -- we ignore all subsequent
 +       * invocations of the raise() action.
 +       */
 +      if (curthread->t_dtrace_sig == 0)
 +              curthread->t_dtrace_sig = (uint8_t)sig;
 +
 +      curthread->t_sig_check = 1;
 +      aston(curthread);
 +#else
 +      struct proc *p = curproc;
 +      PROC_LOCK(p);
 +      kern_psignal(p, sig);
 +      PROC_UNLOCK(p);
 +#endif
 +}
 +
 +static void
 +dtrace_action_stop(void)
 +{
 +      if (dtrace_destructive_disallow)
 +              return;
 +
 +#ifdef illumos
 +      if (!curthread->t_dtrace_stop) {
 +              curthread->t_dtrace_stop = 1;
 +              curthread->t_sig_check = 1;
 +              aston(curthread);
 +      }
 +#else
 +      struct proc *p = curproc;
 +      PROC_LOCK(p);
 +      kern_psignal(p, SIGSTOP);
 +      PROC_UNLOCK(p);
 +#endif
 +}
 +
 +static void
 +dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
 +{
 +      hrtime_t now;
 +      volatile uint16_t *flags;
 +#ifdef illumos
 +      cpu_t *cpu = CPU;
 +#else
 +      cpu_t *cpu = &solaris_cpu[curcpu];
 +#endif
 +
 +      if (dtrace_destructive_disallow)
 +              return;
 +
 +      flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
 +
 +      now = dtrace_gethrtime();
 +
 +      if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
 +              /*
 +               * We need to advance the mark to the current time.
 +               */
 +              cpu->cpu_dtrace_chillmark = now;
 +              cpu->cpu_dtrace_chilled = 0;
 +      }
 +
 +      /*
 +       * Now check to see if the requested chill time would take us over
 +       * the maximum amount of time allowed in the chill interval.  (Or
 +       * worse, if the calculation itself induces overflow.)
 +       */
 +      if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
 +          cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
 +              *flags |= CPU_DTRACE_ILLOP;
 +              return;
 +      }
 +
 +      while (dtrace_gethrtime() - now < val)
 +              continue;
 +
 +      /*
 +       * Normally, we assure that the value of the variable "timestamp" does
 +       * not change within an ECB.  The presence of chill() represents an
 +       * exception to this rule, however.
 +       */
 +      mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
 +      cpu->cpu_dtrace_chilled += val;
 +}
 +
 +static void
 +dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
 +    uint64_t *buf, uint64_t arg)
 +{
 +      int nframes = DTRACE_USTACK_NFRAMES(arg);
 +      int strsize = DTRACE_USTACK_STRSIZE(arg);
 +      uint64_t *pcs = &buf[1], *fps;
 +      char *str = (char *)&pcs[nframes];
 +      int size, offs = 0, i, j;
 +      uintptr_t old = mstate->dtms_scratch_ptr, saved;
 +      uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
 +      char *sym;
 +
 +      /*
 +       * Should be taking a faster path if string space has not been
 +       * allocated.
 +       */
 +      ASSERT(strsize != 0);
 +
 +      /*
 +       * We will first allocate some temporary space for the frame pointers.
 +       */
 +      fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
 +      size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
 +          (nframes * sizeof (uint64_t));
 +
 +      if (!DTRACE_INSCRATCH(mstate, size)) {
 +              /*
 +               * Not enough room for our frame pointers -- need to indicate
 +               * that we ran out of scratch space.
 +               */
 +              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
 +              return;
 +      }
 +
 +      mstate->dtms_scratch_ptr += size;
 +      saved = mstate->dtms_scratch_ptr;
 +
 +      /*
 +       * Now get a stack with both program counters and frame pointers.
 +       */
 +      DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +      dtrace_getufpstack(buf, fps, nframes + 1);
 +      DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +
 +      /*
 +       * If that faulted, we're cooked.
 +       */
 +      if (*flags & CPU_DTRACE_FAULT)
 +              goto out;
 +
 +      /*
 +       * Now we want to walk up the stack, calling the USTACK helper.  For
 +       * each iteration, we restore the scratch pointer.
 +       */
 +      for (i = 0; i < nframes; i++) {
 +              mstate->dtms_scratch_ptr = saved;
 +
 +              if (offs >= strsize)
 +                      break;
 +
 +              sym = (char *)(uintptr_t)dtrace_helper(
 +                  DTRACE_HELPER_ACTION_USTACK,
 +                  mstate, state, pcs[i], fps[i]);
 +
 +              /*
 +               * If we faulted while running the helper, we're going to
 +               * clear the fault and null out the corresponding string.
 +               */
 +              if (*flags & CPU_DTRACE_FAULT) {
 +                      *flags &= ~CPU_DTRACE_FAULT;
 +                      str[offs++] = '\0';
 +                      continue;
 +              }
 +
 +              if (sym == NULL) {
 +                      str[offs++] = '\0';
 +                      continue;
 +              }
 +
 +              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +
 +              /*
 +               * Now copy in the string that the helper returned to us.
 +               */
 +              for (j = 0; offs + j < strsize; j++) {
 +                      if ((str[offs + j] = sym[j]) == '\0')
 +                              break;
 +              }
 +
 +              DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +
 +              offs += j + 1;
 +      }
 +
 +      if (offs >= strsize) {
 +              /*
 +               * If we didn't have room for all of the strings, we don't
 +               * abort processing -- this needn't be a fatal error -- but we
 +               * still want to increment a counter (dts_stkstroverflows) to
 +               * allow this condition to be warned about.  (If this is from
 +               * a jstack() action, it is easily tuned via jstackstrsize.)
 +               */
 +              dtrace_error(&state->dts_stkstroverflows);
 +      }
 +
 +      while (offs < strsize)
 +              str[offs++] = '\0';
 +
 +out:
 +      mstate->dtms_scratch_ptr = old;
 +}
 +
 +static void
 +dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
 +    size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
 +{
 +      volatile uint16_t *flags;
 +      uint64_t val = *valp;
 +      size_t valoffs = *valoffsp;
 +
 +      flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
 +      ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
 +
 +      /*
 +       * If this is a string, we're going to only load until we find the zero
 +       * byte -- after which we'll store zero bytes.
 +       */
 +      if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
 +              char c = '\0' + 1;
 +              size_t s;
 +
 +              for (s = 0; s < size; s++) {
 +                      if (c != '\0' && dtkind == DIF_TF_BYREF) {
 +                              c = dtrace_load8(val++);
 +                      } else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
 +                              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +                              c = dtrace_fuword8((void *)(uintptr_t)val++);
 +                              DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +                              if (*flags & CPU_DTRACE_FAULT)
 +                                      break;
 +                      }
 +
 +                      DTRACE_STORE(uint8_t, tomax, valoffs++, c);
 +
 +                      if (c == '\0' && intuple)
 +                              break;
 +              }
 +      } else {
 +              uint8_t c;
 +              while (valoffs < end) {
 +                      if (dtkind == DIF_TF_BYREF) {
 +                              c = dtrace_load8(val++);
 +                      } else if (dtkind == DIF_TF_BYUREF) {
 +                              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +                              c = dtrace_fuword8((void *)(uintptr_t)val++);
 +                              DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +                              if (*flags & CPU_DTRACE_FAULT)
 +                                      break;
 +                      }
 +
 +                      DTRACE_STORE(uint8_t, tomax,
 +                          valoffs++, c);
 +              }
 +      }
 +
 +      *valp = val;
 +      *valoffsp = valoffs;
 +}
 +
 +/*
 + * If you're looking for the epicenter of DTrace, you just found it.  This
 + * is the function called by the provider to fire a probe -- from which all
 + * subsequent probe-context DTrace activity emanates.
 + */
 +void
 +dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
 +    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
 +{
 +      processorid_t cpuid;
 +      dtrace_icookie_t cookie;
 +      dtrace_probe_t *probe;
 +      dtrace_mstate_t mstate;
 +      dtrace_ecb_t *ecb;
 +      dtrace_action_t *act;
 +      intptr_t offs;
 +      size_t size;
 +      int vtime, onintr;
 +      volatile uint16_t *flags;
 +      hrtime_t now;
 +
 +      if (panicstr != NULL)
 +              return;
 +
 +#ifdef illumos
 +      /*
 +       * Kick out immediately if this CPU is still being born (in which case
 +       * curthread will be set to -1) or the current thread can't allow
 +       * probes in its current context.
 +       */
 +      if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
 +              return;
 +#endif
 +
 +      cookie = dtrace_interrupt_disable();
 +      probe = dtrace_probes[id - 1];
 +      cpuid = curcpu;
 +      onintr = CPU_ON_INTR(CPU);
 +
 +      if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
 +          probe->dtpr_predcache == curthread->t_predcache) {
 +              /*
 +               * We have hit in the predicate cache; we know that
 +               * this predicate would evaluate to be false.
 +               */
 +              dtrace_interrupt_enable(cookie);
 +              return;
 +      }
 +
 +#ifdef illumos
 +      if (panic_quiesce) {
 +#else
 +      if (panicstr != NULL) {
 +#endif
 +              /*
 +               * We don't trace anything if we're panicking.
 +               */
 +              dtrace_interrupt_enable(cookie);
 +              return;
 +      }
 +
 +      now = mstate.dtms_timestamp = dtrace_gethrtime();
 +      mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
 +      vtime = dtrace_vtime_references != 0;
 +
 +      if (vtime && curthread->t_dtrace_start)
 +              curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
 +
 +      mstate.dtms_difo = NULL;
 +      mstate.dtms_probe = probe;
 +      mstate.dtms_strtok = 0;
 +      mstate.dtms_arg[0] = arg0;
 +      mstate.dtms_arg[1] = arg1;
 +      mstate.dtms_arg[2] = arg2;
 +      mstate.dtms_arg[3] = arg3;
 +      mstate.dtms_arg[4] = arg4;
 +
 +      flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
 +
 +      for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
 +              dtrace_predicate_t *pred = ecb->dte_predicate;
 +              dtrace_state_t *state = ecb->dte_state;
 +              dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
 +              dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
 +              dtrace_vstate_t *vstate = &state->dts_vstate;
 +              dtrace_provider_t *prov = probe->dtpr_provider;
 +              uint64_t tracememsize = 0;
 +              int committed = 0;
 +              caddr_t tomax;
 +
 +              /*
 +               * A little subtlety with the following (seemingly innocuous)
 +               * declaration of the automatic 'val':  by looking at the
 +               * code, you might think that it could be declared in the
 +               * action processing loop, below.  (That is, it's only used in
 +               * the action processing loop.)  However, it must be declared
 +               * out of that scope because in the case of DIF expression
 +               * arguments to aggregating actions, one iteration of the
 +               * action loop will use the last iteration's value.
 +               */
 +              uint64_t val = 0;
 +
 +              mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
 +              mstate.dtms_getf = NULL;
 +
 +              *flags &= ~CPU_DTRACE_ERROR;
 +
 +              if (prov == dtrace_provider) {
 +                      /*
 +                       * If dtrace itself is the provider of this probe,
 +                       * we're only going to continue processing the ECB if
 +                       * arg0 (the dtrace_state_t) is equal to the ECB's
 +                       * creating state.  (This prevents disjoint consumers
 +                       * from seeing one another's metaprobes.)
 +                       */
 +                      if (arg0 != (uint64_t)(uintptr_t)state)
 +                              continue;
 +              }
 +
 +              if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
 +                      /*
 +                       * We're not currently active.  If our provider isn't
 +                       * the dtrace pseudo provider, we're not interested.
 +                       */
 +                      if (prov != dtrace_provider)
 +                              continue;
 +
 +                      /*
 +                       * Now we must further check if we are in the BEGIN
 +                       * probe.  If we are, we will only continue processing
 +                       * if we're still in WARMUP -- if one BEGIN enabling
 +                       * has invoked the exit() action, we don't want to
 +                       * evaluate subsequent BEGIN enablings.
 +                       */
 +                      if (probe->dtpr_id == dtrace_probeid_begin &&
 +                          state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
 +                              ASSERT(state->dts_activity ==
 +                                  DTRACE_ACTIVITY_DRAINING);
 +                              continue;
 +                      }
 +              }
 +
 +              if (ecb->dte_cond) {
 +                      /*
 +                       * If the dte_cond bits indicate that this
 +                       * consumer is only allowed to see user-mode firings
 +                       * of this probe, call the provider's dtps_usermode()
 +                       * entry point to check that the probe was fired
 +                       * while in a user context. Skip this ECB if that's
 +                       * not the case.
 +                       */
 +                      if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
 +                          prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
 +                          probe->dtpr_id, probe->dtpr_arg) == 0)
 +                              continue;
 +
 +#ifdef illumos
 +                      /*
 +                       * This is more subtle than it looks. We have to be
 +                       * absolutely certain that CRED() isn't going to
 +                       * change out from under us so it's only legit to
 +                       * examine that structure if we're in constrained
 +                       * situations. Currently, the only times we'll this
 +                       * check is if a non-super-user has enabled the
 +                       * profile or syscall providers -- providers that
 +                       * allow visibility of all processes. For the
 +                       * profile case, the check above will ensure that
 +                       * we're examining a user context.
 +                       */
 +                      if (ecb->dte_cond & DTRACE_COND_OWNER) {
 +                              cred_t *cr;
 +                              cred_t *s_cr =
 +                                  ecb->dte_state->dts_cred.dcr_cred;
 +                              proc_t *proc;
 +
 +                              ASSERT(s_cr != NULL);
 +
 +                              if ((cr = CRED()) == NULL ||
 +                                  s_cr->cr_uid != cr->cr_uid ||
 +                                  s_cr->cr_uid != cr->cr_ruid ||
 +                                  s_cr->cr_uid != cr->cr_suid ||
 +                                  s_cr->cr_gid != cr->cr_gid ||
 +                                  s_cr->cr_gid != cr->cr_rgid ||
 +                                  s_cr->cr_gid != cr->cr_sgid ||
 +                                  (proc = ttoproc(curthread)) == NULL ||
 +                                  (proc->p_flag & SNOCD))
 +                                      continue;
 +                      }
 +
 +                      if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
 +                              cred_t *cr;
 +                              cred_t *s_cr =
 +                                  ecb->dte_state->dts_cred.dcr_cred;
 +
 +                              ASSERT(s_cr != NULL);
 +
 +                              if ((cr = CRED()) == NULL ||
 +                                  s_cr->cr_zone->zone_id !=
 +                                  cr->cr_zone->zone_id)
 +                                      continue;
 +                      }
 +#endif
 +              }
 +
 +              if (now - state->dts_alive > dtrace_deadman_timeout) {
 +                      /*
 +                       * We seem to be dead.  Unless we (a) have kernel
 +                       * destructive permissions (b) have explicitly enabled
 +                       * destructive actions and (c) destructive actions have
 +                       * not been disabled, we're going to transition into
 +                       * the KILLED state, from which no further processing
 +                       * on this state will be performed.
 +                       */
 +                      if (!dtrace_priv_kernel_destructive(state) ||
 +                          !state->dts_cred.dcr_destructive ||
 +                          dtrace_destructive_disallow) {
 +                              void *activity = &state->dts_activity;
 +                              dtrace_activity_t current;
 +
 +                              do {
 +                                      current = state->dts_activity;
 +                              } while (dtrace_cas32(activity, current,
 +                                  DTRACE_ACTIVITY_KILLED) != current);
 +
 +                              continue;
 +                      }
 +              }
 +
 +              if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
 +                  ecb->dte_alignment, state, &mstate)) < 0)
 +                      continue;
 +
 +              tomax = buf->dtb_tomax;
 +              ASSERT(tomax != NULL);
 +
 +              if (ecb->dte_size != 0) {
 +                      dtrace_rechdr_t dtrh;
 +                      if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
 +                              mstate.dtms_timestamp = dtrace_gethrtime();
 +                              mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
 +                      }
 +                      ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
 +                      dtrh.dtrh_epid = ecb->dte_epid;
 +                      DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
 +                          mstate.dtms_timestamp);
 +                      *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
 +              }
 +
 +              mstate.dtms_epid = ecb->dte_epid;
 +              mstate.dtms_present |= DTRACE_MSTATE_EPID;
 +
 +              if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
 +                      mstate.dtms_access = DTRACE_ACCESS_KERNEL;
 +              else
 +                      mstate.dtms_access = 0;
 +
 +              if (pred != NULL) {
 +                      dtrace_difo_t *dp = pred->dtp_difo;
 +                      int rval;
 +
 +                      rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
 +
 +                      if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
 +                              dtrace_cacheid_t cid = probe->dtpr_predcache;
 +
 +                              if (cid != DTRACE_CACHEIDNONE && !onintr) {
 +                                      /*
 +                                       * Update the predicate cache...
 +                                       */
 +                                      ASSERT(cid == pred->dtp_cacheid);
 +                                      curthread->t_predcache = cid;
 +                              }
 +
 +                              continue;
 +                      }
 +              }
 +
 +              for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
 +                  act != NULL; act = act->dta_next) {
 +                      size_t valoffs;
 +                      dtrace_difo_t *dp;
 +                      dtrace_recdesc_t *rec = &act->dta_rec;
 +
 +                      size = rec->dtrd_size;
 +                      valoffs = offs + rec->dtrd_offset;
 +
 +                      if (DTRACEACT_ISAGG(act->dta_kind)) {
 +                              uint64_t v = 0xbad;
 +                              dtrace_aggregation_t *agg;
 +
 +                              agg = (dtrace_aggregation_t *)act;
 +
 +                              if ((dp = act->dta_difo) != NULL)
 +                                      v = dtrace_dif_emulate(dp,
 +                                          &mstate, vstate, state);
 +
 +                              if (*flags & CPU_DTRACE_ERROR)
 +                                      continue;
 +
 +                              /*
 +                               * Note that we always pass the expression
 +                               * value from the previous iteration of the
 +                               * action loop.  This value will only be used
 +                               * if there is an expression argument to the
 +                               * aggregating action, denoted by the
 +                               * dtag_hasarg field.
 +                               */
 +                              dtrace_aggregate(agg, buf,
 +                                  offs, aggbuf, v, val);
 +                              continue;
 +                      }
 +
 +                      switch (act->dta_kind) {
 +                      case DTRACEACT_STOP:
 +                              if (dtrace_priv_proc_destructive(state))
 +                                      dtrace_action_stop();
 +                              continue;
 +
 +                      case DTRACEACT_BREAKPOINT:
 +                              if (dtrace_priv_kernel_destructive(state))
 +                                      dtrace_action_breakpoint(ecb);
 +                              continue;
 +
 +                      case DTRACEACT_PANIC:
 +                              if (dtrace_priv_kernel_destructive(state))
 +                                      dtrace_action_panic(ecb);
 +                              continue;
 +
 +                      case DTRACEACT_STACK:
 +                              if (!dtrace_priv_kernel(state))
 +                                      continue;
 +
 +                              dtrace_getpcstack((pc_t *)(tomax + valoffs),
 +                                  size / sizeof (pc_t), probe->dtpr_aframes,
 +                                  DTRACE_ANCHORED(probe) ? NULL :
 +                                  (uint32_t *)arg0);
 +                              continue;
 +
 +                      case DTRACEACT_JSTACK:
 +                      case DTRACEACT_USTACK:
 +                              if (!dtrace_priv_proc(state))
 +                                      continue;
 +
 +                              /*
 +                               * See comment in DIF_VAR_PID.
 +                               */
 +                              if (DTRACE_ANCHORED(mstate.dtms_probe) &&
 +                                  CPU_ON_INTR(CPU)) {
 +                                      int depth = DTRACE_USTACK_NFRAMES(
 +                                          rec->dtrd_arg) + 1;
 +
 +                                      dtrace_bzero((void *)(tomax + valoffs),
 +                                          DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
 +                                          + depth * sizeof (uint64_t));
 +
 +                                      continue;
 +                              }
 +
 +                              if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
 +                                  curproc->p_dtrace_helpers != NULL) {
 +                                      /*
 +                                       * This is the slow path -- we have
 +                                       * allocated string space, and we're
 +                                       * getting the stack of a process that
 +                                       * has helpers.  Call into a separate
 +                                       * routine to perform this processing.
 +                                       */
 +                                      dtrace_action_ustack(&mstate, state,
 +                                          (uint64_t *)(tomax + valoffs),
 +                                          rec->dtrd_arg);
 +                                      continue;
 +                              }
 +
 +                              DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
 +                              dtrace_getupcstack((uint64_t *)
 +                                  (tomax + valoffs),
 +                                  DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
 +                              DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
 +                              continue;
 +
 +                      default:
 +                              break;
 +                      }
 +
 +                      dp = act->dta_difo;
 +                      ASSERT(dp != NULL);
 +
 +                      val = dtrace_dif_emulate(dp, &mstate, vstate, state);
 +
 +                      if (*flags & CPU_DTRACE_ERROR)
 +                              continue;
 +
 +                      switch (act->dta_kind) {
 +                      case DTRACEACT_SPECULATE: {
 +                              dtrace_rechdr_t *dtrh;
 +
 +                              ASSERT(buf == &state->dts_buffer[cpuid]);
 +                              buf = dtrace_speculation_buffer(state,
 +                                  cpuid, val);
 +
 +                              if (buf == NULL) {
 +                                      *flags |= CPU_DTRACE_DROP;
 +                                      continue;
 +                              }
 +
 +                              offs = dtrace_buffer_reserve(buf,
 +                                  ecb->dte_needed, ecb->dte_alignment,
 +                                  state, NULL);
 +
 +                              if (offs < 0) {
 +                                      *flags |= CPU_DTRACE_DROP;
 +                                      continue;
 +                              }
 +
 +                              tomax = buf->dtb_tomax;
 +                              ASSERT(tomax != NULL);
 +
 +                              if (ecb->dte_size == 0)
 +                                      continue;
 +
 +                              ASSERT3U(ecb->dte_size, >=,
 +                                  sizeof (dtrace_rechdr_t));
 +                              dtrh = ((void *)(tomax + offs));
 +                              dtrh->dtrh_epid = ecb->dte_epid;
 +                              /*
 +                               * When the speculation is committed, all of
 +                               * the records in the speculative buffer will
 +                               * have their timestamps set to the commit
 +                               * time.  Until then, it is set to a sentinel
 +                               * value, for debugability.
 +                               */
 +                              DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
 +                              continue;
 +                      }
 +
 +                      case DTRACEACT_PRINTM: {
 +                              /* The DIF returns a 'memref'. */
 +                              uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
 +
 +                              /* Get the size from the memref. */
 +                              size = memref[1];
 +
 +                              /*
 +                               * Check if the size exceeds the allocated
 +                               * buffer size.
 +                               */
 +                              if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
 +                                      /* Flag a drop! */
 +                                      *flags |= CPU_DTRACE_DROP;
 +                                      continue;
 +                              }
 +
 +                              /* Store the size in the buffer first. */
 +                              DTRACE_STORE(uintptr_t, tomax,
 +                                  valoffs, size);
 +
 +                              /*
 +                               * Offset the buffer address to the start
 +                               * of the data.
 +                               */
 +                              valoffs += sizeof(uintptr_t);
 +
 +                              /*
 +                               * Reset to the memory address rather than
 +                               * the memref array, then let the BYREF
 +                               * code below do the work to store the 
 +                               * memory data in the buffer.
 +                               */
 +                              val = memref[0];
 +                              break;
 +                      }
 +
 +                      case DTRACEACT_PRINTT: {
 +                              /* The DIF returns a 'typeref'. */
 +                              uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
 +                              char c = '\0' + 1;
 +                              size_t s;
 +
 +                              /*
 +                               * Get the type string length and round it
 +                               * up so that the data that follows is
 +                               * aligned for easy access.
 +                               */
 +                              size_t typs = strlen((char *) typeref[2]) + 1;
 +                              typs = roundup(typs,  sizeof(uintptr_t));
 +
 +                              /*
 +                               *Get the size from the typeref using the
 +                               * number of elements and the type size.
 +                               */
 +                              size = typeref[1] * typeref[3];
 +
 +                              /*
 +                               * Check if the size exceeds the allocated
 +                               * buffer size.
 +                               */
 +                              if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
 +                                      /* Flag a drop! */
 +                                      *flags |= CPU_DTRACE_DROP;
 +                              
 +                              }
 +
 +                              /* Store the size in the buffer first. */
 +                              DTRACE_STORE(uintptr_t, tomax,
 +                                  valoffs, size);
 +                              valoffs += sizeof(uintptr_t);
 +
 +                              /* Store the type size in the buffer. */
 +                              DTRACE_STORE(uintptr_t, tomax,
 +                                  valoffs, typeref[3]);
 +                              valoffs += sizeof(uintptr_t);
 +
 +                              val = typeref[2];
 +
 +                              for (s = 0; s < typs; s++) {
 +                                      if (c != '\0')
 +                                              c = dtrace_load8(val++);
 +
 +                                      DTRACE_STORE(uint8_t, tomax,
 +                                          valoffs++, c);
 +                              }
 +
 +                              /*
 +                               * Reset to the memory address rather than
 +                               * the typeref array, then let the BYREF
 +                               * code below do the work to store the 
 +                               * memory data in the buffer.
 +                               */
 +                              val = typeref[0];
 +                              break;
 +                      }
 +
 +                      case DTRACEACT_CHILL:
 +                              if (dtrace_priv_kernel_destructive(state))
 +                                      dtrace_action_chill(&mstate, val);
 +                              continue;
 +
 +                      case DTRACEACT_RAISE:
 +                              if (dtrace_priv_proc_destructive(state))
 +                                      dtrace_action_raise(val);
 +                              continue;
 +
 +                      case DTRACEACT_COMMIT:
 +                              ASSERT(!committed);
 +
 +                              /*
 +                               * We need to commit our buffer state.
 +                               */
 +                              if (ecb->dte_size)
 +                                      buf->dtb_offset = offs + ecb->dte_size;
 +                              buf = &state->dts_buffer[cpuid];
 +                              dtrace_speculation_commit(state, cpuid, val);
 +                              committed = 1;
 +                              continue;
 +
 +                      case DTRACEACT_DISCARD:
 +                              dtrace_speculation_discard(state, cpuid, val);
 +                              continue;
 +
 +                      case DTRACEACT_DIFEXPR:
 +                      case DTRACEACT_LIBACT:
 +                      case DTRACEACT_PRINTF:
 +                      case DTRACEACT_PRINTA:
 +                      case DTRACEACT_SYSTEM:
 +                      case DTRACEACT_FREOPEN:
 +                      case DTRACEACT_TRACEMEM:
 +                              break;
 +
 +                      case DTRACEACT_TRACEMEM_DYNSIZE:
 +                              tracememsize = val;
 +                              break;
 +
 +                      case DTRACEACT_SYM:
 +                      case DTRACEACT_MOD:
 +                              if (!dtrace_priv_kernel(state))
 +                                      continue;
 +                              break;
 +
 +                      case DTRACEACT_USYM:
 +                      case DTRACEACT_UMOD:
 +                      case DTRACEACT_UADDR: {
 +#ifdef illumos
 +                              struct pid *pid = curthread->t_procp->p_pidp;
 +#endif
 +
 +                              if (!dtrace_priv_proc(state))
 +                                      continue;
 +
 +                              DTRACE_STORE(uint64_t, tomax,
 +#ifdef illumos
 +                                  valoffs, (uint64_t)pid->pid_id);
 +#else
 +                                  valoffs, (uint64_t) curproc->p_pid);
 +#endif
 +                              DTRACE_STORE(uint64_t, tomax,
 +                                  valoffs + sizeof (uint64_t), val);
 +
 +                              continue;
 +                      }
 +
 +                      case DTRACEACT_EXIT: {
 +                              /*
 +                               * For the exit action, we are going to attempt
 +                               * to atomically set our activity to be
 +                               * draining.  If this fails (either because
 +                               * another CPU has beat us to the exit action,
 +                               * or because our current activity is something
 +                               * other than ACTIVE or WARMUP), we will
 +                               * continue.  This assures that the exit action
 +                               * can be successfully recorded at most once
 +                               * when we're in the ACTIVE state.  If we're
 +                               * encountering the exit() action while in
 +                               * COOLDOWN, however, we want to honor the new
 +                               * status code.  (We know that we're the only
 +                               * thread in COOLDOWN, so there is no race.)
 +                               */
 +                              void *activity = &state->dts_activity;
 +                              dtrace_activity_t current = state->dts_activity;
 +
 +                              if (current == DTRACE_ACTIVITY_COOLDOWN)
 +                                      break;
 +
 +                              if (current != DTRACE_ACTIVITY_WARMUP)
 +                                      current = DTRACE_ACTIVITY_ACTIVE;
 +
 +                              if (dtrace_cas32(activity, current,
 +                                  DTRACE_ACTIVITY_DRAINING) != current) {
 +                                      *flags |= CPU_DTRACE_DROP;
 +                                      continue;
 +                              }
 +
 +                              break;
 +                      }
 +
 +                      default:
 +                              ASSERT(0);
 +                      }
 +
 +                      if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
 +                          dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
 +                              uintptr_t end = valoffs + size;
 +
 +                              if (tracememsize != 0 &&
 +                                  valoffs + tracememsize < end) {
 +                                      end = valoffs + tracememsize;
 +                                      tracememsize = 0;
 +                              }
 +
 +                              if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
 +                                  !dtrace_vcanload((void *)(uintptr_t)val,
 +                                  &dp->dtdo_rtype, &mstate, vstate))
 +                                      continue;
 +
 +                              dtrace_store_by_ref(dp, tomax, size, &valoffs,
 +                                  &val, end, act->dta_intuple,
 +                                  dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
 +                                  DIF_TF_BYREF: DIF_TF_BYUREF);
 +                              continue;
 +                      }
 +
 +                      switch (size) {
 +                      case 0:
 +                              break;
 +
 +                      case sizeof (uint8_t):
 +                              DTRACE_STORE(uint8_t, tomax, valoffs, val);
 +                              break;
 +                      case sizeof (uint16_t):
 +                              DTRACE_STORE(uint16_t, tomax, valoffs, val);
 +                              break;
 +                      case sizeof (uint32_t):
 +                              DTRACE_STORE(uint32_t, tomax, valoffs, val);
 +                              break;
 +                      case sizeof (uint64_t):
 +                              DTRACE_STORE(uint64_t, tomax, valoffs, val);
 +                              break;
 +                      default:
 +                              /*
 +                               * Any other size should have been returned by
 +                               * reference, not by value.
 +                               */
 +                              ASSERT(0);
 +                              break;
 +                      }
 +              }
 +
 +              if (*flags & CPU_DTRACE_DROP)
 +                      continue;
 +
 +              if (*flags & CPU_DTRACE_FAULT) {
 +                      int ndx;
 +                      dtrace_action_t *err;
 +
 +                      buf->dtb_errors++;
 +
 +                      if (probe->dtpr_id == dtrace_probeid_error) {
 +                              /*
 +                               * There's nothing we can do -- we had an
 +                               * error on the error probe.  We bump an
 +                               * error counter to at least indicate that
 +                               * this condition happened.
 +                               */
 +                              dtrace_error(&state->dts_dblerrors);
 +                              continue;
 +                      }
 +
 +                      if (vtime) {
 +                              /*
 +                               * Before recursing on dtrace_probe(), we
 +                               * need to explicitly clear out our start
 +                               * time to prevent it from being accumulated
 +                               * into t_dtrace_vtime.
 +                               */
 +                              curthread->t_dtrace_start = 0;
 +                      }
 +
 +                      /*
 +                       * Iterate over the actions to figure out which action
 +                       * we were processing when we experienced the error.
 +                       * Note that act points _past_ the faulting action; if
 +                       * act is ecb->dte_action, the fault was in the
 +                       * predicate, if it's ecb->dte_action->dta_next it's
 +                       * in action #1, and so on.
 +                       */
 +                      for (err = ecb->dte_action, ndx = 0;
 +                          err != act; err = err->dta_next, ndx++)
 +                              continue;
 +
 +                      dtrace_probe_error(state, ecb->dte_epid, ndx,
 +                          (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
 +                          mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
 +                          cpu_core[cpuid].cpuc_dtrace_illval);
 +
 +                      continue;
 +              }
 +
 +              if (!committed)
 +                      buf->dtb_offset = offs + ecb->dte_size;
 +      }
 +
 +      if (vtime)
 +              curthread->t_dtrace_start = dtrace_gethrtime();
 +
 +      dtrace_interrupt_enable(cookie);
 +}
 +
 +/*
 + * DTrace Probe Hashing Functions
 + *
 + * The functions in this section (and indeed, the functions in remaining
 + * sections) are not _called_ from probe context.  (Any exceptions to this are
 + * marked with a "Note:".)  Rather, they are called from elsewhere in the
 + * DTrace framework to look-up probes in, add probes to and remove probes from
 + * the DTrace probe hashes.  (Each probe is hashed by each element of the
 + * probe tuple -- allowing for fast lookups, regardless of what was
 + * specified.)
 + */
 +static uint_t
 +dtrace_hash_str(const char *p)
 +{
 +      unsigned int g;
 +      uint_t hval = 0;
 +
 +      while (*p) {
 +              hval = (hval << 4) + *p++;
 +              if ((g = (hval & 0xf0000000)) != 0)
 +                      hval ^= g >> 24;
 +              hval &= ~g;
 +      }
 +      return (hval);
 +}
 +
 +static dtrace_hash_t *
 +dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
 +{
 +      dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
 +
 +      hash->dth_stroffs = stroffs;
 +      hash->dth_nextoffs = nextoffs;
 +      hash->dth_prevoffs = prevoffs;
 +
 +      hash->dth_size = 1;
 +      hash->dth_mask = hash->dth_size - 1;
 +
 +      hash->dth_tab = kmem_zalloc(hash->dth_size *
 +          sizeof (dtrace_hashbucket_t *), KM_SLEEP);
 +
 +      return (hash);
 +}
 +
 +static void
 +dtrace_hash_destroy(dtrace_hash_t *hash)
 +{
 +#ifdef DEBUG
 +      int i;
 +
 +      for (i = 0; i < hash->dth_size; i++)
 +              ASSERT(hash->dth_tab[i] == NULL);
 +#endif
 +
 +      kmem_free(hash->dth_tab,
 +          hash->dth_size * sizeof (dtrace_hashbucket_t *));
 +      kmem_free(hash, sizeof (dtrace_hash_t));
 +}
 +
 +static void
 +dtrace_hash_resize(dtrace_hash_t *hash)
 +{
 +      int size = hash->dth_size, i, ndx;
 +      int new_size = hash->dth_size << 1;
 +      int new_mask = new_size - 1;
 +      dtrace_hashbucket_t **new_tab, *bucket, *next;
 +
 +      ASSERT((new_size & new_mask) == 0);
 +
 +      new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
 +
 +      for (i = 0; i < size; i++) {
 +              for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
 +                      dtrace_probe_t *probe = bucket->dthb_chain;
 +
 +                      ASSERT(probe != NULL);
 +                      ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
 +
 +                      next = bucket->dthb_next;
 +                      bucket->dthb_next = new_tab[ndx];
 +                      new_tab[ndx] = bucket;
 +              }
 +      }
 +
 +      kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
 +      hash->dth_tab = new_tab;
 +      hash->dth_size = new_size;
 +      hash->dth_mask = new_mask;
 +}
 +
 +static void
 +dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
 +{
 +      int hashval = DTRACE_HASHSTR(hash, new);
 +      int ndx = hashval & hash->dth_mask;
 +      dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
 +      dtrace_probe_t **nextp, **prevp;
 +
 +      for (; bucket != NULL; bucket = bucket->dthb_next) {
 +              if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
 +                      goto add;
 +      }
 +
 +      if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
 +              dtrace_hash_resize(hash);
 +              dtrace_hash_add(hash, new);
 +              return;
 +      }
 +
 +      bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
 +      bucket->dthb_next = hash->dth_tab[ndx];
 +      hash->dth_tab[ndx] = bucket;
 +      hash->dth_nbuckets++;
 +
 +add:
 +      nextp = DTRACE_HASHNEXT(hash, new);
 +      ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
 +      *nextp = bucket->dthb_chain;
 +
 +      if (bucket->dthb_chain != NULL) {
 +              prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
 +              ASSERT(*prevp == NULL);
 +              *prevp = new;
 +      }
 +
 +      bucket->dthb_chain = new;
 +      bucket->dthb_len++;
 +}
 +
 +static dtrace_probe_t *
 +dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
 +{
 +      int hashval = DTRACE_HASHSTR(hash, template);
 +      int ndx = hashval & hash->dth_mask;
 +      dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
 +
 +      for (; bucket != NULL; bucket = bucket->dthb_next) {
 +              if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
 +                      return (bucket->dthb_chain);
 +      }
 +
 +      return (NULL);
 +}
 +
 +static int
 +dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
 +{
 +      int hashval = DTRACE_HASHSTR(hash, template);
 +      int ndx = hashval & hash->dth_mask;
 +      dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
 +
 +      for (; bucket != NULL; bucket = bucket->dthb_next) {
 +              if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
 +                      return (bucket->dthb_len);
 +      }
 +
 +      return (0);
 +}
 +
 +static void
 +dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
 +{
 +      int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
 +      dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
 +
 +      dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
 +      dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
 +
 +      /*
 +       * Find the bucket that we're removing this probe from.
 +       */
 +      for (; bucket != NULL; bucket = bucket->dthb_next) {
 +              if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
 +                      break;
 +      }
 +
 +      ASSERT(bucket != NULL);
 +
 +      if (*prevp == NULL) {
 +              if (*nextp == NULL) {
 +                      /*
 +                       * The removed probe was the only probe on this
 +                       * bucket; we need to remove the bucket.
 +                       */
 +                      dtrace_hashbucket_t *b = hash->dth_tab[ndx];
 +
 +                      ASSERT(bucket->dthb_chain == probe);
 +                      ASSERT(b != NULL);
 +
 +                      if (b == bucket) {
 +                              hash->dth_tab[ndx] = bucket->dthb_next;
 +                      } else {
 +                              while (b->dthb_next != bucket)
 +                                      b = b->dthb_next;
 +                              b->dthb_next = bucket->dthb_next;
 +                      }
 +
 +                      ASSERT(hash->dth_nbuckets > 0);
 +                      hash->dth_nbuckets--;
 +                      kmem_free(bucket, sizeof (dtrace_hashbucket_t));
 +                      return;
 +              }
 +
 +              bucket->dthb_chain = *nextp;
 +      } else {
 +              *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
 +      }
 +
 +      if (*nextp != NULL)
 +              *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
 +}
 +
 +/*
 + * DTrace Utility Functions
 + *
 + * These are random utility functions that are _not_ called from probe context.
 + */
 +static int
 +dtrace_badattr(const dtrace_attribute_t *a)
 +{
 +      return (a->dtat_name > DTRACE_STABILITY_MAX ||
 +          a->dtat_data > DTRACE_STABILITY_MAX ||
 +          a->dtat_class > DTRACE_CLASS_MAX);
 +}
 +
 +/*
 + * Return a duplicate copy of a string.  If the specified string is NULL,
 + * this function returns a zero-length string.
 + */
 +static char *
 +dtrace_strdup(const char *str)
 +{
 +      char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
 +
 +      if (str != NULL)
 +              (void) strcpy(new, str);
 +
 +      return (new);
 +}
 +
 +#define       DTRACE_ISALPHA(c)       \
 +      (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
 +
 +static int
 +dtrace_badname(const char *s)
 +{
 +      char c;
 +
 +      if (s == NULL || (c = *s++) == '\0')
 +              return (0);
 +
 +      if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
 +              return (1);
 +
 +      while ((c = *s++) != '\0') {
 +              if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
 +                  c != '-' && c != '_' && c != '.' && c != '`')
 +                      return (1);
 +      }
 +
 +      return (0);
 +}
 +
 +static void
 +dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
 +{
 +      uint32_t priv;
 +
 +#ifdef illumos
 +      if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
 +              /*
 +               * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
 +               */
 +              priv = DTRACE_PRIV_ALL;
 +      } else {
 +              *uidp = crgetuid(cr);
 +              *zoneidp = crgetzoneid(cr);
 +
 +              priv = 0;
 +              if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
 +                      priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
 +              else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
 +                      priv |= DTRACE_PRIV_USER;
 +              if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
 +                      priv |= DTRACE_PRIV_PROC;
 +              if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
 +                      priv |= DTRACE_PRIV_OWNER;
 +              if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
 +                      priv |= DTRACE_PRIV_ZONEOWNER;
 +      }
 +#else
 +      priv = DTRACE_PRIV_ALL;
 +#endif
 +
 +      *privp = priv;
 +}
 +
 +#ifdef DTRACE_ERRDEBUG
 +static void
 +dtrace_errdebug(const char *str)
 +{
 +      int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
 +      int occupied = 0;
 +
 +      mutex_enter(&dtrace_errlock);
 +      dtrace_errlast = str;
 +      dtrace_errthread = curthread;
 +
 +      while (occupied++ < DTRACE_ERRHASHSZ) {
 +              if (dtrace_errhash[hval].dter_msg == str) {
 +                      dtrace_errhash[hval].dter_count++;
 +                      goto out;
 +              }
 +
 +              if (dtrace_errhash[hval].dter_msg != NULL) {
 +                      hval = (hval + 1) % DTRACE_ERRHASHSZ;
 +                      continue;
 +              }
 +
 +              dtrace_errhash[hval].dter_msg = str;
 +              dtrace_errhash[hval].dter_count = 1;
 +              goto out;
 +      }
 +
 +      panic("dtrace: undersized error hash");
 +out:
 +      mutex_exit(&dtrace_errlock);
 +}
 +#endif
 +
 +/*
 + * DTrace Matching Functions
 + *
 + * These functions are used to match groups of probes, given some elements of
 + * a probe tuple, or some globbed expressions for elements of a probe tuple.
 + */
 +static int
 +dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
 +    zoneid_t zoneid)
 +{
 +      if (priv != DTRACE_PRIV_ALL) {
 +              uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
 +              uint32_t match = priv & ppriv;
 +
 +              /*
 +               * No PRIV_DTRACE_* privileges...
 +               */
 +              if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
 +                  DTRACE_PRIV_KERNEL)) == 0)
 +                      return (0);
 +
 +              /*
 +               * No matching bits, but there were bits to match...
 +               */
 +              if (match == 0 && ppriv != 0)
 +                      return (0);
 +
 +              /*
 +               * Need to have permissions to the process, but don't...
 +               */
 +              if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
 +                  uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
 +                      return (0);
 +              }
 +
 +              /*
 +               * Need to be in the same zone unless we possess the
 +               * privilege to examine all zones.
 +               */
 +              if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
 +                  zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
 +                      return (0);
 +              }
 +      }
 +
 +      return (1);
 +}
 +
 +/*
 + * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
 + * consists of input pattern strings and an ops-vector to evaluate them.
 + * This function returns >0 for match, 0 for no match, and <0 for error.
 + */
 +static int
 +dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
 +    uint32_t priv, uid_t uid, zoneid_t zoneid)
 +{
 +      dtrace_provider_t *pvp = prp->dtpr_provider;
 +      int rv;
 +
 +      if (pvp->dtpv_defunct)
 +              return (0);
 +
 +      if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
 +              return (rv);
 +
 +      if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
 +              return (rv);
 +
 +      if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
 +              return (rv);
 +
 +      if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
 +              return (rv);
 +
 +      if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
 +              return (0);
 +
 +      return (rv);
 +}
 +
 +/*
 + * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
 + * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
 + * libc's version, the kernel version only applies to 8-bit ASCII strings.
 + * In addition, all of the recursion cases except for '*' matching have been
 + * unwound.  For '*', we still implement recursive evaluation, but a depth
 + * counter is maintained and matching is aborted if we recurse too deep.
 + * The function returns 0 if no match, >0 if match, and <0 if recursion error.
 + */
 +static int
 +dtrace_match_glob(const char *s, const char *p, int depth)
 +{
 +      const char *olds;
 +      char s1, c;
 +      int gs;
 +
 +      if (depth > DTRACE_PROBEKEY_MAXDEPTH)
 +              return (-1);
 +
 +      if (s == NULL)
 +              s = ""; /* treat NULL as empty string */
 +
 +top:
 +      olds = s;
 +      s1 = *s++;
 +
 +      if (p == NULL)
 +              return (0);
 +
 +      if ((c = *p++) == '\0')
 +              return (s1 == '\0');
 +
 +      switch (c) {
 +      case '[': {
 +              int ok = 0, notflag = 0;
 +              char lc = '\0';
 +
 +              if (s1 == '\0')
 +                      return (0);
 +
 +              if (*p == '!') {
 +                      notflag = 1;
 +                      p++;
 +              }
 +
 +              if ((c = *p++) == '\0')
 +                      return (0);
 +
 +              do {
 +                      if (c == '-' && lc != '\0' && *p != ']') {
 +                              if ((c = *p++) == '\0')
 +                                      return (0);
 +                              if (c == '\\' && (c = *p++) == '\0')
 +                                      return (0);
 +
 +                              if (notflag) {
 +                                      if (s1 < lc || s1 > c)
 +                                              ok++;
 +                                      else
 +                                              return (0);
 +                              } else if (lc <= s1 && s1 <= c)
 +                                      ok++;
 +
 +                      } else if (c == '\\' && (c = *p++) == '\0')
 +                              return (0);
 +
 +                      lc = c; /* save left-hand 'c' for next iteration */
 +
 +                      if (notflag) {
 +                              if (s1 != c)
 +                                      ok++;
 +                              else
 +                                      return (0);
 +                      } else if (s1 == c)
 +                              ok++;
 +
 +                      if ((c = *p++) == '\0')
 +                              return (0);
 +
 +              } while (c != ']');
 +
 +              if (ok)
 +                      goto top;
 +
 +              return (0);
 +      }
 +
 +      case '\\':
 +              if ((c = *p++) == '\0')
 +                      return (0);
 +              /*FALLTHRU*/
 +
 +      default:
 +              if (c != s1)
 +                      return (0);
 +              /*FALLTHRU*/
 +
 +      case '?':
 +              if (s1 != '\0')
 +                      goto top;
 +              return (0);
 +
 +      case '*':
 +              while (*p == '*')
 +                      p++; /* consecutive *'s are identical to a single one */
 +
 +              if (*p == '\0')
 +                      return (1);
 +
 +              for (s = olds; *s != '\0'; s++) {
 +                      if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
 +                              return (gs);
 +              }
 +
 +              return (0);
 +      }
 +}
 +
 +/*ARGSUSED*/
 +static int
 +dtrace_match_string(const char *s, const char *p, int depth)
 +{
 +      return (s != NULL && strcmp(s, p) == 0);
 +}
 +
 +/*ARGSUSED*/
 +static int
 +dtrace_match_nul(const char *s, const char *p, int depth)
 +{
 +      return (1); /* always match the empty pattern */
 +}
 +
 +/*ARGSUSED*/
 +static int
 +dtrace_match_nonzero(const char *s, const char *p, int depth)
 +{
 +      return (s != NULL && s[0] != '\0');
 +}
 +
 +static int
 +dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
 +    zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
 +{
 +      dtrace_probe_t template, *probe;
 +      dtrace_hash_t *hash = NULL;
 +      int len, best = INT_MAX, nmatched = 0;
 +      dtrace_id_t i;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      /*
 +       * If the probe ID is specified in the key, just lookup by ID and
 +       * invoke the match callback once if a matching probe is found.
 +       */
 +      if (pkp->dtpk_id != DTRACE_IDNONE) {
 +              if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
 +                  dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
 +                      (void) (*matched)(probe, arg);
 +                      nmatched++;
 +              }
 +              return (nmatched);
 +      }
 +
 +      template.dtpr_mod = (char *)pkp->dtpk_mod;
 +      template.dtpr_func = (char *)pkp->dtpk_func;
 +      template.dtpr_name = (char *)pkp->dtpk_name;
 +
 +      /*
 +       * We want to find the most distinct of the module name, function
 +       * name, and name.  So for each one that is not a glob pattern or
 +       * empty string, we perform a lookup in the corresponding hash and
 +       * use the hash table with the fewest collisions to do our search.
 +       */
 +      if (pkp->dtpk_mmatch == &dtrace_match_string &&
 +          (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
 +              best = len;
 +              hash = dtrace_bymod;
 +      }
 +
 +      if (pkp->dtpk_fmatch == &dtrace_match_string &&
 +          (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
 +              best = len;
 +              hash = dtrace_byfunc;
 +      }
 +
 +      if (pkp->dtpk_nmatch == &dtrace_match_string &&
 +          (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
 +              best = len;
 +              hash = dtrace_byname;
 +      }
 +
 +      /*
 +       * If we did not select a hash table, iterate over every probe and
 +       * invoke our callback for each one that matches our input probe key.
 +       */
 +      if (hash == NULL) {
 +              for (i = 0; i < dtrace_nprobes; i++) {
 +                      if ((probe = dtrace_probes[i]) == NULL ||
 +                          dtrace_match_probe(probe, pkp, priv, uid,
 +                          zoneid) <= 0)
 +                              continue;
 +
 +                      nmatched++;
 +
 +                      if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
 +                              break;
 +              }
 +
 +              return (nmatched);
 +      }
 +
 +      /*
 +       * If we selected a hash table, iterate over each probe of the same key
 +       * name and invoke the callback for every probe that matches the other
 +       * attributes of our input probe key.
 +       */
 +      for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
 +          probe = *(DTRACE_HASHNEXT(hash, probe))) {
 +
 +              if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
 +                      continue;
 +
 +              nmatched++;
 +
 +              if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
 +                      break;
 +      }
 +
 +      return (nmatched);
 +}
 +
 +/*
 + * Return the function pointer dtrace_probecmp() should use to compare the
 + * specified pattern with a string.  For NULL or empty patterns, we select
 + * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
 + * For non-empty non-glob strings, we use dtrace_match_string().
 + */
 +static dtrace_probekey_f *
 +dtrace_probekey_func(const char *p)
 +{
 +      char c;
 +
 +      if (p == NULL || *p == '\0')
 +              return (&dtrace_match_nul);
 +
 +      while ((c = *p++) != '\0') {
 +              if (c == '[' || c == '?' || c == '*' || c == '\\')
 +                      return (&dtrace_match_glob);
 +      }
 +
 +      return (&dtrace_match_string);
 +}
 +
 +/*
 + * Build a probe comparison key for use with dtrace_match_probe() from the
 + * given probe description.  By convention, a null key only matches anchored
 + * probes: if each field is the empty string, reset dtpk_fmatch to
 + * dtrace_match_nonzero().
 + */
 +static void
 +dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
 +{
 +      pkp->dtpk_prov = pdp->dtpd_provider;
 +      pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
 +
 +      pkp->dtpk_mod = pdp->dtpd_mod;
 +      pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
 +
 +      pkp->dtpk_func = pdp->dtpd_func;
 +      pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
 +
 +      pkp->dtpk_name = pdp->dtpd_name;
 +      pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
 +
 +      pkp->dtpk_id = pdp->dtpd_id;
 +
 +      if (pkp->dtpk_id == DTRACE_IDNONE &&
 +          pkp->dtpk_pmatch == &dtrace_match_nul &&
 +          pkp->dtpk_mmatch == &dtrace_match_nul &&
 +          pkp->dtpk_fmatch == &dtrace_match_nul &&
 +          pkp->dtpk_nmatch == &dtrace_match_nul)
 +              pkp->dtpk_fmatch = &dtrace_match_nonzero;
 +}
 +
 +/*
 + * DTrace Provider-to-Framework API Functions
 + *
 + * These functions implement much of the Provider-to-Framework API, as
 + * described in <sys/dtrace.h>.  The parts of the API not in this section are
 + * the functions in the API for probe management (found below), and
 + * dtrace_probe() itself (found above).
 + */
 +
 +/*
 + * Register the calling provider with the DTrace framework.  This should
 + * generally be called by DTrace providers in their attach(9E) entry point.
 + */
 +int
 +dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
 +    cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
 +{
 +      dtrace_provider_t *provider;
 +
 +      if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
 +              cmn_err(CE_WARN, "failed to register provider '%s': invalid "
 +                  "arguments", name ? name : "<NULL>");
 +              return (EINVAL);
 +      }
 +
 +      if (name[0] == '\0' || dtrace_badname(name)) {
 +              cmn_err(CE_WARN, "failed to register provider '%s': invalid "
 +                  "provider name", name);
 +              return (EINVAL);
 +      }
 +
 +      if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
 +          pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
 +          pops->dtps_destroy == NULL ||
 +          ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
 +              cmn_err(CE_WARN, "failed to register provider '%s': invalid "
 +                  "provider ops", name);
 +              return (EINVAL);
 +      }
 +
 +      if (dtrace_badattr(&pap->dtpa_provider) ||
 +          dtrace_badattr(&pap->dtpa_mod) ||
 +          dtrace_badattr(&pap->dtpa_func) ||
 +          dtrace_badattr(&pap->dtpa_name) ||
 +          dtrace_badattr(&pap->dtpa_args)) {
 +              cmn_err(CE_WARN, "failed to register provider '%s': invalid "
 +                  "provider attributes", name);
 +              return (EINVAL);
 +      }
 +
 +      if (priv & ~DTRACE_PRIV_ALL) {
 +              cmn_err(CE_WARN, "failed to register provider '%s': invalid "
 +                  "privilege attributes", name);
 +              return (EINVAL);
 +      }
 +
 +      if ((priv & DTRACE_PRIV_KERNEL) &&
 +          (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
 +          pops->dtps_usermode == NULL) {
 +              cmn_err(CE_WARN, "failed to register provider '%s': need "
 +                  "dtps_usermode() op for given privilege attributes", name);
 +              return (EINVAL);
 +      }
 +
 +      provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
 +      provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
 +      (void) strcpy(provider->dtpv_name, name);
 +
 +      provider->dtpv_attr = *pap;
 +      provider->dtpv_priv.dtpp_flags = priv;
 +      if (cr != NULL) {
 +              provider->dtpv_priv.dtpp_uid = crgetuid(cr);
 +              provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
 +      }
 +      provider->dtpv_pops = *pops;
 +
 +      if (pops->dtps_provide == NULL) {
 +              ASSERT(pops->dtps_provide_module != NULL);
 +              provider->dtpv_pops.dtps_provide =
 +                  (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
 +      }
 +
 +      if (pops->dtps_provide_module == NULL) {
 +              ASSERT(pops->dtps_provide != NULL);
 +              provider->dtpv_pops.dtps_provide_module =
 +                  (void (*)(void *, modctl_t *))dtrace_nullop;
 +      }
 +
 +      if (pops->dtps_suspend == NULL) {
 +              ASSERT(pops->dtps_resume == NULL);
 +              provider->dtpv_pops.dtps_suspend =
 +                  (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
 +              provider->dtpv_pops.dtps_resume =
 +                  (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
 +      }
 +
 +      provider->dtpv_arg = arg;
 +      *idp = (dtrace_provider_id_t)provider;
 +
 +      if (pops == &dtrace_provider_ops) {
 +              ASSERT(MUTEX_HELD(&dtrace_provider_lock));
 +              ASSERT(MUTEX_HELD(&dtrace_lock));
 +              ASSERT(dtrace_anon.dta_enabling == NULL);
 +
 +              /*
 +               * We make sure that the DTrace provider is at the head of
 +               * the provider chain.
 +               */
 +              provider->dtpv_next = dtrace_provider;
 +              dtrace_provider = provider;
 +              return (0);
 +      }
 +
 +      mutex_enter(&dtrace_provider_lock);
 +      mutex_enter(&dtrace_lock);
 +
 +      /*
 +       * If there is at least one provider registered, we'll add this
 +       * provider after the first provider.
 +       */
 +      if (dtrace_provider != NULL) {
 +              provider->dtpv_next = dtrace_provider->dtpv_next;
 +              dtrace_provider->dtpv_next = provider;
 +      } else {
 +              dtrace_provider = provider;
 +      }
 +
 +      if (dtrace_retained != NULL) {
 +              dtrace_enabling_provide(provider);
 +
 +              /*
 +               * Now we need to call dtrace_enabling_matchall() -- which
 +               * will acquire cpu_lock and dtrace_lock.  We therefore need
 +               * to drop all of our locks before calling into it...
 +               */
 +              mutex_exit(&dtrace_lock);
 +              mutex_exit(&dtrace_provider_lock);
 +              dtrace_enabling_matchall();
 +
 +              return (0);
 +      }
 +
 +      mutex_exit(&dtrace_lock);
 +      mutex_exit(&dtrace_provider_lock);
 +
 +      return (0);
 +}
 +
 +/*
 + * Unregister the specified provider from the DTrace framework.  This should
 + * generally be called by DTrace providers in their detach(9E) entry point.
 + */
 +int
 +dtrace_unregister(dtrace_provider_id_t id)
 +{
 +      dtrace_provider_t *old = (dtrace_provider_t *)id;
 +      dtrace_provider_t *prev = NULL;
 +      int i, self = 0, noreap = 0;
 +      dtrace_probe_t *probe, *first = NULL;
 +
 +      if (old->dtpv_pops.dtps_enable ==
 +          (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
 +              /*
 +               * If DTrace itself is the provider, we're called with locks
 +               * already held.
 +               */
 +              ASSERT(old == dtrace_provider);
 +#ifdef illumos
 +              ASSERT(dtrace_devi != NULL);
 +#endif
 +              ASSERT(MUTEX_HELD(&dtrace_provider_lock));
 +              ASSERT(MUTEX_HELD(&dtrace_lock));
 +              self = 1;
 +
 +              if (dtrace_provider->dtpv_next != NULL) {
 +                      /*
 +                       * There's another provider here; return failure.
 +                       */
 +                      return (EBUSY);
 +              }
 +      } else {
 +              mutex_enter(&dtrace_provider_lock);
 +#ifdef illumos
 +              mutex_enter(&mod_lock);
 +#endif
 +              mutex_enter(&dtrace_lock);
 +      }
 +
 +      /*
 +       * If anyone has /dev/dtrace open, or if there are anonymous enabled
 +       * probes, we refuse to let providers slither away, unless this
 +       * provider has already been explicitly invalidated.
 +       */
 +      if (!old->dtpv_defunct &&
 +          (dtrace_opens || (dtrace_anon.dta_state != NULL &&
 +          dtrace_anon.dta_state->dts_necbs > 0))) {
 +              if (!self) {
 +                      mutex_exit(&dtrace_lock);
 +#ifdef illumos
 +                      mutex_exit(&mod_lock);
 +#endif
 +                      mutex_exit(&dtrace_provider_lock);
 +              }
 +              return (EBUSY);
 +      }
 +
 +      /*
 +       * Attempt to destroy the probes associated with this provider.
 +       */
 +      for (i = 0; i < dtrace_nprobes; i++) {
 +              if ((probe = dtrace_probes[i]) == NULL)
 +                      continue;
 +
 +              if (probe->dtpr_provider != old)
 +                      continue;
 +
 +              if (probe->dtpr_ecb == NULL)
 +                      continue;
 +
 +              /*
 +               * If we are trying to unregister a defunct provider, and the
 +               * provider was made defunct within the interval dictated by
 +               * dtrace_unregister_defunct_reap, we'll (asynchronously)
 +               * attempt to reap our enablings.  To denote that the provider
 +               * should reattempt to unregister itself at some point in the
 +               * future, we will return a differentiable error code (EAGAIN
 +               * instead of EBUSY) in this case.
 +               */
 +              if (dtrace_gethrtime() - old->dtpv_defunct >
 +                  dtrace_unregister_defunct_reap)
 +                      noreap = 1;
 +
 +              if (!self) {
 +                      mutex_exit(&dtrace_lock);
 +#ifdef illumos
 +                      mutex_exit(&mod_lock);
 +#endif
 +                      mutex_exit(&dtrace_provider_lock);
 +              }
 +
 +              if (noreap)
 +                      return (EBUSY);
 +
 +              (void) taskq_dispatch(dtrace_taskq,
 +                  (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
 +
 +              return (EAGAIN);
 +      }
 +
 +      /*
 +       * All of the probes for this provider are disabled; we can safely
 +       * remove all of them from their hash chains and from the probe array.
 +       */
 +      for (i = 0; i < dtrace_nprobes; i++) {
 +              if ((probe = dtrace_probes[i]) == NULL)
 +                      continue;
 +
 +              if (probe->dtpr_provider != old)
 +                      continue;
 +
 +              dtrace_probes[i] = NULL;
 +
 +              dtrace_hash_remove(dtrace_bymod, probe);
 +              dtrace_hash_remove(dtrace_byfunc, probe);
 +              dtrace_hash_remove(dtrace_byname, probe);
 +
 +              if (first == NULL) {
 +                      first = probe;
 +                      probe->dtpr_nextmod = NULL;
 +              } else {
 +                      probe->dtpr_nextmod = first;
 +                      first = probe;
 +              }
 +      }
 +
 +      /*
 +       * The provider's probes have been removed from the hash chains and
 +       * from the probe array.  Now issue a dtrace_sync() to be sure that
 +       * everyone has cleared out from any probe array processing.
 +       */
 +      dtrace_sync();
 +
 +      for (probe = first; probe != NULL; probe = first) {
 +              first = probe->dtpr_nextmod;
 +
 +              old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
 +                  probe->dtpr_arg);
 +              kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
 +              kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
 +              kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
 +#ifdef illumos
 +              vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
 +#else
 +              free_unr(dtrace_arena, probe->dtpr_id);
 +#endif
 +              kmem_free(probe, sizeof (dtrace_probe_t));
 +      }
 +
 +      if ((prev = dtrace_provider) == old) {
 +#ifdef illumos
 +              ASSERT(self || dtrace_devi == NULL);
 +              ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
 +#endif
 +              dtrace_provider = old->dtpv_next;
 +      } else {
 +              while (prev != NULL && prev->dtpv_next != old)
 +                      prev = prev->dtpv_next;
 +
 +              if (prev == NULL) {
 +                      panic("attempt to unregister non-existent "
 +                          "dtrace provider %p\n", (void *)id);
 +              }
 +
 +              prev->dtpv_next = old->dtpv_next;
 +      }
 +
 +      if (!self) {
 +              mutex_exit(&dtrace_lock);
 +#ifdef illumos
 +              mutex_exit(&mod_lock);
 +#endif
 +              mutex_exit(&dtrace_provider_lock);
 +      }
 +
 +      kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
 +      kmem_free(old, sizeof (dtrace_provider_t));
 +
 +      return (0);
 +}
 +
 +/*
 + * Invalidate the specified provider.  All subsequent probe lookups for the
 + * specified provider will fail, but its probes will not be removed.
 + */
 +void
 +dtrace_invalidate(dtrace_provider_id_t id)
 +{
 +      dtrace_provider_t *pvp = (dtrace_provider_t *)id;
 +
 +      ASSERT(pvp->dtpv_pops.dtps_enable !=
 +          (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
 +
 +      mutex_enter(&dtrace_provider_lock);
 +      mutex_enter(&dtrace_lock);
 +
 +      pvp->dtpv_defunct = dtrace_gethrtime();
 +
 +      mutex_exit(&dtrace_lock);
 +      mutex_exit(&dtrace_provider_lock);
 +}
 +
 +/*
 + * Indicate whether or not DTrace has attached.
 + */
 +int
 +dtrace_attached(void)
 +{
 +      /*
 +       * dtrace_provider will be non-NULL iff the DTrace driver has
 +       * attached.  (It's non-NULL because DTrace is always itself a
 +       * provider.)
 +       */
 +      return (dtrace_provider != NULL);
 +}
 +
 +/*
 + * Remove all the unenabled probes for the given provider.  This function is
 + * not unlike dtrace_unregister(), except that it doesn't remove the provider
 + * -- just as many of its associated probes as it can.
 + */
 +int
 +dtrace_condense(dtrace_provider_id_t id)
 +{
 +      dtrace_provider_t *prov = (dtrace_provider_t *)id;
 +      int i;
 +      dtrace_probe_t *probe;
 +
 +      /*
 +       * Make sure this isn't the dtrace provider itself.
 +       */
 +      ASSERT(prov->dtpv_pops.dtps_enable !=
 +          (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
 +
 +      mutex_enter(&dtrace_provider_lock);
 +      mutex_enter(&dtrace_lock);
 +
 +      /*
 +       * Attempt to destroy the probes associated with this provider.
 +       */
 +      for (i = 0; i < dtrace_nprobes; i++) {
 +              if ((probe = dtrace_probes[i]) == NULL)
 +                      continue;
 +
 +              if (probe->dtpr_provider != prov)
 +                      continue;
 +
 +              if (probe->dtpr_ecb != NULL)
 +                      continue;
 +
 +              dtrace_probes[i] = NULL;
 +
 +              dtrace_hash_remove(dtrace_bymod, probe);
 +              dtrace_hash_remove(dtrace_byfunc, probe);
 +              dtrace_hash_remove(dtrace_byname, probe);
 +
 +              prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
 +                  probe->dtpr_arg);
 +              kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
 +              kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
 +              kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
 +              kmem_free(probe, sizeof (dtrace_probe_t));
 +#ifdef illumos
 +              vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
 +#else
 +              free_unr(dtrace_arena, i + 1);
 +#endif
 +      }
 +
 +      mutex_exit(&dtrace_lock);
 +      mutex_exit(&dtrace_provider_lock);
 +
 +      return (0);
 +}
 +
 +/*
 + * DTrace Probe Management Functions
 + *
 + * The functions in this section perform the DTrace probe management,
 + * including functions to create probes, look-up probes, and call into the
 + * providers to request that probes be provided.  Some of these functions are
 + * in the Provider-to-Framework API; these functions can be identified by the
 + * fact that they are not declared "static".
 + */
 +
 +/*
 + * Create a probe with the specified module name, function name, and name.
 + */
 +dtrace_id_t
 +dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
 +    const char *func, const char *name, int aframes, void *arg)
 +{
 +      dtrace_probe_t *probe, **probes;
 +      dtrace_provider_t *provider = (dtrace_provider_t *)prov;
 +      dtrace_id_t id;
 +
 +      if (provider == dtrace_provider) {
 +              ASSERT(MUTEX_HELD(&dtrace_lock));
 +      } else {
 +              mutex_enter(&dtrace_lock);
 +      }
 +
 +#ifdef illumos
 +      id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
 +          VM_BESTFIT | VM_SLEEP);
 +#else
 +      id = alloc_unr(dtrace_arena);
 +#endif
 +      probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
 +
 +      probe->dtpr_id = id;
 +      probe->dtpr_gen = dtrace_probegen++;
 +      probe->dtpr_mod = dtrace_strdup(mod);
 +      probe->dtpr_func = dtrace_strdup(func);
 +      probe->dtpr_name = dtrace_strdup(name);
 +      probe->dtpr_arg = arg;
 +      probe->dtpr_aframes = aframes;
 +      probe->dtpr_provider = provider;
 +
 +      dtrace_hash_add(dtrace_bymod, probe);
 +      dtrace_hash_add(dtrace_byfunc, probe);
 +      dtrace_hash_add(dtrace_byname, probe);
 +
 +      if (id - 1 >= dtrace_nprobes) {
 +              size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
 +              size_t nsize = osize << 1;
 +
 +              if (nsize == 0) {
 +                      ASSERT(osize == 0);
 +                      ASSERT(dtrace_probes == NULL);
 +                      nsize = sizeof (dtrace_probe_t *);
 +              }
 +
 +              probes = kmem_zalloc(nsize, KM_SLEEP);
 +
 +              if (dtrace_probes == NULL) {
 +                      ASSERT(osize == 0);
 +                      dtrace_probes = probes;
 +                      dtrace_nprobes = 1;
 +              } else {
 +                      dtrace_probe_t **oprobes = dtrace_probes;
 +
 +                      bcopy(oprobes, probes, osize);
 +                      dtrace_membar_producer();
 +                      dtrace_probes = probes;
 +
 +                      dtrace_sync();
 +
 +                      /*
 +                       * All CPUs are now seeing the new probes array; we can
 +                       * safely free the old array.
 +                       */
 +                      kmem_free(oprobes, osize);
 +                      dtrace_nprobes <<= 1;
 +              }
 +
 +              ASSERT(id - 1 < dtrace_nprobes);
 +      }
 +
 +      ASSERT(dtrace_probes[id - 1] == NULL);
 +      dtrace_probes[id - 1] = probe;
 +
 +      if (provider != dtrace_provider)
 +              mutex_exit(&dtrace_lock);
 +
 +      return (id);
 +}
 +
 +static dtrace_probe_t *
 +dtrace_probe_lookup_id(dtrace_id_t id)
 +{
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      if (id == 0 || id > dtrace_nprobes)
 +              return (NULL);
 +
 +      return (dtrace_probes[id - 1]);
 +}
 +
 +static int
 +dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
 +{
 +      *((dtrace_id_t *)arg) = probe->dtpr_id;
 +
 +      return (DTRACE_MATCH_DONE);
 +}
 +
 +/*
 + * Look up a probe based on provider and one or more of module name, function
 + * name and probe name.
 + */
 +dtrace_id_t
 +dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
 +    char *func, char *name)
 +{
 +      dtrace_probekey_t pkey;
 +      dtrace_id_t id;
 +      int match;
 +
 +      pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
 +      pkey.dtpk_pmatch = &dtrace_match_string;
 +      pkey.dtpk_mod = mod;
 +      pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
 +      pkey.dtpk_func = func;
 +      pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
 +      pkey.dtpk_name = name;
 +      pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
 +      pkey.dtpk_id = DTRACE_IDNONE;
 +
 +      mutex_enter(&dtrace_lock);
 +      match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
 +          dtrace_probe_lookup_match, &id);
 +      mutex_exit(&dtrace_lock);
 +
 +      ASSERT(match == 1 || match == 0);
 +      return (match ? id : 0);
 +}
 +
 +/*
 + * Returns the probe argument associated with the specified probe.
 + */
 +void *
 +dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
 +{
 +      dtrace_probe_t *probe;
 +      void *rval = NULL;
 +
 +      mutex_enter(&dtrace_lock);
 +
 +      if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
 +          probe->dtpr_provider == (dtrace_provider_t *)id)
 +              rval = probe->dtpr_arg;
 +
 +      mutex_exit(&dtrace_lock);
 +
 +      return (rval);
 +}
 +
 +/*
 + * Copy a probe into a probe description.
 + */
 +static void
 +dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
 +{
 +      bzero(pdp, sizeof (dtrace_probedesc_t));
 +      pdp->dtpd_id = prp->dtpr_id;
 +
 +      (void) strncpy(pdp->dtpd_provider,
 +          prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
 +
 +      (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
 +      (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
 +      (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
 +}
 +
 +/*
 + * Called to indicate that a probe -- or probes -- should be provided by a
 + * specfied provider.  If the specified description is NULL, the provider will
 + * be told to provide all of its probes.  (This is done whenever a new
 + * consumer comes along, or whenever a retained enabling is to be matched.) If
 + * the specified description is non-NULL, the provider is given the
 + * opportunity to dynamically provide the specified probe, allowing providers
 + * to support the creation of probes on-the-fly.  (So-called _autocreated_
 + * probes.)  If the provider is NULL, the operations will be applied to all
 + * providers; if the provider is non-NULL the operations will only be applied
 + * to the specified provider.  The dtrace_provider_lock must be held, and the
 + * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
 + * will need to grab the dtrace_lock when it reenters the framework through
 + * dtrace_probe_lookup(), dtrace_probe_create(), etc.
 + */
 +static void
 +dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
 +{
 +#ifdef illumos
 +      modctl_t *ctl;
 +#endif
 +      int all = 0;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_provider_lock));
 +
 +      if (prv == NULL) {
 +              all = 1;
 +              prv = dtrace_provider;
 +      }
 +
 +      do {
 +              /*
 +               * First, call the blanket provide operation.
 +               */
 +              prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
 +
 +#ifdef illumos
 +              /*
 +               * Now call the per-module provide operation.  We will grab
 +               * mod_lock to prevent the list from being modified.  Note
 +               * that this also prevents the mod_busy bits from changing.
 +               * (mod_busy can only be changed with mod_lock held.)
 +               */
 +              mutex_enter(&mod_lock);
 +
 +              ctl = &modules;
 +              do {
 +                      if (ctl->mod_busy || ctl->mod_mp == NULL)
 +                              continue;
 +
 +                      prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
 +
 +              } while ((ctl = ctl->mod_next) != &modules);
 +
 +              mutex_exit(&mod_lock);
 +#endif
 +      } while (all && (prv = prv->dtpv_next) != NULL);
 +}
 +
 +#ifdef illumos
 +/*
 + * Iterate over each probe, and call the Framework-to-Provider API function
 + * denoted by offs.
 + */
 +static void
 +dtrace_probe_foreach(uintptr_t offs)
 +{
 +      dtrace_provider_t *prov;
 +      void (*func)(void *, dtrace_id_t, void *);
 +      dtrace_probe_t *probe;
 +      dtrace_icookie_t cookie;
 +      int i;
 +
 +      /*
 +       * We disable interrupts to walk through the probe array.  This is
 +       * safe -- the dtrace_sync() in dtrace_unregister() assures that we
 +       * won't see stale data.
 +       */
 +      cookie = dtrace_interrupt_disable();
 +
 +      for (i = 0; i < dtrace_nprobes; i++) {
 +              if ((probe = dtrace_probes[i]) == NULL)
 +                      continue;
 +
 +              if (probe->dtpr_ecb == NULL) {
 +                      /*
 +                       * This probe isn't enabled -- don't call the function.
 +                       */
 +                      continue;
 +              }
 +
 +              prov = probe->dtpr_provider;
 +              func = *((void(**)(void *, dtrace_id_t, void *))
 +                  ((uintptr_t)&prov->dtpv_pops + offs));
 +
 +              func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
 +      }
 +
 +      dtrace_interrupt_enable(cookie);
 +}
 +#endif
 +
 +static int
 +dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
 +{
 +      dtrace_probekey_t pkey;
 +      uint32_t priv;
 +      uid_t uid;
 +      zoneid_t zoneid;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      dtrace_ecb_create_cache = NULL;
 +
 +      if (desc == NULL) {
 +              /*
 +               * If we're passed a NULL description, we're being asked to
 +               * create an ECB with a NULL probe.
 +               */
 +              (void) dtrace_ecb_create_enable(NULL, enab);
 +              return (0);
 +      }
 +
 +      dtrace_probekey(desc, &pkey);
 +      dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
 +          &priv, &uid, &zoneid);
 +
 +      return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
 +          enab));
 +}
 +
 +/*
 + * DTrace Helper Provider Functions
 + */
 +static void
 +dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
 +{
 +      attr->dtat_name = DOF_ATTR_NAME(dofattr);
 +      attr->dtat_data = DOF_ATTR_DATA(dofattr);
 +      attr->dtat_class = DOF_ATTR_CLASS(dofattr);
 +}
 +
 +static void
 +dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
 +    const dof_provider_t *dofprov, char *strtab)
 +{
 +      hprov->dthpv_provname = strtab + dofprov->dofpv_name;
 +      dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
 +          dofprov->dofpv_provattr);
 +      dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
 +          dofprov->dofpv_modattr);
 +      dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
 +          dofprov->dofpv_funcattr);
 +      dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
 +          dofprov->dofpv_nameattr);
 +      dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
 +          dofprov->dofpv_argsattr);
 +}
 +
 +static void
 +dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
 +{
 +      uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
 +      dof_hdr_t *dof = (dof_hdr_t *)daddr;
 +      dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
 +      dof_provider_t *provider;
 +      dof_probe_t *probe;
 +      uint32_t *off, *enoff;
 +      uint8_t *arg;
 +      char *strtab;
 +      uint_t i, nprobes;
 +      dtrace_helper_provdesc_t dhpv;
 +      dtrace_helper_probedesc_t dhpb;
 +      dtrace_meta_t *meta = dtrace_meta_pid;
 +      dtrace_mops_t *mops = &meta->dtm_mops;
 +      void *parg;
 +
 +      provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
 +      str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
 +          provider->dofpv_strtab * dof->dofh_secsize);
 +      prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
 +          provider->dofpv_probes * dof->dofh_secsize);
 +      arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
 +          provider->dofpv_prargs * dof->dofh_secsize);
 +      off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
 +          provider->dofpv_proffs * dof->dofh_secsize);
 +
 +      strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
 +      off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
 +      arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
 +      enoff = NULL;
 +
 +      /*
 +       * See dtrace_helper_provider_validate().
 +       */
 +      if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
 +          provider->dofpv_prenoffs != DOF_SECT_NONE) {
 +              enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
 +                  provider->dofpv_prenoffs * dof->dofh_secsize);
 +              enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
 +      }
 +
 +      nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
 +
 +      /*
 +       * Create the provider.
 +       */
 +      dtrace_dofprov2hprov(&dhpv, provider, strtab);
 +
 +      if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
 +              return;
 +
 +      meta->dtm_count++;
 +
 +      /*
 +       * Create the probes.
 +       */
 +      for (i = 0; i < nprobes; i++) {
 +              probe = (dof_probe_t *)(uintptr_t)(daddr +
 +                  prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
 +
 +              dhpb.dthpb_mod = dhp->dofhp_mod;
 +              dhpb.dthpb_func = strtab + probe->dofpr_func;
 +              dhpb.dthpb_name = strtab + probe->dofpr_name;
 +              dhpb.dthpb_base = probe->dofpr_addr;
 +              dhpb.dthpb_offs = off + probe->dofpr_offidx;
 +              dhpb.dthpb_noffs = probe->dofpr_noffs;
 +              if (enoff != NULL) {
 +                      dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
 +                      dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
 +              } else {
 +                      dhpb.dthpb_enoffs = NULL;
 +                      dhpb.dthpb_nenoffs = 0;
 +              }
 +              dhpb.dthpb_args = arg + probe->dofpr_argidx;
 +              dhpb.dthpb_nargc = probe->dofpr_nargc;
 +              dhpb.dthpb_xargc = probe->dofpr_xargc;
 +              dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
 +              dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
 +
 +              mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
 +      }
 +}
 +
 +static void
 +dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
 +{
 +      uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
 +      dof_hdr_t *dof = (dof_hdr_t *)daddr;
 +      int i;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_meta_lock));
 +
 +      for (i = 0; i < dof->dofh_secnum; i++) {
 +              dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
 +                  dof->dofh_secoff + i * dof->dofh_secsize);
 +
 +              if (sec->dofs_type != DOF_SECT_PROVIDER)
 +                      continue;
 +
 +              dtrace_helper_provide_one(dhp, sec, pid);
 +      }
 +
 +      /*
 +       * We may have just created probes, so we must now rematch against
 +       * any retained enablings.  Note that this call will acquire both
 +       * cpu_lock and dtrace_lock; the fact that we are holding
 +       * dtrace_meta_lock now is what defines the ordering with respect to
 +       * these three locks.
 +       */
 +      dtrace_enabling_matchall();
 +}
 +
 +static void
 +dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
 +{
 +      uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
 +      dof_hdr_t *dof = (dof_hdr_t *)daddr;
 +      dof_sec_t *str_sec;
 +      dof_provider_t *provider;
 +      char *strtab;
 +      dtrace_helper_provdesc_t dhpv;
 +      dtrace_meta_t *meta = dtrace_meta_pid;
 +      dtrace_mops_t *mops = &meta->dtm_mops;
 +
 +      provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
 +      str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
 +          provider->dofpv_strtab * dof->dofh_secsize);
 +
 +      strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
 +
 +      /*
 +       * Create the provider.
 +       */
 +      dtrace_dofprov2hprov(&dhpv, provider, strtab);
 +
 +      mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
 +
 +      meta->dtm_count--;
 +}
 +
 +static void
 +dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
 +{
 +      uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
 +      dof_hdr_t *dof = (dof_hdr_t *)daddr;
 +      int i;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_meta_lock));
 +
 +      for (i = 0; i < dof->dofh_secnum; i++) {
 +              dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
 +                  dof->dofh_secoff + i * dof->dofh_secsize);
 +
 +              if (sec->dofs_type != DOF_SECT_PROVIDER)
 +                      continue;
 +
 +              dtrace_helper_provider_remove_one(dhp, sec, pid);
 +      }
 +}
 +
 +/*
 + * DTrace Meta Provider-to-Framework API Functions
 + *
 + * These functions implement the Meta Provider-to-Framework API, as described
 + * in <sys/dtrace.h>.
 + */
 +int
 +dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
 +    dtrace_meta_provider_id_t *idp)
 +{
 +      dtrace_meta_t *meta;
 +      dtrace_helpers_t *help, *next;
 +      int i;
 +
 +      *idp = DTRACE_METAPROVNONE;
 +
 +      /*
 +       * We strictly don't need the name, but we hold onto it for
 +       * debuggability. All hail error queues!
 +       */
 +      if (name == NULL) {
 +              cmn_err(CE_WARN, "failed to register meta-provider: "
 +                  "invalid name");
 +              return (EINVAL);
 +      }
 +
 +      if (mops == NULL ||
 +          mops->dtms_create_probe == NULL ||
 +          mops->dtms_provide_pid == NULL ||
 +          mops->dtms_remove_pid == NULL) {
 +              cmn_err(CE_WARN, "failed to register meta-register %s: "
 +                  "invalid ops", name);
 +              return (EINVAL);
 +      }
 +
 +      meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
 +      meta->dtm_mops = *mops;
 +      meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
 +      (void) strcpy(meta->dtm_name, name);
 +      meta->dtm_arg = arg;
 +
 +      mutex_enter(&dtrace_meta_lock);
 +      mutex_enter(&dtrace_lock);
 +
 +      if (dtrace_meta_pid != NULL) {
 +              mutex_exit(&dtrace_lock);
 +              mutex_exit(&dtrace_meta_lock);
 +              cmn_err(CE_WARN, "failed to register meta-register %s: "
 +                  "user-land meta-provider exists", name);
 +              kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
 +              kmem_free(meta, sizeof (dtrace_meta_t));
 +              return (EINVAL);
 +      }
 +
 +      dtrace_meta_pid = meta;
 +      *idp = (dtrace_meta_provider_id_t)meta;
 +
 +      /*
 +       * If there are providers and probes ready to go, pass them
 +       * off to the new meta provider now.
 +       */
 +
 +      help = dtrace_deferred_pid;
 +      dtrace_deferred_pid = NULL;
 +
 +      mutex_exit(&dtrace_lock);
 +
 +      while (help != NULL) {
 +              for (i = 0; i < help->dthps_nprovs; i++) {
 +                      dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
 +                          help->dthps_pid);
 +              }
 +
 +              next = help->dthps_next;
 +              help->dthps_next = NULL;
 +              help->dthps_prev = NULL;
 +              help->dthps_deferred = 0;
 +              help = next;
 +      }
 +
 +      mutex_exit(&dtrace_meta_lock);
 +
 +      return (0);
 +}
 +
 +int
 +dtrace_meta_unregister(dtrace_meta_provider_id_t id)
 +{
 +      dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
 +
 +      mutex_enter(&dtrace_meta_lock);
 +      mutex_enter(&dtrace_lock);
 +
 +      if (old == dtrace_meta_pid) {
 +              pp = &dtrace_meta_pid;
 +      } else {
 +              panic("attempt to unregister non-existent "
 +                  "dtrace meta-provider %p\n", (void *)old);
 +      }
 +
 +      if (old->dtm_count != 0) {
 +              mutex_exit(&dtrace_lock);
 +              mutex_exit(&dtrace_meta_lock);
 +              return (EBUSY);
 +      }
 +
 +      *pp = NULL;
 +
 +      mutex_exit(&dtrace_lock);
 +      mutex_exit(&dtrace_meta_lock);
 +
 +      kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
 +      kmem_free(old, sizeof (dtrace_meta_t));
 +
 +      return (0);
 +}
 +
 +
 +/*
 + * DTrace DIF Object Functions
 + */
 +static int
 +dtrace_difo_err(uint_t pc, const char *format, ...)
 +{
 +      if (dtrace_err_verbose) {
 +              va_list alist;
 +
 +              (void) uprintf("dtrace DIF object error: [%u]: ", pc);
 +              va_start(alist, format);
 +              (void) vuprintf(format, alist);
 +              va_end(alist);
 +      }
 +
 +#ifdef DTRACE_ERRDEBUG
 +      dtrace_errdebug(format);
 +#endif
 +      return (1);
 +}
 +
 +/*
 + * Validate a DTrace DIF object by checking the IR instructions.  The following
 + * rules are currently enforced by dtrace_difo_validate():
 + *
 + * 1. Each instruction must have a valid opcode
 + * 2. Each register, string, variable, or subroutine reference must be valid
 + * 3. No instruction can modify register %r0 (must be zero)
 + * 4. All instruction reserved bits must be set to zero
 + * 5. The last instruction must be a "ret" instruction
 + * 6. All branch targets must reference a valid instruction _after_ the branch
 + */
 +static int
 +dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
 +    cred_t *cr)
 +{
 +      int err = 0, i;
 +      int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
 +      int kcheckload;
 +      uint_t pc;
 +
 +      kcheckload = cr == NULL ||
 +          (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
 +
 +      dp->dtdo_destructive = 0;
 +
 +      for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
 +              dif_instr_t instr = dp->dtdo_buf[pc];
 +
 +              uint_t r1 = DIF_INSTR_R1(instr);
 +              uint_t r2 = DIF_INSTR_R2(instr);
 +              uint_t rd = DIF_INSTR_RD(instr);
 +              uint_t rs = DIF_INSTR_RS(instr);
 +              uint_t label = DIF_INSTR_LABEL(instr);
 +              uint_t v = DIF_INSTR_VAR(instr);
 +              uint_t subr = DIF_INSTR_SUBR(instr);
 +              uint_t type = DIF_INSTR_TYPE(instr);
 +              uint_t op = DIF_INSTR_OP(instr);
 +
 +              switch (op) {
 +              case DIF_OP_OR:
 +              case DIF_OP_XOR:
 +              case DIF_OP_AND:
 +              case DIF_OP_SLL:
 +              case DIF_OP_SRL:
 +              case DIF_OP_SRA:
 +              case DIF_OP_SUB:
 +              case DIF_OP_ADD:
 +              case DIF_OP_MUL:
 +              case DIF_OP_SDIV:
 +              case DIF_OP_UDIV:
 +              case DIF_OP_SREM:
 +              case DIF_OP_UREM:
 +              case DIF_OP_COPYS:
 +                      if (r1 >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", r1);
 +                      if (r2 >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", r2);
 +                      if (rd >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", rd);
 +                      if (rd == 0)
 +                              err += efunc(pc, "cannot write to %r0\n");
 +                      break;
 +              case DIF_OP_NOT:
 +              case DIF_OP_MOV:
 +              case DIF_OP_ALLOCS:
 +                      if (r1 >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", r1);
 +                      if (r2 != 0)
 +                              err += efunc(pc, "non-zero reserved bits\n");
 +                      if (rd >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", rd);
 +                      if (rd == 0)
 +                              err += efunc(pc, "cannot write to %r0\n");
 +                      break;
 +              case DIF_OP_LDSB:
 +              case DIF_OP_LDSH:
 +              case DIF_OP_LDSW:
 +              case DIF_OP_LDUB:
 +              case DIF_OP_LDUH:
 +              case DIF_OP_LDUW:
 +              case DIF_OP_LDX:
 +                      if (r1 >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", r1);
 +                      if (r2 != 0)
 +                              err += efunc(pc, "non-zero reserved bits\n");
 +                      if (rd >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", rd);
 +                      if (rd == 0)
 +                              err += efunc(pc, "cannot write to %r0\n");
 +                      if (kcheckload)
 +                              dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
 +                                  DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
 +                      break;
 +              case DIF_OP_RLDSB:
 +              case DIF_OP_RLDSH:
 +              case DIF_OP_RLDSW:
 +              case DIF_OP_RLDUB:
 +              case DIF_OP_RLDUH:
 +              case DIF_OP_RLDUW:
 +              case DIF_OP_RLDX:
 +                      if (r1 >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", r1);
 +                      if (r2 != 0)
 +                              err += efunc(pc, "non-zero reserved bits\n");
 +                      if (rd >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", rd);
 +                      if (rd == 0)
 +                              err += efunc(pc, "cannot write to %r0\n");
 +                      break;
 +              case DIF_OP_ULDSB:
 +              case DIF_OP_ULDSH:
 +              case DIF_OP_ULDSW:
 +              case DIF_OP_ULDUB:
 +              case DIF_OP_ULDUH:
 +              case DIF_OP_ULDUW:
 +              case DIF_OP_ULDX:
 +                      if (r1 >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", r1);
 +                      if (r2 != 0)
 +                              err += efunc(pc, "non-zero reserved bits\n");
 +                      if (rd >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", rd);
 +                      if (rd == 0)
 +                              err += efunc(pc, "cannot write to %r0\n");
 +                      break;
 +              case DIF_OP_STB:
 +              case DIF_OP_STH:
 +              case DIF_OP_STW:
 +              case DIF_OP_STX:
 +                      if (r1 >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", r1);
 +                      if (r2 != 0)
 +                              err += efunc(pc, "non-zero reserved bits\n");
 +                      if (rd >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", rd);
 +                      if (rd == 0)
 +                              err += efunc(pc, "cannot write to 0 address\n");
 +                      break;
 +              case DIF_OP_CMP:
 +              case DIF_OP_SCMP:
 +                      if (r1 >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", r1);
 +                      if (r2 >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", r2);
 +                      if (rd != 0)
 +                              err += efunc(pc, "non-zero reserved bits\n");
 +                      break;
 +              case DIF_OP_TST:
 +                      if (r1 >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", r1);
 +                      if (r2 != 0 || rd != 0)
 +                              err += efunc(pc, "non-zero reserved bits\n");
 +                      break;
 +              case DIF_OP_BA:
 +              case DIF_OP_BE:
 +              case DIF_OP_BNE:
 +              case DIF_OP_BG:
 +              case DIF_OP_BGU:
 +              case DIF_OP_BGE:
 +              case DIF_OP_BGEU:
 +              case DIF_OP_BL:
 +              case DIF_OP_BLU:
 +              case DIF_OP_BLE:
 +              case DIF_OP_BLEU:
 +                      if (label >= dp->dtdo_len) {
 +                              err += efunc(pc, "invalid branch target %u\n",
 +                                  label);
 +                      }
 +                      if (label <= pc) {
 +                              err += efunc(pc, "backward branch to %u\n",
 +                                  label);
 +                      }
 +                      break;
 +              case DIF_OP_RET:
 +                      if (r1 != 0 || r2 != 0)
 +                              err += efunc(pc, "non-zero reserved bits\n");
 +                      if (rd >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", rd);
 +                      break;
 +              case DIF_OP_NOP:
 +              case DIF_OP_POPTS:
 +              case DIF_OP_FLUSHTS:
 +                      if (r1 != 0 || r2 != 0 || rd != 0)
 +                              err += efunc(pc, "non-zero reserved bits\n");
 +                      break;
 +              case DIF_OP_SETX:
 +                      if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
 +                              err += efunc(pc, "invalid integer ref %u\n",
 +                                  DIF_INSTR_INTEGER(instr));
 +                      }
 +                      if (rd >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", rd);
 +                      if (rd == 0)
 +                              err += efunc(pc, "cannot write to %r0\n");
 +                      break;
 +              case DIF_OP_SETS:
 +                      if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
 +                              err += efunc(pc, "invalid string ref %u\n",
 +                                  DIF_INSTR_STRING(instr));
 +                      }
 +                      if (rd >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", rd);
 +                      if (rd == 0)
 +                              err += efunc(pc, "cannot write to %r0\n");
 +                      break;
 +              case DIF_OP_LDGA:
 +              case DIF_OP_LDTA:
 +                      if (r1 > DIF_VAR_ARRAY_MAX)
 +                              err += efunc(pc, "invalid array %u\n", r1);
 +                      if (r2 >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", r2);
 +                      if (rd >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", rd);
 +                      if (rd == 0)
 +                              err += efunc(pc, "cannot write to %r0\n");
 +                      break;
 +              case DIF_OP_LDGS:
 +              case DIF_OP_LDTS:
 +              case DIF_OP_LDLS:
 +              case DIF_OP_LDGAA:
 +              case DIF_OP_LDTAA:
 +                      if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
 +                              err += efunc(pc, "invalid variable %u\n", v);
 +                      if (rd >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", rd);
 +                      if (rd == 0)
 +                              err += efunc(pc, "cannot write to %r0\n");
 +                      break;
 +              case DIF_OP_STGS:
 +              case DIF_OP_STTS:
 +              case DIF_OP_STLS:
 +              case DIF_OP_STGAA:
 +              case DIF_OP_STTAA:
 +                      if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
 +                              err += efunc(pc, "invalid variable %u\n", v);
 +                      if (rs >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", rd);
 +                      break;
 +              case DIF_OP_CALL:
 +                      if (subr > DIF_SUBR_MAX)
 +                              err += efunc(pc, "invalid subr %u\n", subr);
 +                      if (rd >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", rd);
 +                      if (rd == 0)
 +                              err += efunc(pc, "cannot write to %r0\n");
 +
 +                      if (subr == DIF_SUBR_COPYOUT ||
 +                          subr == DIF_SUBR_COPYOUTSTR) {
 +                              dp->dtdo_destructive = 1;
 +                      }
 +
 +                      if (subr == DIF_SUBR_GETF) {
 +                              /*
 +                               * If we have a getf() we need to record that
 +                               * in our state.  Note that our state can be
 +                               * NULL if this is a helper -- but in that
 +                               * case, the call to getf() is itself illegal,
 +                               * and will be caught (slightly later) when
 +                               * the helper is validated.
 +                               */
 +                              if (vstate->dtvs_state != NULL)
 +                                      vstate->dtvs_state->dts_getf++;
 +                      }
 +
 +                      break;
 +              case DIF_OP_PUSHTR:
 +                      if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
 +                              err += efunc(pc, "invalid ref type %u\n", type);
 +                      if (r2 >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", r2);
 +                      if (rs >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", rs);
 +                      break;
 +              case DIF_OP_PUSHTV:
 +                      if (type != DIF_TYPE_CTF)
 +                              err += efunc(pc, "invalid val type %u\n", type);
 +                      if (r2 >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", r2);
 +                      if (rs >= nregs)
 +                              err += efunc(pc, "invalid register %u\n", rs);
 +                      break;
 +              default:
 +                      err += efunc(pc, "invalid opcode %u\n",
 +                          DIF_INSTR_OP(instr));
 +              }
 +      }
 +
 +      if (dp->dtdo_len != 0 &&
 +          DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
 +              err += efunc(dp->dtdo_len - 1,
 +                  "expected 'ret' as last DIF instruction\n");
 +      }
 +
 +      if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
 +              /*
 +               * If we're not returning by reference, the size must be either
 +               * 0 or the size of one of the base types.
 +               */
 +              switch (dp->dtdo_rtype.dtdt_size) {
 +              case 0:
 +              case sizeof (uint8_t):
 +              case sizeof (uint16_t):
 +              case sizeof (uint32_t):
 +              case sizeof (uint64_t):
 +                      break;
 +
 +              default:
 +                      err += efunc(dp->dtdo_len - 1, "bad return size\n");
 +              }
 +      }
 +
 +      for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
 +              dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
 +              dtrace_diftype_t *vt, *et;
 +              uint_t id, ndx;
 +
 +              if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
 +                  v->dtdv_scope != DIFV_SCOPE_THREAD &&
 +                  v->dtdv_scope != DIFV_SCOPE_LOCAL) {
 +                      err += efunc(i, "unrecognized variable scope %d\n",
 +                          v->dtdv_scope);
 +                      break;
 +              }
 +
 +              if (v->dtdv_kind != DIFV_KIND_ARRAY &&
 +                  v->dtdv_kind != DIFV_KIND_SCALAR) {
 +                      err += efunc(i, "unrecognized variable type %d\n",
 +                          v->dtdv_kind);
 +                      break;
 +              }
 +
 +              if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
 +                      err += efunc(i, "%d exceeds variable id limit\n", id);
 +                      break;
 +              }
 +
 +              if (id < DIF_VAR_OTHER_UBASE)
 +                      continue;
 +
 +              /*
 +               * For user-defined variables, we need to check that this
 +               * definition is identical to any previous definition that we
 +               * encountered.
 +               */
 +              ndx = id - DIF_VAR_OTHER_UBASE;
 +
 +              switch (v->dtdv_scope) {
 +              case DIFV_SCOPE_GLOBAL:
 +                      if (ndx < vstate->dtvs_nglobals) {
 +                              dtrace_statvar_t *svar;
 +
 +                              if ((svar = vstate->dtvs_globals[ndx]) != NULL)
 +                                      existing = &svar->dtsv_var;
 +                      }
 +
 +                      break;
 +
 +              case DIFV_SCOPE_THREAD:
 +                      if (ndx < vstate->dtvs_ntlocals)
 +                              existing = &vstate->dtvs_tlocals[ndx];
 +                      break;
 +
 +              case DIFV_SCOPE_LOCAL:
 +                      if (ndx < vstate->dtvs_nlocals) {
 +                              dtrace_statvar_t *svar;
 +
 +                              if ((svar = vstate->dtvs_locals[ndx]) != NULL)
 +                                      existing = &svar->dtsv_var;
 +                      }
 +
 +                      break;
 +              }
 +
 +              vt = &v->dtdv_type;
 +
 +              if (vt->dtdt_flags & DIF_TF_BYREF) {
 +                      if (vt->dtdt_size == 0) {
 +                              err += efunc(i, "zero-sized variable\n");
 +                              break;
 +                      }
 +
-               ASSERT(limit <= (uintptr_t)base + size);
++                      if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
++                          v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
++                          vt->dtdt_size > dtrace_statvar_maxsize) {
++                              err += efunc(i, "oversized by-ref static\n");
 +                              break;
 +                      }
 +              }
 +
 +              if (existing == NULL || existing->dtdv_id == 0)
 +                      continue;
 +
 +              ASSERT(existing->dtdv_id == v->dtdv_id);
 +              ASSERT(existing->dtdv_scope == v->dtdv_scope);
 +
 +              if (existing->dtdv_kind != v->dtdv_kind)
 +                      err += efunc(i, "%d changed variable kind\n", id);
 +
 +              et = &existing->dtdv_type;
 +
 +              if (vt->dtdt_flags != et->dtdt_flags) {
 +                      err += efunc(i, "%d changed variable type flags\n", id);
 +                      break;
 +              }
 +
 +              if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
 +                      err += efunc(i, "%d changed variable type size\n", id);
 +                      break;
 +              }
 +      }
 +
 +      return (err);
 +}
 +
 +/*
 + * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
 + * are much more constrained than normal DIFOs.  Specifically, they may
 + * not:
 + *
 + * 1. Make calls to subroutines other than copyin(), copyinstr() or
 + *    miscellaneous string routines
 + * 2. Access DTrace variables other than the args[] array, and the
 + *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
 + * 3. Have thread-local variables.
 + * 4. Have dynamic variables.
 + */
 +static int
 +dtrace_difo_validate_helper(dtrace_difo_t *dp)
 +{
 +      int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
 +      int err = 0;
 +      uint_t pc;
 +
 +      for (pc = 0; pc < dp->dtdo_len; pc++) {
 +              dif_instr_t instr = dp->dtdo_buf[pc];
 +
 +              uint_t v = DIF_INSTR_VAR(instr);
 +              uint_t subr = DIF_INSTR_SUBR(instr);
 +              uint_t op = DIF_INSTR_OP(instr);
 +
 +              switch (op) {
 +              case DIF_OP_OR:
 +              case DIF_OP_XOR:
 +              case DIF_OP_AND:
 +              case DIF_OP_SLL:
 +              case DIF_OP_SRL:
 +              case DIF_OP_SRA:
 +              case DIF_OP_SUB:
 +              case DIF_OP_ADD:
 +              case DIF_OP_MUL:
 +              case DIF_OP_SDIV:
 +              case DIF_OP_UDIV:
 +              case DIF_OP_SREM:
 +              case DIF_OP_UREM:
 +              case DIF_OP_COPYS:
 +              case DIF_OP_NOT:
 +              case DIF_OP_MOV:
 +              case DIF_OP_RLDSB:
 +              case DIF_OP_RLDSH:
 +              case DIF_OP_RLDSW:
 +              case DIF_OP_RLDUB:
 +              case DIF_OP_RLDUH:
 +              case DIF_OP_RLDUW:
 +              case DIF_OP_RLDX:
 +              case DIF_OP_ULDSB:
 +              case DIF_OP_ULDSH:
 +              case DIF_OP_ULDSW:
 +              case DIF_OP_ULDUB:
 +              case DIF_OP_ULDUH:
 +              case DIF_OP_ULDUW:
 +              case DIF_OP_ULDX:
 +              case DIF_OP_STB:
 +              case DIF_OP_STH:
 +              case DIF_OP_STW:
 +              case DIF_OP_STX:
 +              case DIF_OP_ALLOCS:
 +              case DIF_OP_CMP:
 +              case DIF_OP_SCMP:
 +              case DIF_OP_TST:
 +              case DIF_OP_BA:
 +              case DIF_OP_BE:
 +              case DIF_OP_BNE:
 +              case DIF_OP_BG:
 +              case DIF_OP_BGU:
 +              case DIF_OP_BGE:
 +              case DIF_OP_BGEU:
 +              case DIF_OP_BL:
 +              case DIF_OP_BLU:
 +              case DIF_OP_BLE:
 +              case DIF_OP_BLEU:
 +              case DIF_OP_RET:
 +              case DIF_OP_NOP:
 +              case DIF_OP_POPTS:
 +              case DIF_OP_FLUSHTS:
 +              case DIF_OP_SETX:
 +              case DIF_OP_SETS:
 +              case DIF_OP_LDGA:
 +              case DIF_OP_LDLS:
 +              case DIF_OP_STGS:
 +              case DIF_OP_STLS:
 +              case DIF_OP_PUSHTR:
 +              case DIF_OP_PUSHTV:
 +                      break;
 +
 +              case DIF_OP_LDGS:
 +                      if (v >= DIF_VAR_OTHER_UBASE)
 +                              break;
 +
 +                      if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
 +                              break;
 +
 +                      if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
 +                          v == DIF_VAR_PPID || v == DIF_VAR_TID ||
 +                          v == DIF_VAR_EXECARGS ||
 +                          v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
 +                          v == DIF_VAR_UID || v == DIF_VAR_GID)
 +                              break;
 +
 +                      err += efunc(pc, "illegal variable %u\n", v);
 +                      break;
 +
 +              case DIF_OP_LDTA:
 +              case DIF_OP_LDTS:
 +              case DIF_OP_LDGAA:
 +              case DIF_OP_LDTAA:
 +                      err += efunc(pc, "illegal dynamic variable load\n");
 +                      break;
 +
 +              case DIF_OP_STTS:
 +              case DIF_OP_STGAA:
 +              case DIF_OP_STTAA:
 +                      err += efunc(pc, "illegal dynamic variable store\n");
 +                      break;
 +
 +              case DIF_OP_CALL:
 +                      if (subr == DIF_SUBR_ALLOCA ||
 +                          subr == DIF_SUBR_BCOPY ||
 +                          subr == DIF_SUBR_COPYIN ||
 +                          subr == DIF_SUBR_COPYINTO ||
 +                          subr == DIF_SUBR_COPYINSTR ||
 +                          subr == DIF_SUBR_INDEX ||
 +                          subr == DIF_SUBR_INET_NTOA ||
 +                          subr == DIF_SUBR_INET_NTOA6 ||
 +                          subr == DIF_SUBR_INET_NTOP ||
 +                          subr == DIF_SUBR_JSON ||
 +                          subr == DIF_SUBR_LLTOSTR ||
 +                          subr == DIF_SUBR_STRTOLL ||
 +                          subr == DIF_SUBR_RINDEX ||
 +                          subr == DIF_SUBR_STRCHR ||
 +                          subr == DIF_SUBR_STRJOIN ||
 +                          subr == DIF_SUBR_STRRCHR ||
 +                          subr == DIF_SUBR_STRSTR ||
 +                          subr == DIF_SUBR_HTONS ||
 +                          subr == DIF_SUBR_HTONL ||
 +                          subr == DIF_SUBR_HTONLL ||
 +                          subr == DIF_SUBR_NTOHS ||
 +                          subr == DIF_SUBR_NTOHL ||
 +                          subr == DIF_SUBR_NTOHLL ||
 +                          subr == DIF_SUBR_MEMREF ||
 +#ifndef illumos
 +                          subr == DIF_SUBR_MEMSTR ||
 +#endif
 +                          subr == DIF_SUBR_TYPEREF)
 +                              break;
 +
 +                      err += efunc(pc, "invalid subr %u\n", subr);
 +                      break;
 +
 +              default:
 +                      err += efunc(pc, "invalid opcode %u\n",
 +                          DIF_INSTR_OP(instr));
 +              }
 +      }
 +
 +      return (err);
 +}
 +
 +/*
 + * Returns 1 if the expression in the DIF object can be cached on a per-thread
 + * basis; 0 if not.
 + */
 +static int
 +dtrace_difo_cacheable(dtrace_difo_t *dp)
 +{
 +      int i;
 +
 +      if (dp == NULL)
 +              return (0);
 +
 +      for (i = 0; i < dp->dtdo_varlen; i++) {
 +              dtrace_difv_t *v = &dp->dtdo_vartab[i];
 +
 +              if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
 +                      continue;
 +
 +              switch (v->dtdv_id) {
 +              case DIF_VAR_CURTHREAD:
 +              case DIF_VAR_PID:
 +              case DIF_VAR_TID:
 +              case DIF_VAR_EXECARGS:
 +              case DIF_VAR_EXECNAME:
 +              case DIF_VAR_ZONENAME:
 +                      break;
 +
 +              default:
 +                      return (0);
 +              }
 +      }
 +
 +      /*
 +       * This DIF object may be cacheable.  Now we need to look for any
 +       * array loading instructions, any memory loading instructions, or
 +       * any stores to thread-local variables.
 +       */
 +      for (i = 0; i < dp->dtdo_len; i++) {
 +              uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
 +
 +              if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
 +                  (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
 +                  (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
 +                  op == DIF_OP_LDGA || op == DIF_OP_STTS)
 +                      return (0);
 +      }
 +
 +      return (1);
 +}
 +
 +static void
 +dtrace_difo_hold(dtrace_difo_t *dp)
 +{
 +      int i;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      dp->dtdo_refcnt++;
 +      ASSERT(dp->dtdo_refcnt != 0);
 +
 +      /*
 +       * We need to check this DIF object for references to the variable
 +       * DIF_VAR_VTIMESTAMP.
 +       */
 +      for (i = 0; i < dp->dtdo_varlen; i++) {
 +              dtrace_difv_t *v = &dp->dtdo_vartab[i];
 +
 +              if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
 +                      continue;
 +
 +              if (dtrace_vtime_references++ == 0)
 +                      dtrace_vtime_enable();
 +      }
 +}
 +
 +/*
 + * This routine calculates the dynamic variable chunksize for a given DIF
 + * object.  The calculation is not fool-proof, and can probably be tricked by
 + * malicious DIF -- but it works for all compiler-generated DIF.  Because this
 + * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
 + * if a dynamic variable size exceeds the chunksize.
 + */
 +static void
 +dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
 +{
 +      uint64_t sval = 0;
 +      dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
 +      const dif_instr_t *text = dp->dtdo_buf;
 +      uint_t pc, srd = 0;
 +      uint_t ttop = 0;
 +      size_t size, ksize;
 +      uint_t id, i;
 +
 +      for (pc = 0; pc < dp->dtdo_len; pc++) {
 +              dif_instr_t instr = text[pc];
 +              uint_t op = DIF_INSTR_OP(instr);
 +              uint_t rd = DIF_INSTR_RD(instr);
 +              uint_t r1 = DIF_INSTR_R1(instr);
 +              uint_t nkeys = 0;
 +              uchar_t scope = 0;
 +
 +              dtrace_key_t *key = tupregs;
 +
 +              switch (op) {
 +              case DIF_OP_SETX:
 +                      sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
 +                      srd = rd;
 +                      continue;
 +
 +              case DIF_OP_STTS:
 +                      key = &tupregs[DIF_DTR_NREGS];
 +                      key[0].dttk_size = 0;
 +                      key[1].dttk_size = 0;
 +                      nkeys = 2;
 +                      scope = DIFV_SCOPE_THREAD;
 +                      break;
 +
 +              case DIF_OP_STGAA:
 +              case DIF_OP_STTAA:
 +                      nkeys = ttop;
 +
 +                      if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
 +                              key[nkeys++].dttk_size = 0;
 +
 +                      key[nkeys++].dttk_size = 0;
 +
 +                      if (op == DIF_OP_STTAA) {
 +                              scope = DIFV_SCOPE_THREAD;
 +                      } else {
 +                              scope = DIFV_SCOPE_GLOBAL;
 +                      }
 +
 +                      break;
 +
 +              case DIF_OP_PUSHTR:
 +                      if (ttop == DIF_DTR_NREGS)
 +                              return;
 +
 +                      if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
 +                              /*
 +                               * If the register for the size of the "pushtr"
 +                               * is %r0 (or the value is 0) and the type is
 +                               * a string, we'll use the system-wide default
 +                               * string size.
 +                               */
 +                              tupregs[ttop++].dttk_size =
 +                                  dtrace_strsize_default;
 +                      } else {
 +                              if (srd == 0)
 +                                      return;
 +
++                              if (sval > LONG_MAX)
++                                      return;
++
 +                              tupregs[ttop++].dttk_size = sval;
 +                      }
 +
 +                      break;
 +
 +              case DIF_OP_PUSHTV:
 +                      if (ttop == DIF_DTR_NREGS)
 +                              return;
 +
 +                      tupregs[ttop++].dttk_size = 0;
 +                      break;
 +
 +              case DIF_OP_FLUSHTS:
 +                      ttop = 0;
 +                      break;
 +
 +              case DIF_OP_POPTS:
 +                      if (ttop != 0)
 +                              ttop--;
 +                      break;
 +              }
 +
 +              sval = 0;
 +              srd = 0;
 +
 +              if (nkeys == 0)
 +                      continue;
 +
 +              /*
 +               * We have a dynamic variable allocation; calculate its size.
 +               */
 +              for (ksize = 0, i = 0; i < nkeys; i++)
 +                      ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
 +
 +              size = sizeof (dtrace_dynvar_t);
 +              size += sizeof (dtrace_key_t) * (nkeys - 1);
 +              size += ksize;
 +
 +              /*
 +               * Now we need to determine the size of the stored data.
 +               */
 +              id = DIF_INSTR_VAR(instr);
 +
 +              for (i = 0; i < dp->dtdo_varlen; i++) {
 +                      dtrace_difv_t *v = &dp->dtdo_vartab[i];
 +
 +                      if (v->dtdv_id == id && v->dtdv_scope == scope) {
 +                              size += v->dtdv_type.dtdt_size;
 +                              break;
 +                      }
 +              }
 +
 +              if (i == dp->dtdo_varlen)
 +                      return;
 +
 +              /*
 +               * We have the size.  If this is larger than the chunk size
 +               * for our dynamic variable state, reset the chunk size.
 +               */
 +              size = P2ROUNDUP(size, sizeof (uint64_t));
 +
++              /*
++               * Before setting the chunk size, check that we're not going
++               * to set it to a negative value...
++               */
++              if (size > LONG_MAX)
++                      return;
++
++              /*
++               * ...and make certain that we didn't badly overflow.
++               */
++              if (size < ksize || size < sizeof (dtrace_dynvar_t))
++                      return;
++
 +              if (size > vstate->dtvs_dynvars.dtds_chunksize)
 +                      vstate->dtvs_dynvars.dtds_chunksize = size;
 +      }
 +}
 +
 +static void
 +dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
 +{
 +      int i, oldsvars, osz, nsz, otlocals, ntlocals;
 +      uint_t id;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
 +
 +      for (i = 0; i < dp->dtdo_varlen; i++) {
 +              dtrace_difv_t *v = &dp->dtdo_vartab[i];
 +              dtrace_statvar_t *svar, ***svarp = NULL;
 +              size_t dsize = 0;
 +              uint8_t scope = v->dtdv_scope;
 +              int *np = NULL;
 +
 +              if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
 +                      continue;
 +
 +              id -= DIF_VAR_OTHER_UBASE;
 +
 +              switch (scope) {
 +              case DIFV_SCOPE_THREAD:
 +                      while (id >= (otlocals = vstate->dtvs_ntlocals)) {
 +                              dtrace_difv_t *tlocals;
 +
 +                              if ((ntlocals = (otlocals << 1)) == 0)
 +                                      ntlocals = 1;
 +
 +                              osz = otlocals * sizeof (dtrace_difv_t);
 +                              nsz = ntlocals * sizeof (dtrace_difv_t);
 +
 +                              tlocals = kmem_zalloc(nsz, KM_SLEEP);
 +
 +                              if (osz != 0) {
 +                                      bcopy(vstate->dtvs_tlocals,
 +                                          tlocals, osz);
 +                                      kmem_free(vstate->dtvs_tlocals, osz);
 +                              }
 +
 +                              vstate->dtvs_tlocals = tlocals;
 +                              vstate->dtvs_ntlocals = ntlocals;
 +                      }
 +
 +                      vstate->dtvs_tlocals[id] = *v;
 +                      continue;
 +
 +              case DIFV_SCOPE_LOCAL:
 +                      np = &vstate->dtvs_nlocals;
 +                      svarp = &vstate->dtvs_locals;
 +
 +                      if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
 +                              dsize = NCPU * (v->dtdv_type.dtdt_size +
 +                                  sizeof (uint64_t));
 +                      else
 +                              dsize = NCPU * sizeof (uint64_t);
 +
 +                      break;
 +
 +              case DIFV_SCOPE_GLOBAL:
 +                      np = &vstate->dtvs_nglobals;
 +                      svarp = &vstate->dtvs_globals;
 +
 +                      if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
 +                              dsize = v->dtdv_type.dtdt_size +
 +                                  sizeof (uint64_t);
 +
 +                      break;
 +
 +              default:
 +                      ASSERT(0);
 +              }
 +
 +              while (id >= (oldsvars = *np)) {
 +                      dtrace_statvar_t **statics;
 +                      int newsvars, oldsize, newsize;
 +
 +                      if ((newsvars = (oldsvars << 1)) == 0)
 +                              newsvars = 1;
 +
 +                      oldsize = oldsvars * sizeof (dtrace_statvar_t *);
 +                      newsize = newsvars * sizeof (dtrace_statvar_t *);
 +
 +                      statics = kmem_zalloc(newsize, KM_SLEEP);
 +
 +                      if (oldsize != 0) {
 +                              bcopy(*svarp, statics, oldsize);
 +                              kmem_free(*svarp, oldsize);
 +                      }
 +
 +                      *svarp = statics;
 +                      *np = newsvars;
 +              }
 +
 +              if ((svar = (*svarp)[id]) == NULL) {
 +                      svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
 +                      svar->dtsv_var = *v;
 +
 +                      if ((svar->dtsv_size = dsize) != 0) {
 +                              svar->dtsv_data = (uint64_t)(uintptr_t)
 +                                  kmem_zalloc(dsize, KM_SLEEP);
 +                      }
 +
 +                      (*svarp)[id] = svar;
 +              }
 +
 +              svar->dtsv_refcnt++;
 +      }
 +
 +      dtrace_difo_chunksize(dp, vstate);
 +      dtrace_difo_hold(dp);
 +}
 +
 +static dtrace_difo_t *
 +dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
 +{
 +      dtrace_difo_t *new;
 +      size_t sz;
 +
 +      ASSERT(dp->dtdo_buf != NULL);
 +      ASSERT(dp->dtdo_refcnt != 0);
 +
 +      new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
 +
 +      ASSERT(dp->dtdo_buf != NULL);
 +      sz = dp->dtdo_len * sizeof (dif_instr_t);
 +      new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
 +      bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
 +      new->dtdo_len = dp->dtdo_len;
 +
 +      if (dp->dtdo_strtab != NULL) {
 +              ASSERT(dp->dtdo_strlen != 0);
 +              new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
 +              bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
 +              new->dtdo_strlen = dp->dtdo_strlen;
 +      }
 +
 +      if (dp->dtdo_inttab != NULL) {
 +              ASSERT(dp->dtdo_intlen != 0);
 +              sz = dp->dtdo_intlen * sizeof (uint64_t);
 +              new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
 +              bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
 +              new->dtdo_intlen = dp->dtdo_intlen;
 +      }
 +
 +      if (dp->dtdo_vartab != NULL) {
 +              ASSERT(dp->dtdo_varlen != 0);
 +              sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
 +              new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
 +              bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
 +              new->dtdo_varlen = dp->dtdo_varlen;
 +      }
 +
 +      dtrace_difo_init(new, vstate);
 +      return (new);
 +}
 +
 +static void
 +dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
 +{
 +      int i;
 +
 +      ASSERT(dp->dtdo_refcnt == 0);
 +
 +      for (i = 0; i < dp->dtdo_varlen; i++) {
 +              dtrace_difv_t *v = &dp->dtdo_vartab[i];
 +              dtrace_statvar_t *svar, **svarp = NULL;
 +              uint_t id;
 +              uint8_t scope = v->dtdv_scope;
 +              int *np = NULL;
 +
 +              switch (scope) {
 +              case DIFV_SCOPE_THREAD:
 +                      continue;
 +
 +              case DIFV_SCOPE_LOCAL:
 +                      np = &vstate->dtvs_nlocals;
 +                      svarp = vstate->dtvs_locals;
 +                      break;
 +
 +              case DIFV_SCOPE_GLOBAL:
 +                      np = &vstate->dtvs_nglobals;
 +                      svarp = vstate->dtvs_globals;
 +                      break;
 +
 +              default:
 +                      ASSERT(0);
 +              }
 +
 +              if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
 +                      continue;
 +
 +              id -= DIF_VAR_OTHER_UBASE;
 +              ASSERT(id < *np);
 +
 +              svar = svarp[id];
 +              ASSERT(svar != NULL);
 +              ASSERT(svar->dtsv_refcnt > 0);
 +
 +              if (--svar->dtsv_refcnt > 0)
 +                      continue;
 +
 +              if (svar->dtsv_size != 0) {
 +                      ASSERT(svar->dtsv_data != 0);
 +                      kmem_free((void *)(uintptr_t)svar->dtsv_data,
 +                          svar->dtsv_size);
 +              }
 +
 +              kmem_free(svar, sizeof (dtrace_statvar_t));
 +              svarp[id] = NULL;
 +      }
 +
 +      if (dp->dtdo_buf != NULL)
 +              kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
 +      if (dp->dtdo_inttab != NULL)
 +              kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
 +      if (dp->dtdo_strtab != NULL)
 +              kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
 +      if (dp->dtdo_vartab != NULL)
 +              kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
 +
 +      kmem_free(dp, sizeof (dtrace_difo_t));
 +}
 +
 +static void
 +dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
 +{
 +      int i;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(dp->dtdo_refcnt != 0);
 +
 +      for (i = 0; i < dp->dtdo_varlen; i++) {
 +              dtrace_difv_t *v = &dp->dtdo_vartab[i];
 +
 +              if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
 +                      continue;
 +
 +              ASSERT(dtrace_vtime_references > 0);
 +              if (--dtrace_vtime_references == 0)
 +                      dtrace_vtime_disable();
 +      }
 +
 +      if (--dp->dtdo_refcnt == 0)
 +              dtrace_difo_destroy(dp, vstate);
 +}
 +
 +/*
 + * DTrace Format Functions
 + */
 +static uint16_t
 +dtrace_format_add(dtrace_state_t *state, char *str)
 +{
 +      char *fmt, **new;
 +      uint16_t ndx, len = strlen(str) + 1;
 +
 +      fmt = kmem_zalloc(len, KM_SLEEP);
 +      bcopy(str, fmt, len);
 +
 +      for (ndx = 0; ndx < state->dts_nformats; ndx++) {
 +              if (state->dts_formats[ndx] == NULL) {
 +                      state->dts_formats[ndx] = fmt;
 +                      return (ndx + 1);
 +              }
 +      }
 +
 +      if (state->dts_nformats == USHRT_MAX) {
 +              /*
 +               * This is only likely if a denial-of-service attack is being
 +               * attempted.  As such, it's okay to fail silently here.
 +               */
 +              kmem_free(fmt, len);
 +              return (0);
 +      }
 +
 +      /*
 +       * For simplicity, we always resize the formats array to be exactly the
 +       * number of formats.
 +       */
 +      ndx = state->dts_nformats++;
 +      new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
 +
 +      if (state->dts_formats != NULL) {
 +              ASSERT(ndx != 0);
 +              bcopy(state->dts_formats, new, ndx * sizeof (char *));
 +              kmem_free(state->dts_formats, ndx * sizeof (char *));
 +      }
 +
 +      state->dts_formats = new;
 +      state->dts_formats[ndx] = fmt;
 +
 +      return (ndx + 1);
 +}
 +
 +static void
 +dtrace_format_remove(dtrace_state_t *state, uint16_t format)
 +{
 +      char *fmt;
 +
 +      ASSERT(state->dts_formats != NULL);
 +      ASSERT(format <= state->dts_nformats);
 +      ASSERT(state->dts_formats[format - 1] != NULL);
 +
 +      fmt = state->dts_formats[format - 1];
 +      kmem_free(fmt, strlen(fmt) + 1);
 +      state->dts_formats[format - 1] = NULL;
 +}
 +
 +static void
 +dtrace_format_destroy(dtrace_state_t *state)
 +{
 +      int i;
 +
 +      if (state->dts_nformats == 0) {
 +              ASSERT(state->dts_formats == NULL);
 +              return;
 +      }
 +
 +      ASSERT(state->dts_formats != NULL);
 +
 +      for (i = 0; i < state->dts_nformats; i++) {
 +              char *fmt = state->dts_formats[i];
 +
 +              if (fmt == NULL)
 +                      continue;
 +
 +              kmem_free(fmt, strlen(fmt) + 1);
 +      }
 +
 +      kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
 +      state->dts_nformats = 0;
 +      state->dts_formats = NULL;
 +}
 +
 +/*
 + * DTrace Predicate Functions
 + */
 +static dtrace_predicate_t *
 +dtrace_predicate_create(dtrace_difo_t *dp)
 +{
 +      dtrace_predicate_t *pred;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(dp->dtdo_refcnt != 0);
 +
 +      pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
 +      pred->dtp_difo = dp;
 +      pred->dtp_refcnt = 1;
 +
 +      if (!dtrace_difo_cacheable(dp))
 +              return (pred);
 +
 +      if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
 +              /*
 +               * This is only theoretically possible -- we have had 2^32
 +               * cacheable predicates on this machine.  We cannot allow any
 +               * more predicates to become cacheable:  as unlikely as it is,
 +               * there may be a thread caching a (now stale) predicate cache
 +               * ID. (N.B.: the temptation is being successfully resisted to
 +               * have this cmn_err() "Holy shit -- we executed this code!")
 +               */
 +              return (pred);
 +      }
 +
 +      pred->dtp_cacheid = dtrace_predcache_id++;
 +
 +      return (pred);
 +}
 +
 +static void
 +dtrace_predicate_hold(dtrace_predicate_t *pred)
 +{
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
 +      ASSERT(pred->dtp_refcnt > 0);
 +
 +      pred->dtp_refcnt++;
 +}
 +
 +static void
 +dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
 +{
 +      dtrace_difo_t *dp = pred->dtp_difo;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
 +      ASSERT(pred->dtp_refcnt > 0);
 +
 +      if (--pred->dtp_refcnt == 0) {
 +              dtrace_difo_release(pred->dtp_difo, vstate);
 +              kmem_free(pred, sizeof (dtrace_predicate_t));
 +      }
 +}
 +
 +/*
 + * DTrace Action Description Functions
 + */
 +static dtrace_actdesc_t *
 +dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
 +    uint64_t uarg, uint64_t arg)
 +{
 +      dtrace_actdesc_t *act;
 +
 +#ifdef illumos
 +      ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
 +          arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
 +#endif
 +
 +      act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
 +      act->dtad_kind = kind;
 +      act->dtad_ntuple = ntuple;
 +      act->dtad_uarg = uarg;
 +      act->dtad_arg = arg;
 +      act->dtad_refcnt = 1;
 +
 +      return (act);
 +}
 +
 +static void
 +dtrace_actdesc_hold(dtrace_actdesc_t *act)
 +{
 +      ASSERT(act->dtad_refcnt >= 1);
 +      act->dtad_refcnt++;
 +}
 +
 +static void
 +dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
 +{
 +      dtrace_actkind_t kind = act->dtad_kind;
 +      dtrace_difo_t *dp;
 +
 +      ASSERT(act->dtad_refcnt >= 1);
 +
 +      if (--act->dtad_refcnt != 0)
 +              return;
 +
 +      if ((dp = act->dtad_difo) != NULL)
 +              dtrace_difo_release(dp, vstate);
 +
 +      if (DTRACEACT_ISPRINTFLIKE(kind)) {
 +              char *str = (char *)(uintptr_t)act->dtad_arg;
 +
 +#ifdef illumos
 +              ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
 +                  (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
 +#endif
 +
 +              if (str != NULL)
 +                      kmem_free(str, strlen(str) + 1);
 +      }
 +
 +      kmem_free(act, sizeof (dtrace_actdesc_t));
 +}
 +
 +/*
 + * DTrace ECB Functions
 + */
 +static dtrace_ecb_t *
 +dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
 +{
 +      dtrace_ecb_t *ecb;
 +      dtrace_epid_t epid;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
 +      ecb->dte_predicate = NULL;
 +      ecb->dte_probe = probe;
 +
 +      /*
 +       * The default size is the size of the default action: recording
 +       * the header.
 +       */
 +      ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
 +      ecb->dte_alignment = sizeof (dtrace_epid_t);
 +
 +      epid = state->dts_epid++;
 +
 +      if (epid - 1 >= state->dts_necbs) {
 +              dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
 +              int necbs = state->dts_necbs << 1;
 +
 +              ASSERT(epid == state->dts_necbs + 1);
 +
 +              if (necbs == 0) {
 +                      ASSERT(oecbs == NULL);
 +                      necbs = 1;
 +              }
 +
 +              ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
 +
 +              if (oecbs != NULL)
 +                      bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
 +
 +              dtrace_membar_producer();
 +              state->dts_ecbs = ecbs;
 +
 +              if (oecbs != NULL) {
 +                      /*
 +                       * If this state is active, we must dtrace_sync()
 +                       * before we can free the old dts_ecbs array:  we're
 +                       * coming in hot, and there may be active ring
 +                       * buffer processing (which indexes into the dts_ecbs
 +                       * array) on another CPU.
 +                       */
 +                      if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
 +                              dtrace_sync();
 +
 +                      kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
 +              }
 +
 +              dtrace_membar_producer();
 +              state->dts_necbs = necbs;
 +      }
 +
 +      ecb->dte_state = state;
 +
 +      ASSERT(state->dts_ecbs[epid - 1] == NULL);
 +      dtrace_membar_producer();
 +      state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
 +
 +      return (ecb);
 +}
 +
 +static void
 +dtrace_ecb_enable(dtrace_ecb_t *ecb)
 +{
 +      dtrace_probe_t *probe = ecb->dte_probe;
 +
 +      ASSERT(MUTEX_HELD(&cpu_lock));
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(ecb->dte_next == NULL);
 +
 +      if (probe == NULL) {
 +              /*
 +               * This is the NULL probe -- there's nothing to do.
 +               */
 +              return;
 +      }
 +
 +      if (probe->dtpr_ecb == NULL) {
 +              dtrace_provider_t *prov = probe->dtpr_provider;
 +
 +              /*
 +               * We're the first ECB on this probe.
 +               */
 +              probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
 +
 +              if (ecb->dte_predicate != NULL)
 +                      probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
 +
 +              prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
 +                  probe->dtpr_id, probe->dtpr_arg);
 +      } else {
 +              /*
 +               * This probe is already active.  Swing the last pointer to
 +               * point to the new ECB, and issue a dtrace_sync() to assure
 +               * that all CPUs have seen the change.
 +               */
 +              ASSERT(probe->dtpr_ecb_last != NULL);
 +              probe->dtpr_ecb_last->dte_next = ecb;
 +              probe->dtpr_ecb_last = ecb;
 +              probe->dtpr_predcache = 0;
 +
 +              dtrace_sync();
 +      }
 +}
 +
 +static void
 +dtrace_ecb_resize(dtrace_ecb_t *ecb)
 +{
 +      dtrace_action_t *act;
 +      uint32_t curneeded = UINT32_MAX;
 +      uint32_t aggbase = UINT32_MAX;
 +
 +      /*
 +       * If we record anything, we always record the dtrace_rechdr_t.  (And
 +       * we always record it first.)
 +       */
 +      ecb->dte_size = sizeof (dtrace_rechdr_t);
 +      ecb->dte_alignment = sizeof (dtrace_epid_t);
 +
 +      for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
 +              dtrace_recdesc_t *rec = &act->dta_rec;
 +              ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
 +
 +              ecb->dte_alignment = MAX(ecb->dte_alignment,
 +                  rec->dtrd_alignment);
 +
 +              if (DTRACEACT_ISAGG(act->dta_kind)) {
 +                      dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
 +
 +                      ASSERT(rec->dtrd_size != 0);
 +                      ASSERT(agg->dtag_first != NULL);
 +                      ASSERT(act->dta_prev->dta_intuple);
 +                      ASSERT(aggbase != UINT32_MAX);
 +                      ASSERT(curneeded != UINT32_MAX);
 +
 +                      agg->dtag_base = aggbase;
 +
 +                      curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
 +                      rec->dtrd_offset = curneeded;
 +                      curneeded += rec->dtrd_size;
 +                      ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
 +
 +                      aggbase = UINT32_MAX;
 +                      curneeded = UINT32_MAX;
 +              } else if (act->dta_intuple) {
 +                      if (curneeded == UINT32_MAX) {
 +                              /*
 +                               * This is the first record in a tuple.  Align
 +                               * curneeded to be at offset 4 in an 8-byte
 +                               * aligned block.
 +                               */
 +                              ASSERT(act->dta_prev == NULL ||
 +                                  !act->dta_prev->dta_intuple);
 +                              ASSERT3U(aggbase, ==, UINT32_MAX);
 +                              curneeded = P2PHASEUP(ecb->dte_size,
 +                                  sizeof (uint64_t), sizeof (dtrace_aggid_t));
 +
 +                              aggbase = curneeded - sizeof (dtrace_aggid_t);
 +                              ASSERT(IS_P2ALIGNED(aggbase,
 +                                  sizeof (uint64_t)));
 +                      }
 +                      curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
 +                      rec->dtrd_offset = curneeded;
 +                      curneeded += rec->dtrd_size;
 +              } else {
 +                      /* tuples must be followed by an aggregation */
 +                      ASSERT(act->dta_prev == NULL ||
 +                          !act->dta_prev->dta_intuple);
 +
 +                      ecb->dte_size = P2ROUNDUP(ecb->dte_size,
 +                          rec->dtrd_alignment);
 +                      rec->dtrd_offset = ecb->dte_size;
 +                      ecb->dte_size += rec->dtrd_size;
 +                      ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
 +              }
 +      }
 +
 +      if ((act = ecb->dte_action) != NULL &&
 +          !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
 +          ecb->dte_size == sizeof (dtrace_rechdr_t)) {
 +              /*
 +               * If the size is still sizeof (dtrace_rechdr_t), then all
 +               * actions store no data; set the size to 0.
 +               */
 +              ecb->dte_size = 0;
 +      }
 +
 +      ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
 +      ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
 +      ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
 +          ecb->dte_needed);
 +}
 +
 +static dtrace_action_t *
 +dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
 +{
 +      dtrace_aggregation_t *agg;
 +      size_t size = sizeof (uint64_t);
 +      int ntuple = desc->dtad_ntuple;
 +      dtrace_action_t *act;
 +      dtrace_recdesc_t *frec;
 +      dtrace_aggid_t aggid;
 +      dtrace_state_t *state = ecb->dte_state;
 +
 +      agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
 +      agg->dtag_ecb = ecb;
 +
 +      ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
 +
 +      switch (desc->dtad_kind) {
 +      case DTRACEAGG_MIN:
 +              agg->dtag_initial = INT64_MAX;
 +              agg->dtag_aggregate = dtrace_aggregate_min;
 +              break;
 +
 +      case DTRACEAGG_MAX:
 +              agg->dtag_initial = INT64_MIN;
 +              agg->dtag_aggregate = dtrace_aggregate_max;
 +              break;
 +
 +      case DTRACEAGG_COUNT:
 +              agg->dtag_aggregate = dtrace_aggregate_count;
 +              break;
 +
 +      case DTRACEAGG_QUANTIZE:
 +              agg->dtag_aggregate = dtrace_aggregate_quantize;
 +              size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
 +                  sizeof (uint64_t);
 +              break;
 +
 +      case DTRACEAGG_LQUANTIZE: {
 +              uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
 +              uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
 +
 +              agg->dtag_initial = desc->dtad_arg;
 +              agg->dtag_aggregate = dtrace_aggregate_lquantize;
 +
 +              if (step == 0 || levels == 0)
 +                      goto err;
 +
 +              size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
 +              break;
 +      }
 +
 +      case DTRACEAGG_LLQUANTIZE: {
 +              uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
 +              uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
 +              uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
 +              uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
 +              int64_t v;
 +
 +              agg->dtag_initial = desc->dtad_arg;
 +              agg->dtag_aggregate = dtrace_aggregate_llquantize;
 +
 +              if (factor < 2 || low >= high || nsteps < factor)
 +                      goto err;
 +
 +              /*
 +               * Now check that the number of steps evenly divides a power
 +               * of the factor.  (This assures both integer bucket size and
 +               * linearity within each magnitude.)
 +               */
 +              for (v = factor; v < nsteps; v *= factor)
 +                      continue;
 +
 +              if ((v % nsteps) || (nsteps % factor))
 +                      goto err;
 +
 +              size = (dtrace_aggregate_llquantize_bucket(factor,
 +                  low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
 +              break;
 +      }
 +
 +      case DTRACEAGG_AVG:
 +              agg->dtag_aggregate = dtrace_aggregate_avg;
 +              size = sizeof (uint64_t) * 2;
 +              break;
 +
 +      case DTRACEAGG_STDDEV:
 +              agg->dtag_aggregate = dtrace_aggregate_stddev;
 +              size = sizeof (uint64_t) * 4;
 +              break;
 +
 +      case DTRACEAGG_SUM:
 +              agg->dtag_aggregate = dtrace_aggregate_sum;
 +              break;
 +
 +      default:
 +              goto err;
 +      }
 +
 +      agg->dtag_action.dta_rec.dtrd_size = size;
 +
 +      if (ntuple == 0)
 +              goto err;
 +
 +      /*
 +       * We must make sure that we have enough actions for the n-tuple.
 +       */
 +      for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
 +              if (DTRACEACT_ISAGG(act->dta_kind))
 +                      break;
 +
 +              if (--ntuple == 0) {
 +                      /*
 +                       * This is the action with which our n-tuple begins.
 +                       */
 +                      agg->dtag_first = act;
 +                      goto success;
 +              }
 +      }
 +
 +      /*
 +       * This n-tuple is short by ntuple elements.  Return failure.
 +       */
 +      ASSERT(ntuple != 0);
 +err:
 +      kmem_free(agg, sizeof (dtrace_aggregation_t));
 +      return (NULL);
 +
 +success:
 +      /*
 +       * If the last action in the tuple has a size of zero, it's actually
 +       * an expression argument for the aggregating action.
 +       */
 +      ASSERT(ecb->dte_action_last != NULL);
 +      act = ecb->dte_action_last;
 +
 +      if (act->dta_kind == DTRACEACT_DIFEXPR) {
 +              ASSERT(act->dta_difo != NULL);
 +
 +              if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
 +                      agg->dtag_hasarg = 1;
 +      }
 +
 +      /*
 +       * We need to allocate an id for this aggregation.
 +       */
 +#ifdef illumos
 +      aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
 +          VM_BESTFIT | VM_SLEEP);
 +#else
 +      aggid = alloc_unr(state->dts_aggid_arena);
 +#endif
 +
 +      if (aggid - 1 >= state->dts_naggregations) {
 +              dtrace_aggregation_t **oaggs = state->dts_aggregations;
 +              dtrace_aggregation_t **aggs;
 +              int naggs = state->dts_naggregations << 1;
 +              int onaggs = state->dts_naggregations;
 +
 +              ASSERT(aggid == state->dts_naggregations + 1);
 +
 +              if (naggs == 0) {
 +                      ASSERT(oaggs == NULL);
 +                      naggs = 1;
 +              }
 +
 +              aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
 +
 +              if (oaggs != NULL) {
 +                      bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
 +                      kmem_free(oaggs, onaggs * sizeof (*aggs));
 +              }
 +
 +              state->dts_aggregations = aggs;
 +              state->dts_naggregations = naggs;
 +      }
 +
 +      ASSERT(state->dts_aggregations[aggid - 1] == NULL);
 +      state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
 +
 +      frec = &agg->dtag_first->dta_rec;
 +      if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
 +              frec->dtrd_alignment = sizeof (dtrace_aggid_t);
 +
 +      for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
 +              ASSERT(!act->dta_intuple);
 +              act->dta_intuple = 1;
 +      }
 +
 +      return (&agg->dtag_action);
 +}
 +
 +static void
 +dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
 +{
 +      dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
 +      dtrace_state_t *state = ecb->dte_state;
 +      dtrace_aggid_t aggid = agg->dtag_id;
 +
 +      ASSERT(DTRACEACT_ISAGG(act->dta_kind));
 +#ifdef illumos
 +      vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
 +#else
 +      free_unr(state->dts_aggid_arena, aggid);
 +#endif
 +
 +      ASSERT(state->dts_aggregations[aggid - 1] == agg);
 +      state->dts_aggregations[aggid - 1] = NULL;
 +
 +      kmem_free(agg, sizeof (dtrace_aggregation_t));
 +}
 +
 +static int
 +dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
 +{
 +      dtrace_action_t *action, *last;
 +      dtrace_difo_t *dp = desc->dtad_difo;
 +      uint32_t size = 0, align = sizeof (uint8_t), mask;
 +      uint16_t format = 0;
 +      dtrace_recdesc_t *rec;
 +      dtrace_state_t *state = ecb->dte_state;
 +      dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
 +      uint64_t arg = desc->dtad_arg;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
 +
 +      if (DTRACEACT_ISAGG(desc->dtad_kind)) {
 +              /*
 +               * If this is an aggregating action, there must be neither
 +               * a speculate nor a commit on the action chain.
 +               */
 +              dtrace_action_t *act;
 +
 +              for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
 +                      if (act->dta_kind == DTRACEACT_COMMIT)
 +                              return (EINVAL);
 +
 +                      if (act->dta_kind == DTRACEACT_SPECULATE)
 +                              return (EINVAL);
 +              }
 +
 +              action = dtrace_ecb_aggregation_create(ecb, desc);
 +
 +              if (action == NULL)
 +                      return (EINVAL);
 +      } else {
 +              if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
 +                  (desc->dtad_kind == DTRACEACT_DIFEXPR &&
 +                  dp != NULL && dp->dtdo_destructive)) {
 +                      state->dts_destructive = 1;
 +              }
 +
 +              switch (desc->dtad_kind) {
 +              case DTRACEACT_PRINTF:
 +              case DTRACEACT_PRINTA:
 +              case DTRACEACT_SYSTEM:
 +              case DTRACEACT_FREOPEN:
 +              case DTRACEACT_DIFEXPR:
 +                      /*
 +                       * We know that our arg is a string -- turn it into a
 +                       * format.
 +                       */
 +                      if (arg == 0) {
 +                              ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
 +                                  desc->dtad_kind == DTRACEACT_DIFEXPR);
 +                              format = 0;
 +                      } else {
 +                              ASSERT(arg != 0);
 +#ifdef illumos
 +                              ASSERT(arg > KERNELBASE);
 +#endif
 +                              format = dtrace_format_add(state,
 +                                  (char *)(uintptr_t)arg);
 +                      }
 +
 +                      /*FALLTHROUGH*/
 +              case DTRACEACT_LIBACT:
 +              case DTRACEACT_TRACEMEM:
 +              case DTRACEACT_TRACEMEM_DYNSIZE:
 +                      if (dp == NULL)
 +                              return (EINVAL);
 +
 +                      if ((size = dp->dtdo_rtype.dtdt_size) != 0)
 +                              break;
 +
 +                      if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
 +                              if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
 +                                      return (EINVAL);
 +
 +                              size = opt[DTRACEOPT_STRSIZE];
 +                      }
 +
 +                      break;
 +
 +              case DTRACEACT_STACK:
 +                      if ((nframes = arg) == 0) {
 +                              nframes = opt[DTRACEOPT_STACKFRAMES];
 +                              ASSERT(nframes > 0);
 +                              arg = nframes;
 +                      }
 +
 +                      size = nframes * sizeof (pc_t);
 +                      break;
 +
 +              case DTRACEACT_JSTACK:
 +                      if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
 +                              strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
 +
 +                      if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
 +                              nframes = opt[DTRACEOPT_JSTACKFRAMES];
 +
 +                      arg = DTRACE_USTACK_ARG(nframes, strsize);
 +
 +                      /*FALLTHROUGH*/
 +              case DTRACEACT_USTACK:
 +                      if (desc->dtad_kind != DTRACEACT_JSTACK &&
 +                          (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
 +                              strsize = DTRACE_USTACK_STRSIZE(arg);
 +                              nframes = opt[DTRACEOPT_USTACKFRAMES];
 +                              ASSERT(nframes > 0);
 +                              arg = DTRACE_USTACK_ARG(nframes, strsize);
 +                      }
 +
 +                      /*
 +                       * Save a slot for the pid.
 +                       */
 +                      size = (nframes + 1) * sizeof (uint64_t);
 +                      size += DTRACE_USTACK_STRSIZE(arg);
 +                      size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
 +
 +                      break;
 +
 +              case DTRACEACT_SYM:
 +              case DTRACEACT_MOD:
 +                      if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
 +                          sizeof (uint64_t)) ||
 +                          (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
 +                              return (EINVAL);
 +                      break;
 +
 +              case DTRACEACT_USYM:
 +              case DTRACEACT_UMOD:
 +              case DTRACEACT_UADDR:
 +                      if (dp == NULL ||
 +                          (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
 +                          (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
 +                              return (EINVAL);
 +
 +                      /*
 +                       * We have a slot for the pid, plus a slot for the
 +                       * argument.  To keep things simple (aligned with
 +                       * bitness-neutral sizing), we store each as a 64-bit
 +                       * quantity.
 +                       */
 +                      size = 2 * sizeof (uint64_t);
 +                      break;
 +
 +              case DTRACEACT_STOP:
 +              case DTRACEACT_BREAKPOINT:
 +              case DTRACEACT_PANIC:
 +                      break;
 +
 +              case DTRACEACT_CHILL:
 +              case DTRACEACT_DISCARD:
 +              case DTRACEACT_RAISE:
 +                      if (dp == NULL)
 +                              return (EINVAL);
 +                      break;
 +
 +              case DTRACEACT_EXIT:
 +                      if (dp == NULL ||
 +                          (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
 +                          (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
 +                              return (EINVAL);
 +                      break;
 +
 +              case DTRACEACT_SPECULATE:
 +                      if (ecb->dte_size > sizeof (dtrace_rechdr_t))
 +                              return (EINVAL);
 +
 +                      if (dp == NULL)
 +                              return (EINVAL);
 +
 +                      state->dts_speculates = 1;
 +                      break;
 +
 +              case DTRACEACT_PRINTM:
 +                      size = dp->dtdo_rtype.dtdt_size;
 +                      break;
 +
 +              case DTRACEACT_PRINTT:
 +                      size = dp->dtdo_rtype.dtdt_size;
 +                      break;
 +
 +              case DTRACEACT_COMMIT: {
 +                      dtrace_action_t *act = ecb->dte_action;
 +
 +                      for (; act != NULL; act = act->dta_next) {
 +                              if (act->dta_kind == DTRACEACT_COMMIT)
 +                                      return (EINVAL);
 +                      }
 +
 +                      if (dp == NULL)
 +                              return (EINVAL);
 +                      break;
 +              }
 +
 +              default:
 +                      return (EINVAL);
 +              }
 +
 +              if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
 +                      /*
 +                       * If this is a data-storing action or a speculate,
 +                       * we must be sure that there isn't a commit on the
 +                       * action chain.
 +                       */
 +                      dtrace_action_t *act = ecb->dte_action;
 +
 +                      for (; act != NULL; act = act->dta_next) {
 +                              if (act->dta_kind == DTRACEACT_COMMIT)
 +                                      return (EINVAL);
 +                      }
 +              }
 +
 +              action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
 +              action->dta_rec.dtrd_size = size;
 +      }
 +
 +      action->dta_refcnt = 1;
 +      rec = &action->dta_rec;
 +      size = rec->dtrd_size;
 +
 +      for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
 +              if (!(size & mask)) {
 +                      align = mask + 1;
 +                      break;
 +              }
 +      }
 +
 +      action->dta_kind = desc->dtad_kind;
 +
 +      if ((action->dta_difo = dp) != NULL)
 +              dtrace_difo_hold(dp);
 +
 +      rec->dtrd_action = action->dta_kind;
 +      rec->dtrd_arg = arg;
 +      rec->dtrd_uarg = desc->dtad_uarg;
 +      rec->dtrd_alignment = (uint16_t)align;
 +      rec->dtrd_format = format;
 +
 +      if ((last = ecb->dte_action_last) != NULL) {
 +              ASSERT(ecb->dte_action != NULL);
 +              action->dta_prev = last;
 +              last->dta_next = action;
 +      } else {
 +              ASSERT(ecb->dte_action == NULL);
 +              ecb->dte_action = action;
 +      }
 +
 +      ecb->dte_action_last = action;
 +
 +      return (0);
 +}
 +
 +static void
 +dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
 +{
 +      dtrace_action_t *act = ecb->dte_action, *next;
 +      dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
 +      dtrace_difo_t *dp;
 +      uint16_t format;
 +
 +      if (act != NULL && act->dta_refcnt > 1) {
 +              ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
 +              act->dta_refcnt--;
 +      } else {
 +              for (; act != NULL; act = next) {
 +                      next = act->dta_next;
 +                      ASSERT(next != NULL || act == ecb->dte_action_last);
 +                      ASSERT(act->dta_refcnt == 1);
 +
 +                      if ((format = act->dta_rec.dtrd_format) != 0)
 +                              dtrace_format_remove(ecb->dte_state, format);
 +
 +                      if ((dp = act->dta_difo) != NULL)
 +                              dtrace_difo_release(dp, vstate);
 +
 +                      if (DTRACEACT_ISAGG(act->dta_kind)) {
 +                              dtrace_ecb_aggregation_destroy(ecb, act);
 +                      } else {
 +                              kmem_free(act, sizeof (dtrace_action_t));
 +                      }
 +              }
 +      }
 +
 +      ecb->dte_action = NULL;
 +      ecb->dte_action_last = NULL;
 +      ecb->dte_size = 0;
 +}
 +
 +static void
 +dtrace_ecb_disable(dtrace_ecb_t *ecb)
 +{
 +      /*
 +       * We disable the ECB by removing it from its probe.
 +       */
 +      dtrace_ecb_t *pecb, *prev = NULL;
 +      dtrace_probe_t *probe = ecb->dte_probe;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      if (probe == NULL) {
 +              /*
 +               * This is the NULL probe; there is nothing to disable.
 +               */
 +              return;
 +      }
 +
 +      for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
 +              if (pecb == ecb)
 +                      break;
 +              prev = pecb;
 +      }
 +
 +      ASSERT(pecb != NULL);
 +
 +      if (prev == NULL) {
 +              probe->dtpr_ecb = ecb->dte_next;
 +      } else {
 +              prev->dte_next = ecb->dte_next;
 +      }
 +
 +      if (ecb == probe->dtpr_ecb_last) {
 +              ASSERT(ecb->dte_next == NULL);
 +              probe->dtpr_ecb_last = prev;
 +      }
 +
 +      /*
 +       * The ECB has been disconnected from the probe; now sync to assure
 +       * that all CPUs have seen the change before returning.
 +       */
 +      dtrace_sync();
 +
 +      if (probe->dtpr_ecb == NULL) {
 +              /*
 +               * That was the last ECB on the probe; clear the predicate
 +               * cache ID for the probe, disable it and sync one more time
 +               * to assure that we'll never hit it again.
 +               */
 +              dtrace_provider_t *prov = probe->dtpr_provider;
 +
 +              ASSERT(ecb->dte_next == NULL);
 +              ASSERT(probe->dtpr_ecb_last == NULL);
 +              probe->dtpr_predcache = DTRACE_CACHEIDNONE;
 +              prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
 +                  probe->dtpr_id, probe->dtpr_arg);
 +              dtrace_sync();
 +      } else {
 +              /*
 +               * There is at least one ECB remaining on the probe.  If there
 +               * is _exactly_ one, set the probe's predicate cache ID to be
 +               * the predicate cache ID of the remaining ECB.
 +               */
 +              ASSERT(probe->dtpr_ecb_last != NULL);
 +              ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
 +
 +              if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
 +                      dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
 +
 +                      ASSERT(probe->dtpr_ecb->dte_next == NULL);
 +
 +                      if (p != NULL)
 +                              probe->dtpr_predcache = p->dtp_cacheid;
 +              }
 +
 +              ecb->dte_next = NULL;
 +      }
 +}
 +
 +static void
 +dtrace_ecb_destroy(dtrace_ecb_t *ecb)
 +{
 +      dtrace_state_t *state = ecb->dte_state;
 +      dtrace_vstate_t *vstate = &state->dts_vstate;
 +      dtrace_predicate_t *pred;
 +      dtrace_epid_t epid = ecb->dte_epid;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(ecb->dte_next == NULL);
 +      ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
 +
 +      if ((pred = ecb->dte_predicate) != NULL)
 +              dtrace_predicate_release(pred, vstate);
 +
 +      dtrace_ecb_action_remove(ecb);
 +
 +      ASSERT(state->dts_ecbs[epid - 1] == ecb);
 +      state->dts_ecbs[epid - 1] = NULL;
 +
 +      kmem_free(ecb, sizeof (dtrace_ecb_t));
 +}
 +
 +static dtrace_ecb_t *
 +dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
 +    dtrace_enabling_t *enab)
 +{
 +      dtrace_ecb_t *ecb;
 +      dtrace_predicate_t *pred;
 +      dtrace_actdesc_t *act;
 +      dtrace_provider_t *prov;
 +      dtrace_ecbdesc_t *desc = enab->dten_current;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(state != NULL);
 +
 +      ecb = dtrace_ecb_add(state, probe);
 +      ecb->dte_uarg = desc->dted_uarg;
 +
 +      if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
 +              dtrace_predicate_hold(pred);
 +              ecb->dte_predicate = pred;
 +      }
 +
 +      if (probe != NULL) {
 +              /*
 +               * If the provider shows more leg than the consumer is old
 +               * enough to see, we need to enable the appropriate implicit
 +               * predicate bits to prevent the ecb from activating at
 +               * revealing times.
 +               *
 +               * Providers specifying DTRACE_PRIV_USER at register time
 +               * are stating that they need the /proc-style privilege
 +               * model to be enforced, and this is what DTRACE_COND_OWNER
 +               * and DTRACE_COND_ZONEOWNER will then do at probe time.
 +               */
 +              prov = probe->dtpr_provider;
 +              if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
 +                  (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
 +                      ecb->dte_cond |= DTRACE_COND_OWNER;
 +
 +              if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
 +                  (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
 +                      ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
 +
 +              /*
 +               * If the provider shows us kernel innards and the user
 +               * is lacking sufficient privilege, enable the
 +               * DTRACE_COND_USERMODE implicit predicate.
 +               */
 +              if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
 +                  (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
 +                      ecb->dte_cond |= DTRACE_COND_USERMODE;
 +      }
 +
 +      if (dtrace_ecb_create_cache != NULL) {
 +              /*
 +               * If we have a cached ecb, we'll use its action list instead
 +               * of creating our own (saving both time and space).
 +               */
 +              dtrace_ecb_t *cached = dtrace_ecb_create_cache;
 +              dtrace_action_t *act = cached->dte_action;
 +
 +              if (act != NULL) {
 +                      ASSERT(act->dta_refcnt > 0);
 +                      act->dta_refcnt++;
 +                      ecb->dte_action = act;
 +                      ecb->dte_action_last = cached->dte_action_last;
 +                      ecb->dte_needed = cached->dte_needed;
 +                      ecb->dte_size = cached->dte_size;
 +                      ecb->dte_alignment = cached->dte_alignment;
 +              }
 +
 +              return (ecb);
 +      }
 +
 +      for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
 +              if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
 +                      dtrace_ecb_destroy(ecb);
 +                      return (NULL);
 +              }
 +      }
 +
 +      dtrace_ecb_resize(ecb);
 +
 +      return (dtrace_ecb_create_cache = ecb);
 +}
 +
 +static int
 +dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
 +{
 +      dtrace_ecb_t *ecb;
 +      dtrace_enabling_t *enab = arg;
 +      dtrace_state_t *state = enab->dten_vstate->dtvs_state;
 +
 +      ASSERT(state != NULL);
 +
 +      if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
 +              /*
 +               * This probe was created in a generation for which this
 +               * enabling has previously created ECBs; we don't want to
 +               * enable it again, so just kick out.
 +               */
 +              return (DTRACE_MATCH_NEXT);
 +      }
 +
 +      if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
 +              return (DTRACE_MATCH_DONE);
 +
 +      dtrace_ecb_enable(ecb);
 +      return (DTRACE_MATCH_NEXT);
 +}
 +
 +static dtrace_ecb_t *
 +dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
 +{
 +      dtrace_ecb_t *ecb;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      if (id == 0 || id > state->dts_necbs)
 +              return (NULL);
 +
 +      ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
 +      ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
 +
 +      return (state->dts_ecbs[id - 1]);
 +}
 +
 +static dtrace_aggregation_t *
 +dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
 +{
 +      dtrace_aggregation_t *agg;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      if (id == 0 || id > state->dts_naggregations)
 +              return (NULL);
 +
 +      ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
 +      ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
 +          agg->dtag_id == id);
 +
 +      return (state->dts_aggregations[id - 1]);
 +}
 +
 +/*
 + * DTrace Buffer Functions
 + *
 + * The following functions manipulate DTrace buffers.  Most of these functions
 + * are called in the context of establishing or processing consumer state;
 + * exceptions are explicitly noted.
 + */
 +
 +/*
 + * Note:  called from cross call context.  This function switches the two
 + * buffers on a given CPU.  The atomicity of this operation is assured by
 + * disabling interrupts while the actual switch takes place; the disabling of
 + * interrupts serializes the execution with any execution of dtrace_probe() on
 + * the same CPU.
 + */
 +static void
 +dtrace_buffer_switch(dtrace_buffer_t *buf)
 +{
 +      caddr_t tomax = buf->dtb_tomax;
 +      caddr_t xamot = buf->dtb_xamot;
 +      dtrace_icookie_t cookie;
 +      hrtime_t now;
 +
 +      ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
 +      ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
 +
 +      cookie = dtrace_interrupt_disable();
 +      now = dtrace_gethrtime();
 +      buf->dtb_tomax = xamot;
 +      buf->dtb_xamot = tomax;
 +      buf->dtb_xamot_drops = buf->dtb_drops;
 +      buf->dtb_xamot_offset = buf->dtb_offset;
 +      buf->dtb_xamot_errors = buf->dtb_errors;
 +      buf->dtb_xamot_flags = buf->dtb_flags;
 +      buf->dtb_offset = 0;
 +      buf->dtb_drops = 0;
 +      buf->dtb_errors = 0;
 +      buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
 +      buf->dtb_interval = now - buf->dtb_switched;
 +      buf->dtb_switched = now;
 +      dtrace_interrupt_enable(cookie);
 +}
 +
 +/*
 + * Note:  called from cross call context.  This function activates a buffer
 + * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
 + * is guaranteed by the disabling of interrupts.
 + */
 +static void
 +dtrace_buffer_activate(dtrace_state_t *state)
 +{
 +      dtrace_buffer_t *buf;
 +      dtrace_icookie_t cookie = dtrace_interrupt_disable();
 +
 +      buf = &state->dts_buffer[curcpu];
 +
 +      if (buf->dtb_tomax != NULL) {
 +              /*
 +               * We might like to assert that the buffer is marked inactive,
 +               * but this isn't necessarily true:  the buffer for the CPU
 +               * that processes the BEGIN probe has its buffer activated
 +               * manually.  In this case, we take the (harmless) action
 +               * re-clearing the bit INACTIVE bit.
 +               */
 +              buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
 +      }
 +
 +      dtrace_interrupt_enable(cookie);
 +}
 +
 +static int
 +dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
 +    processorid_t cpu, int *factor)
 +{
 +#ifdef illumos
 +      cpu_t *cp;
 +#endif
 +      dtrace_buffer_t *buf;
 +      int allocated = 0, desired = 0;
 +
 +#ifdef illumos
 +      ASSERT(MUTEX_HELD(&cpu_lock));
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      *factor = 1;
 +
 +      if (size > dtrace_nonroot_maxsize &&
 +          !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
 +              return (EFBIG);
 +
 +      cp = cpu_list;
 +
 +      do {
 +              if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
 +                      continue;
 +
 +              buf = &bufs[cp->cpu_id];
 +
 +              /*
 +               * If there is already a buffer allocated for this CPU, it
 +               * is only possible that this is a DR event.  In this case,
 +               */
 +              if (buf->dtb_tomax != NULL) {
 +                      ASSERT(buf->dtb_size == size);
 +                      continue;
 +              }
 +
 +              ASSERT(buf->dtb_xamot == NULL);
 +
 +              if ((buf->dtb_tomax = kmem_zalloc(size,
 +                  KM_NOSLEEP | KM_NORMALPRI)) == NULL)
 +                      goto err;
 +
 +              buf->dtb_size = size;
 +              buf->dtb_flags = flags;
 +              buf->dtb_offset = 0;
 +              buf->dtb_drops = 0;
 +
 +              if (flags & DTRACEBUF_NOSWITCH)
 +                      continue;
 +
 +              if ((buf->dtb_xamot = kmem_zalloc(size,
 +                  KM_NOSLEEP | KM_NORMALPRI)) == NULL)
 +                      goto err;
 +      } while ((cp = cp->cpu_next) != cpu_list);
 +
 +      return (0);
 +
 +err:
 +      cp = cpu_list;
 +
 +      do {
 +              if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
 +                      continue;
 +
 +              buf = &bufs[cp->cpu_id];
 +              desired += 2;
 +
 +              if (buf->dtb_xamot != NULL) {
 +                      ASSERT(buf->dtb_tomax != NULL);
 +                      ASSERT(buf->dtb_size == size);
 +                      kmem_free(buf->dtb_xamot, size);
 +                      allocated++;
 +              }
 +
 +              if (buf->dtb_tomax != NULL) {
 +                      ASSERT(buf->dtb_size == size);
 +                      kmem_free(buf->dtb_tomax, size);
 +                      allocated++;
 +              }
 +
 +              buf->dtb_tomax = NULL;
 +              buf->dtb_xamot = NULL;
 +              buf->dtb_size = 0;
 +      } while ((cp = cp->cpu_next) != cpu_list);
 +#else
 +      int i;
 +
 +      *factor = 1;
 +#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
 +    defined(__mips__) || defined(__powerpc__)
 +      /*
 +       * FreeBSD isn't good at limiting the amount of memory we
 +       * ask to malloc, so let's place a limit here before trying
 +       * to do something that might well end in tears at bedtime.
 +       */
 +      if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
 +              return (ENOMEM);
 +#endif
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      CPU_FOREACH(i) {
 +              if (cpu != DTRACE_CPUALL && cpu != i)
 +                      continue;
 +
 +              buf = &bufs[i];
 +
 +              /*
 +               * If there is already a buffer allocated for this CPU, it
 +               * is only possible that this is a DR event.  In this case,
 +               * the buffer size must match our specified size.
 +               */
 +              if (buf->dtb_tomax != NULL) {
 +                      ASSERT(buf->dtb_size == size);
 +                      continue;
 +              }
 +
 +              ASSERT(buf->dtb_xamot == NULL);
 +
 +              if ((buf->dtb_tomax = kmem_zalloc(size,
 +                  KM_NOSLEEP | KM_NORMALPRI)) == NULL)
 +                      goto err;
 +
 +              buf->dtb_size = size;
 +              buf->dtb_flags = flags;
 +              buf->dtb_offset = 0;
 +              buf->dtb_drops = 0;
 +
 +              if (flags & DTRACEBUF_NOSWITCH)
 +                      continue;
 +
 +              if ((buf->dtb_xamot = kmem_zalloc(size,
 +                  KM_NOSLEEP | KM_NORMALPRI)) == NULL)
 +                      goto err;
 +      }
 +
 +      return (0);
 +
 +err:
 +      /*
 +       * Error allocating memory, so free the buffers that were
 +       * allocated before the failed allocation.
 +       */
 +      CPU_FOREACH(i) {
 +              if (cpu != DTRACE_CPUALL && cpu != i)
 +                      continue;
 +
 +              buf = &bufs[i];
 +              desired += 2;
 +
 +              if (buf->dtb_xamot != NULL) {
 +                      ASSERT(buf->dtb_tomax != NULL);
 +                      ASSERT(buf->dtb_size == size);
 +                      kmem_free(buf->dtb_xamot, size);
 +                      allocated++;
 +              }
 +
 +              if (buf->dtb_tomax != NULL) {
 +                      ASSERT(buf->dtb_size == size);
 +                      kmem_free(buf->dtb_tomax, size);
 +                      allocated++;
 +              }
 +
 +              buf->dtb_tomax = NULL;
 +              buf->dtb_xamot = NULL;
 +              buf->dtb_size = 0;
 +
 +      }
 +#endif
 +      *factor = desired / (allocated > 0 ? allocated : 1);
 +
 +      return (ENOMEM);
 +}
 +
 +/*
 + * Note:  called from probe context.  This function just increments the drop
 + * count on a buffer.  It has been made a function to allow for the
 + * possibility of understanding the source of mysterious drop counts.  (A
 + * problem for which one may be particularly disappointed that DTrace cannot
 + * be used to understand DTrace.)
 + */
 +static void
 +dtrace_buffer_drop(dtrace_buffer_t *buf)
 +{
 +      buf->dtb_drops++;
 +}
 +
 +/*
 + * Note:  called from probe context.  This function is called to reserve space
 + * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
 + * mstate.  Returns the new offset in the buffer, or a negative value if an
 + * error has occurred.
 + */
 +static intptr_t
 +dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
 +    dtrace_state_t *state, dtrace_mstate_t *mstate)
 +{
 +      intptr_t offs = buf->dtb_offset, soffs;
 +      intptr_t woffs;
 +      caddr_t tomax;
 +      size_t total;
 +
 +      if (buf->dtb_flags & DTRACEBUF_INACTIVE)
 +              return (-1);
 +
 +      if ((tomax = buf->dtb_tomax) == NULL) {
 +              dtrace_buffer_drop(buf);
 +              return (-1);
 +      }
 +
 +      if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
 +              while (offs & (align - 1)) {
 +                      /*
 +                       * Assert that our alignment is off by a number which
 +                       * is itself sizeof (uint32_t) aligned.
 +                       */
 +                      ASSERT(!((align - (offs & (align - 1))) &
 +                          (sizeof (uint32_t) - 1)));
 +                      DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
 +                      offs += sizeof (uint32_t);
 +              }
 +
 +              if ((soffs = offs + needed) > buf->dtb_size) {
 +                      dtrace_buffer_drop(buf);
 +                      return (-1);
 +              }
 +
 +              if (mstate == NULL)
 +                      return (offs);
 +
 +              mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
 +              mstate->dtms_scratch_size = buf->dtb_size - soffs;
 +              mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
 +
 +              return (offs);
 +      }
 +
 +      if (buf->dtb_flags & DTRACEBUF_FILL) {
 +              if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
 +                  (buf->dtb_flags & DTRACEBUF_FULL))
 +                      return (-1);
 +              goto out;
 +      }
 +
 +      total = needed + (offs & (align - 1));
 +
 +      /*
 +       * For a ring buffer, life is quite a bit more complicated.  Before
 +       * we can store any padding, we need to adjust our wrapping offset.
 +       * (If we've never before wrapped or we're not about to, no adjustment
 +       * is required.)
 +       */
 +      if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
 +          offs + total > buf->dtb_size) {
 +              woffs = buf->dtb_xamot_offset;
 +
 +              if (offs + total > buf->dtb_size) {
 +                      /*
 +                       * We can't fit in the end of the buffer.  First, a
 +                       * sanity check that we can fit in the buffer at all.
 +                       */
 +                      if (total > buf->dtb_size) {
 +                              dtrace_buffer_drop(buf);
 +                              return (-1);
 +                      }
 +
 +                      /*
 +                       * We're going to be storing at the top of the buffer,
 +                       * so now we need to deal with the wrapped offset.  We
 +                       * only reset our wrapped offset to 0 if it is
 +                       * currently greater than the current offset.  If it
 +                       * is less than the current offset, it is because a
 +                       * previous allocation induced a wrap -- but the
 +                       * allocation didn't subsequently take the space due
 +                       * to an error or false predicate evaluation.  In this
 +                       * case, we'll just leave the wrapped offset alone: if
 +                       * the wrapped offset hasn't been advanced far enough
 +                       * for this allocation, it will be adjusted in the
 +                       * lower loop.
 +                       */
 +                      if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
 +                              if (woffs >= offs)
 +                                      woffs = 0;
 +                      } else {
 +                              woffs = 0;
 +                      }
 +
 +                      /*
 +                       * Now we know that we're going to be storing to the
 +                       * top of the buffer and that there is room for us
 +                       * there.  We need to clear the buffer from the current
 +                       * offset to the end (there may be old gunk there).
 +                       */
 +                      while (offs < buf->dtb_size)
 +                              tomax[offs++] = 0;
 +
 +                      /*
 +                       * We need to set our offset to zero.  And because we
 +                       * are wrapping, we need to set the bit indicating as
 +                       * much.  We can also adjust our needed space back
 +                       * down to the space required by the ECB -- we know
 +                       * that the top of the buffer is aligned.
 +                       */
 +                      offs = 0;
 +                      total = needed;
 +                      buf->dtb_flags |= DTRACEBUF_WRAPPED;
 +              } else {
 +                      /*
 +                       * There is room for us in the buffer, so we simply
 +                       * need to check the wrapped offset.
 +                       */
 +                      if (woffs < offs) {
 +                              /*
 +                               * The wrapped offset is less than the offset.
 +                               * This can happen if we allocated buffer space
 +                               * that induced a wrap, but then we didn't
 +                               * subsequently take the space due to an error
 +                               * or false predicate evaluation.  This is
 +                               * okay; we know that _this_ allocation isn't
 +                               * going to induce a wrap.  We still can't
 +                               * reset the wrapped offset to be zero,
 +                               * however: the space may have been trashed in
 +                               * the previous failed probe attempt.  But at
 +                               * least the wrapped offset doesn't need to
 +                               * be adjusted at all...
 +                               */
 +                              goto out;
 +                      }
 +              }
 +
 +              while (offs + total > woffs) {
 +                      dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
 +                      size_t size;
 +
 +                      if (epid == DTRACE_EPIDNONE) {
 +                              size = sizeof (uint32_t);
 +                      } else {
 +                              ASSERT3U(epid, <=, state->dts_necbs);
 +                              ASSERT(state->dts_ecbs[epid - 1] != NULL);
 +
 +                              size = state->dts_ecbs[epid - 1]->dte_size;
 +                      }
 +
 +                      ASSERT(woffs + size <= buf->dtb_size);
 +                      ASSERT(size != 0);
 +
 +                      if (woffs + size == buf->dtb_size) {
 +                              /*
 +                               * We've reached the end of the buffer; we want
 +                               * to set the wrapped offset to 0 and break
 +                               * out.  However, if the offs is 0, then we're
 +                               * in a strange edge-condition:  the amount of
 +                               * space that we want to reserve plus the size
 +                               * of the record that we're overwriting is
 +                               * greater than the size of the buffer.  This
 +                               * is problematic because if we reserve the
 +                               * space but subsequently don't consume it (due
 +                               * to a failed predicate or error) the wrapped
 +                               * offset will be 0 -- yet the EPID at offset 0
 +                               * will not be committed.  This situation is
 +                               * relatively easy to deal with:  if we're in
 +                               * this case, the buffer is indistinguishable
 +                               * from one that hasn't wrapped; we need only
 +                               * finish the job by clearing the wrapped bit,
 +                               * explicitly setting the offset to be 0, and
 +                               * zero'ing out the old data in the buffer.
 +                               */
 +                              if (offs == 0) {
 +                                      buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
 +                                      buf->dtb_offset = 0;
 +                                      woffs = total;
 +
 +                                      while (woffs < buf->dtb_size)
 +                                              tomax[woffs++] = 0;
 +                              }
 +
 +                              woffs = 0;
 +                              break;
 +                      }
 +
 +                      woffs += size;
 +              }
 +
 +              /*
 +               * We have a wrapped offset.  It may be that the wrapped offset
 +               * has become zero -- that's okay.
 +               */
 +              buf->dtb_xamot_offset = woffs;
 +      }
 +
 +out:
 +      /*
 +       * Now we can plow the buffer with any necessary padding.
 +       */
 +      while (offs & (align - 1)) {
 +              /*
 +               * Assert that our alignment is off by a number which
 +               * is itself sizeof (uint32_t) aligned.
 +               */
 +              ASSERT(!((align - (offs & (align - 1))) &
 +                  (sizeof (uint32_t) - 1)));
 +              DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
 +              offs += sizeof (uint32_t);
 +      }
 +
 +      if (buf->dtb_flags & DTRACEBUF_FILL) {
 +              if (offs + needed > buf->dtb_size - state->dts_reserve) {
 +                      buf->dtb_flags |= DTRACEBUF_FULL;
 +                      return (-1);
 +              }
 +      }
 +
 +      if (mstate == NULL)
 +              return (offs);
 +
 +      /*
 +       * For ring buffers and fill buffers, the scratch space is always
 +       * the inactive buffer.
 +       */
 +      mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
 +      mstate->dtms_scratch_size = buf->dtb_size;
 +      mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
 +
 +      return (offs);
 +}
 +
 +static void
 +dtrace_buffer_polish(dtrace_buffer_t *buf)
 +{
 +      ASSERT(buf->dtb_flags & DTRACEBUF_RING);
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
 +              return;
 +
 +      /*
 +       * We need to polish the ring buffer.  There are three cases:
 +       *
 +       * - The first (and presumably most common) is that there is no gap
 +       *   between the buffer offset and the wrapped offset.  In this case,
 +       *   there is nothing in the buffer that isn't valid data; we can
 +       *   mark the buffer as polished and return.
 +       *
 +       * - The second (less common than the first but still more common
 +       *   than the third) is that there is a gap between the buffer offset
 +       *   and the wrapped offset, and the wrapped offset is larger than the
 +       *   buffer offset.  This can happen because of an alignment issue, or
 +       *   can happen because of a call to dtrace_buffer_reserve() that
 +       *   didn't subsequently consume the buffer space.  In this case,
 +       *   we need to zero the data from the buffer offset to the wrapped
 +       *   offset.
 +       *
 +       * - The third (and least common) is that there is a gap between the
 +       *   buffer offset and the wrapped offset, but the wrapped offset is
 +       *   _less_ than the buffer offset.  This can only happen because a
 +       *   call to dtrace_buffer_reserve() induced a wrap, but the space
 +       *   was not subsequently consumed.  In this case, we need to zero the
 +       *   space from the offset to the end of the buffer _and_ from the
 +       *   top of the buffer to the wrapped offset.
 +       */
 +      if (buf->dtb_offset < buf->dtb_xamot_offset) {
 +              bzero(buf->dtb_tomax + buf->dtb_offset,
 +                  buf->dtb_xamot_offset - buf->dtb_offset);
 +      }
 +
 +      if (buf->dtb_offset > buf->dtb_xamot_offset) {
 +              bzero(buf->dtb_tomax + buf->dtb_offset,
 +                  buf->dtb_size - buf->dtb_offset);
 +              bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
 +      }
 +}
 +
 +/*
 + * This routine determines if data generated at the specified time has likely
 + * been entirely consumed at user-level.  This routine is called to determine
 + * if an ECB on a defunct probe (but for an active enabling) can be safely
 + * disabled and destroyed.
 + */
 +static int
 +dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
 +{
 +      int i;
 +
 +      for (i = 0; i < NCPU; i++) {
 +              dtrace_buffer_t *buf = &bufs[i];
 +
 +              if (buf->dtb_size == 0)
 +                      continue;
 +
 +              if (buf->dtb_flags & DTRACEBUF_RING)
 +                      return (0);
 +
 +              if (!buf->dtb_switched && buf->dtb_offset != 0)
 +                      return (0);
 +
 +              if (buf->dtb_switched - buf->dtb_interval < when)
 +                      return (0);
 +      }
 +
 +      return (1);
 +}
 +
 +static void
 +dtrace_buffer_free(dtrace_buffer_t *bufs)
 +{
 +      int i;
 +
 +      for (i = 0; i < NCPU; i++) {
 +              dtrace_buffer_t *buf = &bufs[i];
 +
 +              if (buf->dtb_tomax == NULL) {
 +                      ASSERT(buf->dtb_xamot == NULL);
 +                      ASSERT(buf->dtb_size == 0);
 +                      continue;
 +              }
 +
 +              if (buf->dtb_xamot != NULL) {
 +                      ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
 +                      kmem_free(buf->dtb_xamot, buf->dtb_size);
 +              }
 +
 +              kmem_free(buf->dtb_tomax, buf->dtb_size);
 +              buf->dtb_size = 0;
 +              buf->dtb_tomax = NULL;
 +              buf->dtb_xamot = NULL;
 +      }
 +}
 +
 +/*
 + * DTrace Enabling Functions
 + */
 +static dtrace_enabling_t *
 +dtrace_enabling_create(dtrace_vstate_t *vstate)
 +{
 +      dtrace_enabling_t *enab;
 +
 +      enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
 +      enab->dten_vstate = vstate;
 +
 +      return (enab);
 +}
 +
 +static void
 +dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
 +{
 +      dtrace_ecbdesc_t **ndesc;
 +      size_t osize, nsize;
 +
 +      /*
 +       * We can't add to enablings after we've enabled them, or after we've
 +       * retained them.
 +       */
 +      ASSERT(enab->dten_probegen == 0);
 +      ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
 +
 +      if (enab->dten_ndesc < enab->dten_maxdesc) {
 +              enab->dten_desc[enab->dten_ndesc++] = ecb;
 +              return;
 +      }
 +
 +      osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
 +
 +      if (enab->dten_maxdesc == 0) {
 +              enab->dten_maxdesc = 1;
 +      } else {
 +              enab->dten_maxdesc <<= 1;
 +      }
 +
 +      ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
 +
 +      nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
 +      ndesc = kmem_zalloc(nsize, KM_SLEEP);
 +      bcopy(enab->dten_desc, ndesc, osize);
 +      if (enab->dten_desc != NULL)
 +              kmem_free(enab->dten_desc, osize);
 +
 +      enab->dten_desc = ndesc;
 +      enab->dten_desc[enab->dten_ndesc++] = ecb;
 +}
 +
 +static void
 +dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
 +    dtrace_probedesc_t *pd)
 +{
 +      dtrace_ecbdesc_t *new;
 +      dtrace_predicate_t *pred;
 +      dtrace_actdesc_t *act;
 +
 +      /*
 +       * We're going to create a new ECB description that matches the
 +       * specified ECB in every way, but has the specified probe description.
 +       */
 +      new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
 +
 +      if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
 +              dtrace_predicate_hold(pred);
 +
 +      for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
 +              dtrace_actdesc_hold(act);
 +
 +      new->dted_action = ecb->dted_action;
 +      new->dted_pred = ecb->dted_pred;
 +      new->dted_probe = *pd;
 +      new->dted_uarg = ecb->dted_uarg;
 +
 +      dtrace_enabling_add(enab, new);
 +}
 +
 +static void
 +dtrace_enabling_dump(dtrace_enabling_t *enab)
 +{
 +      int i;
 +
 +      for (i = 0; i < enab->dten_ndesc; i++) {
 +              dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
 +
 +              cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
 +                  desc->dtpd_provider, desc->dtpd_mod,
 +                  desc->dtpd_func, desc->dtpd_name);
 +      }
 +}
 +
 +static void
 +dtrace_enabling_destroy(dtrace_enabling_t *enab)
 +{
 +      int i;
 +      dtrace_ecbdesc_t *ep;
 +      dtrace_vstate_t *vstate = enab->dten_vstate;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      for (i = 0; i < enab->dten_ndesc; i++) {
 +              dtrace_actdesc_t *act, *next;
 +              dtrace_predicate_t *pred;
 +
 +              ep = enab->dten_desc[i];
 +
 +              if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
 +                      dtrace_predicate_release(pred, vstate);
 +
 +              for (act = ep->dted_action; act != NULL; act = next) {
 +                      next = act->dtad_next;
 +                      dtrace_actdesc_release(act, vstate);
 +              }
 +
 +              kmem_free(ep, sizeof (dtrace_ecbdesc_t));
 +      }
 +
 +      if (enab->dten_desc != NULL)
 +              kmem_free(enab->dten_desc,
 +                  enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
 +
 +      /*
 +       * If this was a retained enabling, decrement the dts_nretained count
 +       * and take it off of the dtrace_retained list.
 +       */
 +      if (enab->dten_prev != NULL || enab->dten_next != NULL ||
 +          dtrace_retained == enab) {
 +              ASSERT(enab->dten_vstate->dtvs_state != NULL);
 +              ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
 +              enab->dten_vstate->dtvs_state->dts_nretained--;
 +              dtrace_retained_gen++;
 +      }
 +
 +      if (enab->dten_prev == NULL) {
 +              if (dtrace_retained == enab) {
 +                      dtrace_retained = enab->dten_next;
 +
 +                      if (dtrace_retained != NULL)
 +                              dtrace_retained->dten_prev = NULL;
 +              }
 +      } else {
 +              ASSERT(enab != dtrace_retained);
 +              ASSERT(dtrace_retained != NULL);
 +              enab->dten_prev->dten_next = enab->dten_next;
 +      }
 +
 +      if (enab->dten_next != NULL) {
 +              ASSERT(dtrace_retained != NULL);
 +              enab->dten_next->dten_prev = enab->dten_prev;
 +      }
 +
 +      kmem_free(enab, sizeof (dtrace_enabling_t));
 +}
 +
 +static int
 +dtrace_enabling_retain(dtrace_enabling_t *enab)
 +{
 +      dtrace_state_t *state;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
 +      ASSERT(enab->dten_vstate != NULL);
 +
 +      state = enab->dten_vstate->dtvs_state;
 +      ASSERT(state != NULL);
 +
 +      /*
 +       * We only allow each state to retain dtrace_retain_max enablings.
 +       */
 +      if (state->dts_nretained >= dtrace_retain_max)
 +              return (ENOSPC);
 +
 +      state->dts_nretained++;
 +      dtrace_retained_gen++;
 +
 +      if (dtrace_retained == NULL) {
 +              dtrace_retained = enab;
 +              return (0);
 +      }
 +
 +      enab->dten_next = dtrace_retained;
 +      dtrace_retained->dten_prev = enab;
 +      dtrace_retained = enab;
 +
 +      return (0);
 +}
 +
 +static int
 +dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
 +    dtrace_probedesc_t *create)
 +{
 +      dtrace_enabling_t *new, *enab;
 +      int found = 0, err = ENOENT;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
 +      ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
 +      ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
 +      ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
 +
 +      new = dtrace_enabling_create(&state->dts_vstate);
 +
 +      /*
 +       * Iterate over all retained enablings, looking for enablings that
 +       * match the specified state.
 +       */
 +      for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
 +              int i;
 +
 +              /*
 +               * dtvs_state can only be NULL for helper enablings -- and
 +               * helper enablings can't be retained.
 +               */
 +              ASSERT(enab->dten_vstate->dtvs_state != NULL);
 +
 +              if (enab->dten_vstate->dtvs_state != state)
 +                      continue;
 +
 +              /*
 +               * Now iterate over each probe description; we're looking for
 +               * an exact match to the specified probe description.
 +               */
 +              for (i = 0; i < enab->dten_ndesc; i++) {
 +                      dtrace_ecbdesc_t *ep = enab->dten_desc[i];
 +                      dtrace_probedesc_t *pd = &ep->dted_probe;
 +
 +                      if (strcmp(pd->dtpd_provider, match->dtpd_provider))
 +                              continue;
 +
 +                      if (strcmp(pd->dtpd_mod, match->dtpd_mod))
 +                              continue;
 +
 +                      if (strcmp(pd->dtpd_func, match->dtpd_func))
 +                              continue;
 +
 +                      if (strcmp(pd->dtpd_name, match->dtpd_name))
 +                              continue;
 +
 +                      /*
 +                       * We have a winning probe!  Add it to our growing
 +                       * enabling.
 +                       */
 +                      found = 1;
 +                      dtrace_enabling_addlike(new, ep, create);
 +              }
 +      }
 +
 +      if (!found || (err = dtrace_enabling_retain(new)) != 0) {
 +              dtrace_enabling_destroy(new);
 +              return (err);
 +      }
 +
 +      return (0);
 +}
 +
 +static void
 +dtrace_enabling_retract(dtrace_state_t *state)
 +{
 +      dtrace_enabling_t *enab, *next;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      /*
 +       * Iterate over all retained enablings, destroy the enablings retained
 +       * for the specified state.
 +       */
 +      for (enab = dtrace_retained; enab != NULL; enab = next) {
 +              next = enab->dten_next;
 +
 +              /*
 +               * dtvs_state can only be NULL for helper enablings -- and
 +               * helper enablings can't be retained.
 +               */
 +              ASSERT(enab->dten_vstate->dtvs_state != NULL);
 +
 +              if (enab->dten_vstate->dtvs_state == state) {
 +                      ASSERT(state->dts_nretained > 0);
 +                      dtrace_enabling_destroy(enab);
 +              }
 +      }
 +
 +      ASSERT(state->dts_nretained == 0);
 +}
 +
 +static int
 +dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
 +{
 +      int i = 0;
 +      int matched = 0;
 +
 +      ASSERT(MUTEX_HELD(&cpu_lock));
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      for (i = 0; i < enab->dten_ndesc; i++) {
 +              dtrace_ecbdesc_t *ep = enab->dten_desc[i];
 +
 +              enab->dten_current = ep;
 +              enab->dten_error = 0;
 +
 +              matched += dtrace_probe_enable(&ep->dted_probe, enab);
 +
 +              if (enab->dten_error != 0) {
 +                      /*
 +                       * If we get an error half-way through enabling the
 +                       * probes, we kick out -- perhaps with some number of
 +                       * them enabled.  Leaving enabled probes enabled may
 +                       * be slightly confusing for user-level, but we expect
 +                       * that no one will attempt to actually drive on in
 +                       * the face of such errors.  If this is an anonymous
 +                       * enabling (indicated with a NULL nmatched pointer),
 +                       * we cmn_err() a message.  We aren't expecting to
 +                       * get such an error -- such as it can exist at all,
 +                       * it would be a result of corrupted DOF in the driver
 +                       * properties.
 +                       */
 +                      if (nmatched == NULL) {
 +                              cmn_err(CE_WARN, "dtrace_enabling_match() "
 +                                  "error on %p: %d", (void *)ep,
 +                                  enab->dten_error);
 +                      }
 +
 +                      return (enab->dten_error);
 +              }
 +      }
 +
 +      enab->dten_probegen = dtrace_probegen;
 +      if (nmatched != NULL)
 +              *nmatched = matched;
 +
 +      return (0);
 +}
 +
 +static void
 +dtrace_enabling_matchall(void)
 +{
 +      dtrace_enabling_t *enab;
 +
 +      mutex_enter(&cpu_lock);
 +      mutex_enter(&dtrace_lock);
 +
 +      /*
 +       * Iterate over all retained enablings to see if any probes match
 +       * against them.  We only perform this operation on enablings for which
 +       * we have sufficient permissions by virtue of being in the global zone
 +       * or in the same zone as the DTrace client.  Because we can be called
 +       * after dtrace_detach() has been called, we cannot assert that there
 +       * are retained enablings.  We can safely load from dtrace_retained,
 +       * however:  the taskq_destroy() at the end of dtrace_detach() will
 +       * block pending our completion.
 +       */
 +      for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
 +#ifdef illumos
 +              cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
 +
 +              if (INGLOBALZONE(curproc) ||
 +                  cr != NULL && getzoneid() == crgetzoneid(cr))
 +#endif
 +                      (void) dtrace_enabling_match(enab, NULL);
 +      }
 +
 +      mutex_exit(&dtrace_lock);
 +      mutex_exit(&cpu_lock);
 +}
 +
 +/*
 + * If an enabling is to be enabled without having matched probes (that is, if
 + * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
 + * enabling must be _primed_ by creating an ECB for every ECB description.
 + * This must be done to assure that we know the number of speculations, the
 + * number of aggregations, the minimum buffer size needed, etc. before we
 + * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
 + * enabling any probes, we create ECBs for every ECB decription, but with a
 + * NULL probe -- which is exactly what this function does.
 + */
 +static void
 +dtrace_enabling_prime(dtrace_state_t *state)
 +{
 +      dtrace_enabling_t *enab;
 +      int i;
 +
 +      for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
 +              ASSERT(enab->dten_vstate->dtvs_state != NULL);
 +
 +              if (enab->dten_vstate->dtvs_state != state)
 +                      continue;
 +
 +              /*
 +               * We don't want to prime an enabling more than once, lest
 +               * we allow a malicious user to induce resource exhaustion.
 +               * (The ECBs that result from priming an enabling aren't
 +               * leaked -- but they also aren't deallocated until the
 +               * consumer state is destroyed.)
 +               */
 +              if (enab->dten_primed)
 +                      continue;
 +
 +              for (i = 0; i < enab->dten_ndesc; i++) {
 +                      enab->dten_current = enab->dten_desc[i];
 +                      (void) dtrace_probe_enable(NULL, enab);
 +              }
 +
 +              enab->dten_primed = 1;
 +      }
 +}
 +
 +/*
 + * Called to indicate that probes should be provided due to retained
 + * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
 + * must take an initial lap through the enabling calling the dtps_provide()
 + * entry point explicitly to allow for autocreated probes.
 + */
 +static void
 +dtrace_enabling_provide(dtrace_provider_t *prv)
 +{
 +      int i, all = 0;
 +      dtrace_probedesc_t desc;
 +      dtrace_genid_t gen;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(MUTEX_HELD(&dtrace_provider_lock));
 +
 +      if (prv == NULL) {
 +              all = 1;
 +              prv = dtrace_provider;
 +      }
 +
 +      do {
 +              dtrace_enabling_t *enab;
 +              void *parg = prv->dtpv_arg;
 +
 +retry:
 +              gen = dtrace_retained_gen;
 +              for (enab = dtrace_retained; enab != NULL;
 +                  enab = enab->dten_next) {
 +                      for (i = 0; i < enab->dten_ndesc; i++) {
 +                              desc = enab->dten_desc[i]->dted_probe;
 +                              mutex_exit(&dtrace_lock);
 +                              prv->dtpv_pops.dtps_provide(parg, &desc);
 +                              mutex_enter(&dtrace_lock);
 +                              /*
 +                               * Process the retained enablings again if
 +                               * they have changed while we weren't holding
 +                               * dtrace_lock.
 +                               */
 +                              if (gen != dtrace_retained_gen)
 +                                      goto retry;
 +                      }
 +              }
 +      } while (all && (prv = prv->dtpv_next) != NULL);
 +
 +      mutex_exit(&dtrace_lock);
 +      dtrace_probe_provide(NULL, all ? NULL : prv);
 +      mutex_enter(&dtrace_lock);
 +}
 +
 +/*
 + * Called to reap ECBs that are attached to probes from defunct providers.
 + */
 +static void
 +dtrace_enabling_reap(void)
 +{
 +      dtrace_provider_t *prov;
 +      dtrace_probe_t *probe;
 +      dtrace_ecb_t *ecb;
 +      hrtime_t when;
 +      int i;
 +
 +      mutex_enter(&cpu_lock);
 +      mutex_enter(&dtrace_lock);
 +
 +      for (i = 0; i < dtrace_nprobes; i++) {
 +              if ((probe = dtrace_probes[i]) == NULL)
 +                      continue;
 +
 +              if (probe->dtpr_ecb == NULL)
 +                      continue;
 +
 +              prov = probe->dtpr_provider;
 +
 +              if ((when = prov->dtpv_defunct) == 0)
 +                      continue;
 +
 +              /*
 +               * We have ECBs on a defunct provider:  we want to reap these
 +               * ECBs to allow the provider to unregister.  The destruction
 +               * of these ECBs must be done carefully:  if we destroy the ECB
 +               * and the consumer later wishes to consume an EPID that
 +               * corresponds to the destroyed ECB (and if the EPID metadata
 +               * has not been previously consumed), the consumer will abort
 +               * processing on the unknown EPID.  To reduce (but not, sadly,
 +               * eliminate) the possibility of this, we will only destroy an
 +               * ECB for a defunct provider if, for the state that
 +               * corresponds to the ECB:
 +               *
 +               *  (a) There is no speculative tracing (which can effectively
 +               *      cache an EPID for an arbitrary amount of time).
 +               *
 +               *  (b) The principal buffers have been switched twice since the
 +               *      provider became defunct.
 +               *
 +               *  (c) The aggregation buffers are of zero size or have been
 +               *      switched twice since the provider became defunct.
 +               *
 +               * We use dts_speculates to determine (a) and call a function
 +               * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
 +               * that as soon as we've been unable to destroy one of the ECBs
 +               * associated with the probe, we quit trying -- reaping is only
 +               * fruitful in as much as we can destroy all ECBs associated
 +               * with the defunct provider's probes.
 +               */
 +              while ((ecb = probe->dtpr_ecb) != NULL) {
 +                      dtrace_state_t *state = ecb->dte_state;
 +                      dtrace_buffer_t *buf = state->dts_buffer;
 +                      dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
 +
 +                      if (state->dts_speculates)
 +                              break;
 +
 +                      if (!dtrace_buffer_consumed(buf, when))
 +                              break;
 +
 +                      if (!dtrace_buffer_consumed(aggbuf, when))
 +                              break;
 +
 +                      dtrace_ecb_disable(ecb);
 +                      ASSERT(probe->dtpr_ecb != ecb);
 +                      dtrace_ecb_destroy(ecb);
 +              }
 +      }
 +
 +      mutex_exit(&dtrace_lock);
 +      mutex_exit(&cpu_lock);
 +}
 +
 +/*
 + * DTrace DOF Functions
 + */
 +/*ARGSUSED*/
 +static void
 +dtrace_dof_error(dof_hdr_t *dof, const char *str)
 +{
 +      if (dtrace_err_verbose)
 +              cmn_err(CE_WARN, "failed to process DOF: %s", str);
 +
 +#ifdef DTRACE_ERRDEBUG
 +      dtrace_errdebug(str);
 +#endif
 +}
 +
 +/*
 + * Create DOF out of a currently enabled state.  Right now, we only create
 + * DOF containing the run-time options -- but this could be expanded to create
 + * complete DOF representing the enabled state.
 + */
 +static dof_hdr_t *
 +dtrace_dof_create(dtrace_state_t *state)
 +{
 +      dof_hdr_t *dof;
 +      dof_sec_t *sec;
 +      dof_optdesc_t *opt;
 +      int i, len = sizeof (dof_hdr_t) +
 +          roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
 +          sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      dof = kmem_zalloc(len, KM_SLEEP);
 +      dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
 +      dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
 +      dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
 +      dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
 +
 +      dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
 +      dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
 +      dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
 +      dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
 +      dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
 +      dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
 +
 +      dof->dofh_flags = 0;
 +      dof->dofh_hdrsize = sizeof (dof_hdr_t);
 +      dof->dofh_secsize = sizeof (dof_sec_t);
 +      dof->dofh_secnum = 1;   /* only DOF_SECT_OPTDESC */
 +      dof->dofh_secoff = sizeof (dof_hdr_t);
 +      dof->dofh_loadsz = len;
 +      dof->dofh_filesz = len;
 +      dof->dofh_pad = 0;
 +
 +      /*
 +       * Fill in the option section header...
 +       */
 +      sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
 +      sec->dofs_type = DOF_SECT_OPTDESC;
 +      sec->dofs_align = sizeof (uint64_t);
 +      sec->dofs_flags = DOF_SECF_LOAD;
 +      sec->dofs_entsize = sizeof (dof_optdesc_t);
 +
 +      opt = (dof_optdesc_t *)((uintptr_t)sec +
 +          roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
 +
 +      sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
 +      sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
 +
 +      for (i = 0; i < DTRACEOPT_MAX; i++) {
 +              opt[i].dofo_option = i;
 +              opt[i].dofo_strtab = DOF_SECIDX_NONE;
 +              opt[i].dofo_value = state->dts_options[i];
 +      }
 +
 +      return (dof);
 +}
 +
 +static dof_hdr_t *
 +dtrace_dof_copyin(uintptr_t uarg, int *errp)
 +{
 +      dof_hdr_t hdr, *dof;
 +
 +      ASSERT(!MUTEX_HELD(&dtrace_lock));
 +
 +      /*
 +       * First, we're going to copyin() the sizeof (dof_hdr_t).
 +       */
 +      if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
 +              dtrace_dof_error(NULL, "failed to copyin DOF header");
 +              *errp = EFAULT;
 +              return (NULL);
 +      }
 +
 +      /*
 +       * Now we'll allocate the entire DOF and copy it in -- provided
 +       * that the length isn't outrageous.
 +       */
 +      if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
 +              dtrace_dof_error(&hdr, "load size exceeds maximum");
 +              *errp = E2BIG;
 +              return (NULL);
 +      }
 +
 +      if (hdr.dofh_loadsz < sizeof (hdr)) {
 +              dtrace_dof_error(&hdr, "invalid load size");
 +              *errp = EINVAL;
 +              return (NULL);
 +      }
 +
 +      dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
 +
 +      if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
 +          dof->dofh_loadsz != hdr.dofh_loadsz) {
 +              kmem_free(dof, hdr.dofh_loadsz);
 +              *errp = EFAULT;
 +              return (NULL);
 +      }
 +
 +      return (dof);
 +}
 +
 +#ifndef illumos
 +static __inline uchar_t
 +dtrace_dof_char(char c) {
 +      switch (c) {
 +      case '0':
 +      case '1':
 +      case '2':
 +      case '3':
 +      case '4':
 +      case '5':
 +      case '6':
 +      case '7':
 +      case '8':
 +      case '9':
 +              return (c - '0');
 +      case 'A':
 +      case 'B':
 +      case 'C':
 +      case 'D':
 +      case 'E':
 +      case 'F':
 +              return (c - 'A' + 10);
 +      case 'a':
 +      case 'b':
 +      case 'c':
 +      case 'd':
 +      case 'e':
 +      case 'f':
 +              return (c - 'a' + 10);
 +      }
 +      /* Should not reach here. */
 +      return (0);
 +}
 +#endif
 +
 +static dof_hdr_t *
 +dtrace_dof_property(const char *name)
 +{
 +      uchar_t *buf;
 +      uint64_t loadsz;
 +      unsigned int len, i;
 +      dof_hdr_t *dof;
 +
 +#ifdef illumos
 +      /*
 +       * Unfortunately, array of values in .conf files are always (and
 +       * only) interpreted to be integer arrays.  We must read our DOF
 +       * as an integer array, and then squeeze it into a byte array.
 +       */
 +      if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
 +          (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
 +              return (NULL);
 +
 +      for (i = 0; i < len; i++)
 +              buf[i] = (uchar_t)(((int *)buf)[i]);
 +
 +      if (len < sizeof (dof_hdr_t)) {
 +              ddi_prop_free(buf);
 +              dtrace_dof_error(NULL, "truncated header");
 +              return (NULL);
 +      }
 +
 +      if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
 +              ddi_prop_free(buf);
 +              dtrace_dof_error(NULL, "truncated DOF");
 +              return (NULL);
 +      }
 +
 +      if (loadsz >= dtrace_dof_maxsize) {
 +              ddi_prop_free(buf);
 +              dtrace_dof_error(NULL, "oversized DOF");
 +              return (NULL);
 +      }
 +
 +      dof = kmem_alloc(loadsz, KM_SLEEP);
 +      bcopy(buf, dof, loadsz);
 +      ddi_prop_free(buf);
 +#else
 +      char *p;
 +      char *p_env;
 +
 +      if ((p_env = kern_getenv(name)) == NULL)
 +              return (NULL);
 +
 +      len = strlen(p_env) / 2;
 +
 +      buf = kmem_alloc(len, KM_SLEEP);
 +
 +      dof = (dof_hdr_t *) buf;
 +
 +      p = p_env;
 +
 +      for (i = 0; i < len; i++) {
 +              buf[i] = (dtrace_dof_char(p[0]) << 4) |
 +                   dtrace_dof_char(p[1]);
 +              p += 2;
 +      }
 +
 +      freeenv(p_env);
 +
 +      if (len < sizeof (dof_hdr_t)) {
 +              kmem_free(buf, 0);
 +              dtrace_dof_error(NULL, "truncated header");
 +              return (NULL);
 +      }
 +
 +      if (len < (loadsz = dof->dofh_loadsz)) {
 +              kmem_free(buf, 0);
 +              dtrace_dof_error(NULL, "truncated DOF");
 +              return (NULL);
 +      }
 +
 +      if (loadsz >= dtrace_dof_maxsize) {
 +              kmem_free(buf, 0);
 +              dtrace_dof_error(NULL, "oversized DOF");
 +              return (NULL);
 +      }
 +#endif
 +
 +      return (dof);
 +}
 +
 +static void
 +dtrace_dof_destroy(dof_hdr_t *dof)
 +{
 +      kmem_free(dof, dof->dofh_loadsz);
 +}
 +
 +/*
 + * Return the dof_sec_t pointer corresponding to a given section index.  If the
 + * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
 + * a type other than DOF_SECT_NONE is specified, the header is checked against
 + * this type and NULL is returned if the types do not match.
 + */
 +static dof_sec_t *
 +dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
 +{
 +      dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
 +          ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
 +
 +      if (i >= dof->dofh_secnum) {
 +              dtrace_dof_error(dof, "referenced section index is invalid");
 +              return (NULL);
 +      }
 +
 +      if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
 +              dtrace_dof_error(dof, "referenced section is not loadable");
 +              return (NULL);
 +      }
 +
 +      if (type != DOF_SECT_NONE && type != sec->dofs_type) {
 +              dtrace_dof_error(dof, "referenced section is the wrong type");
 +              return (NULL);
 +      }
 +
 +      return (sec);
 +}
 +
 +static dtrace_probedesc_t *
 +dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
 +{
 +      dof_probedesc_t *probe;
 +      dof_sec_t *strtab;
 +      uintptr_t daddr = (uintptr_t)dof;
 +      uintptr_t str;
 +      size_t size;
 +
 +      if (sec->dofs_type != DOF_SECT_PROBEDESC) {
 +              dtrace_dof_error(dof, "invalid probe section");
 +              return (NULL);
 +      }
 +
 +      if (sec->dofs_align != sizeof (dof_secidx_t)) {
 +              dtrace_dof_error(dof, "bad alignment in probe description");
 +              return (NULL);
 +      }
 +
 +      if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
 +              dtrace_dof_error(dof, "truncated probe description");
 +              return (NULL);
 +      }
 +
 +      probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
 +      strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
 +
 +      if (strtab == NULL)
 +              return (NULL);
 +
 +      str = daddr + strtab->dofs_offset;
 +      size = strtab->dofs_size;
 +
 +      if (probe->dofp_provider >= strtab->dofs_size) {
 +              dtrace_dof_error(dof, "corrupt probe provider");
 +              return (NULL);
 +      }
 +
 +      (void) strncpy(desc->dtpd_provider,
 +          (char *)(str + probe->dofp_provider),
 +          MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
 +
 +      if (probe->dofp_mod >= strtab->dofs_size) {
 +              dtrace_dof_error(dof, "corrupt probe module");
 +              return (NULL);
 +      }
 +
 +      (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
 +          MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
 +
 +      if (probe->dofp_func >= strtab->dofs_size) {
 +              dtrace_dof_error(dof, "corrupt probe function");
 +              return (NULL);
 +      }
 +
 +      (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
 +          MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
 +
 +      if (probe->dofp_name >= strtab->dofs_size) {
 +              dtrace_dof_error(dof, "corrupt probe name");
 +              return (NULL);
 +      }
 +
 +      (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
 +          MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
 +
 +      return (desc);
 +}
 +
 +static dtrace_difo_t *
 +dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
 +    cred_t *cr)
 +{
 +      dtrace_difo_t *dp;
 +      size_t ttl = 0;
 +      dof_difohdr_t *dofd;
 +      uintptr_t daddr = (uintptr_t)dof;
 +      size_t max = dtrace_difo_maxsize;
 +      int i, l, n;
 +
 +      static const struct {
 +              int section;
 +              int bufoffs;
 +              int lenoffs;
 +              int entsize;
 +              int align;
 +              const char *msg;
 +      } difo[] = {
 +              { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
 +              offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
 +              sizeof (dif_instr_t), "multiple DIF sections" },
 +
 +              { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
 +              offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
 +              sizeof (uint64_t), "multiple integer tables" },
 +
 +              { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
 +              offsetof(dtrace_difo_t, dtdo_strlen), 0,
 +              sizeof (char), "multiple string tables" },
 +
 +              { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
 +              offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
 +              sizeof (uint_t), "multiple variable tables" },
 +
 +              { DOF_SECT_NONE, 0, 0, 0, 0, NULL }
 +      };
 +
 +      if (sec->dofs_type != DOF_SECT_DIFOHDR) {
 +              dtrace_dof_error(dof, "invalid DIFO header section");
 +              return (NULL);
 +      }
 +
 +      if (sec->dofs_align != sizeof (dof_secidx_t)) {
 +              dtrace_dof_error(dof, "bad alignment in DIFO header");
 +              return (NULL);
 +      }
 +
 +      if (sec->dofs_size < sizeof (dof_difohdr_t) ||
 +          sec->dofs_size % sizeof (dof_secidx_t)) {
 +              dtrace_dof_error(dof, "bad size in DIFO header");
 +              return (NULL);
 +      }
 +
 +      dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
 +      n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
 +
 +      dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
 +      dp->dtdo_rtype = dofd->dofd_rtype;
 +
 +      for (l = 0; l < n; l++) {
 +              dof_sec_t *subsec;
 +              void **bufp;
 +              uint32_t *lenp;
 +
 +              if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
 +                  dofd->dofd_links[l])) == NULL)
 +                      goto err; /* invalid section link */
 +
 +              if (ttl + subsec->dofs_size > max) {
 +                      dtrace_dof_error(dof, "exceeds maximum size");
 +                      goto err;
 +              }
 +
 +              ttl += subsec->dofs_size;
 +
 +              for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
 +                      if (subsec->dofs_type != difo[i].section)
 +                              continue;
 +
 +                      if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
 +                              dtrace_dof_error(dof, "section not loaded");
 +                              goto err;
 +                      }
 +
 +                      if (subsec->dofs_align != difo[i].align) {
 +                              dtrace_dof_error(dof, "bad alignment");
 +                              goto err;
 +                      }
 +
 +                      bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
 +                      lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
 +
 +                      if (*bufp != NULL) {
 +                              dtrace_dof_error(dof, difo[i].msg);
 +                              goto err;
 +                      }
 +
 +                      if (difo[i].entsize != subsec->dofs_entsize) {
 +                              dtrace_dof_error(dof, "entry size mismatch");
 +                              goto err;
 +                      }
 +
 +                      if (subsec->dofs_entsize != 0 &&
 +                          (subsec->dofs_size % subsec->dofs_entsize) != 0) {
 +                              dtrace_dof_error(dof, "corrupt entry size");
 +                              goto err;
 +                      }
 +
 +                      *lenp = subsec->dofs_size;
 +                      *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
 +                      bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
 +                          *bufp, subsec->dofs_size);
 +
 +                      if (subsec->dofs_entsize != 0)
 +                              *lenp /= subsec->dofs_entsize;
 +
 +                      break;
 +              }
 +
 +              /*
 +               * If we encounter a loadable DIFO sub-section that is not
 +               * known to us, assume this is a broken program and fail.
 +               */
 +              if (difo[i].section == DOF_SECT_NONE &&
 +                  (subsec->dofs_flags & DOF_SECF_LOAD)) {
 +                      dtrace_dof_error(dof, "unrecognized DIFO subsection");
 +                      goto err;
 +              }
 +      }
 +
 +      if (dp->dtdo_buf == NULL) {
 +              /*
 +               * We can't have a DIF object without DIF text.
 +               */
 +              dtrace_dof_error(dof, "missing DIF text");
 +              goto err;
 +      }
 +
 +      /*
 +       * Before we validate the DIF object, run through the variable table
 +       * looking for the strings -- if any of their size are under, we'll set
 +       * their size to be the system-wide default string size.  Note that
 +       * this should _not_ happen if the "strsize" option has been set --
 +       * in this case, the compiler should have set the size to reflect the
 +       * setting of the option.
 +       */
 +      for (i = 0; i < dp->dtdo_varlen; i++) {
 +              dtrace_difv_t *v = &dp->dtdo_vartab[i];
 +              dtrace_diftype_t *t = &v->dtdv_type;
 +
 +              if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
 +                      continue;
 +
 +              if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
 +                      t->dtdt_size = dtrace_strsize_default;
 +      }
 +
 +      if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
 +              goto err;
 +
 +      dtrace_difo_init(dp, vstate);
 +      return (dp);
 +
 +err:
 +      kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
 +      kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
 +      kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
 +      kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
 +
 +      kmem_free(dp, sizeof (dtrace_difo_t));
 +      return (NULL);
 +}
 +
 +static dtrace_predicate_t *
 +dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
 +    cred_t *cr)
 +{
 +      dtrace_difo_t *dp;
 +
 +      if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
 +              return (NULL);
 +
 +      return (dtrace_predicate_create(dp));
 +}
 +
 +static dtrace_actdesc_t *
 +dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
 +    cred_t *cr)
 +{
 +      dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
 +      dof_actdesc_t *desc;
 +      dof_sec_t *difosec;
 +      size_t offs;
 +      uintptr_t daddr = (uintptr_t)dof;
 +      uint64_t arg;
 +      dtrace_actkind_t kind;
 +
 +      if (sec->dofs_type != DOF_SECT_ACTDESC) {
 +              dtrace_dof_error(dof, "invalid action section");
 +              return (NULL);
 +      }
 +
 +      if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
 +              dtrace_dof_error(dof, "truncated action description");
 +              return (NULL);
 +      }
 +
 +      if (sec->dofs_align != sizeof (uint64_t)) {
 +              dtrace_dof_error(dof, "bad alignment in action description");
 +              return (NULL);
 +      }
 +
 +      if (sec->dofs_size < sec->dofs_entsize) {
 +              dtrace_dof_error(dof, "section entry size exceeds total size");
 +              return (NULL);
 +      }
 +
 +      if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
 +              dtrace_dof_error(dof, "bad entry size in action description");
 +              return (NULL);
 +      }
 +
 +      if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
 +              dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
 +              return (NULL);
 +      }
 +
 +      for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
 +              desc = (dof_actdesc_t *)(daddr +
 +                  (uintptr_t)sec->dofs_offset + offs);
 +              kind = (dtrace_actkind_t)desc->dofa_kind;
 +
 +              if ((DTRACEACT_ISPRINTFLIKE(kind) &&
 +                  (kind != DTRACEACT_PRINTA ||
 +                  desc->dofa_strtab != DOF_SECIDX_NONE)) ||
 +                  (kind == DTRACEACT_DIFEXPR &&
 +                  desc->dofa_strtab != DOF_SECIDX_NONE)) {
 +                      dof_sec_t *strtab;
 +                      char *str, *fmt;
 +                      uint64_t i;
 +
 +                      /*
 +                       * The argument to these actions is an index into the
 +                       * DOF string table.  For printf()-like actions, this
 +                       * is the format string.  For print(), this is the
 +                       * CTF type of the expression result.
 +                       */
 +                      if ((strtab = dtrace_dof_sect(dof,
 +                          DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
 +                              goto err;
 +
 +                      str = (char *)((uintptr_t)dof +
 +                          (uintptr_t)strtab->dofs_offset);
 +
 +                      for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
 +                              if (str[i] == '\0')
 +                                      break;
 +                      }
 +
 +                      if (i >= strtab->dofs_size) {
 +                              dtrace_dof_error(dof, "bogus format string");
 +                              goto err;
 +                      }
 +
 +                      if (i == desc->dofa_arg) {
 +                              dtrace_dof_error(dof, "empty format string");
 +                              goto err;
 +                      }
 +
 +                      i -= desc->dofa_arg;
 +                      fmt = kmem_alloc(i + 1, KM_SLEEP);
 +                      bcopy(&str[desc->dofa_arg], fmt, i + 1);
 +                      arg = (uint64_t)(uintptr_t)fmt;
 +              } else {
 +                      if (kind == DTRACEACT_PRINTA) {
 +                              ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
 +                              arg = 0;
 +                      } else {
 +                              arg = desc->dofa_arg;
 +                      }
 +              }
 +
 +              act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
 +                  desc->dofa_uarg, arg);
 +
 +              if (last != NULL) {
 +                      last->dtad_next = act;
 +              } else {
 +                      first = act;
 +              }
 +
 +              last = act;
 +
 +              if (desc->dofa_difo == DOF_SECIDX_NONE)
 +                      continue;
 +
 +              if ((difosec = dtrace_dof_sect(dof,
 +                  DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
 +                      goto err;
 +
 +              act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
 +
 +              if (act->dtad_difo == NULL)
 +                      goto err;
 +      }
 +
 +      ASSERT(first != NULL);
 +      return (first);
 +
 +err:
 +      for (act = first; act != NULL; act = next) {
 +              next = act->dtad_next;
 +              dtrace_actdesc_release(act, vstate);
 +      }
 +
 +      return (NULL);
 +}
 +
 +static dtrace_ecbdesc_t *
 +dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
 +    cred_t *cr)
 +{
 +      dtrace_ecbdesc_t *ep;
 +      dof_ecbdesc_t *ecb;
 +      dtrace_probedesc_t *desc;
 +      dtrace_predicate_t *pred = NULL;
 +
 +      if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
 +              dtrace_dof_error(dof, "truncated ECB description");
 +              return (NULL);
 +      }
 +
 +      if (sec->dofs_align != sizeof (uint64_t)) {
 +              dtrace_dof_error(dof, "bad alignment in ECB description");
 +              return (NULL);
 +      }
 +
 +      ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
 +      sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
 +
 +      if (sec == NULL)
 +              return (NULL);
 +
 +      ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
 +      ep->dted_uarg = ecb->dofe_uarg;
 +      desc = &ep->dted_probe;
 +
 +      if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
 +              goto err;
 +
 +      if (ecb->dofe_pred != DOF_SECIDX_NONE) {
 +              if ((sec = dtrace_dof_sect(dof,
 +                  DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
 +                      goto err;
 +
 +              if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
 +                      goto err;
 +
 +              ep->dted_pred.dtpdd_predicate = pred;
 +      }
 +
 +      if (ecb->dofe_actions != DOF_SECIDX_NONE) {
 +              if ((sec = dtrace_dof_sect(dof,
 +                  DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
 +                      goto err;
 +
 +              ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
 +
 +              if (ep->dted_action == NULL)
 +                      goto err;
 +      }
 +
 +      return (ep);
 +
 +err:
 +      if (pred != NULL)
 +              dtrace_predicate_release(pred, vstate);
 +      kmem_free(ep, sizeof (dtrace_ecbdesc_t));
 +      return (NULL);
 +}
 +
 +/*
 + * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
 + * specified DOF.  At present, this amounts to simply adding 'ubase' to the
 + * site of any user SETX relocations to account for load object base address.
 + * In the future, if we need other relocations, this function can be extended.
 + */
 +static int
 +dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
 +{
 +      uintptr_t daddr = (uintptr_t)dof;
 +      dof_relohdr_t *dofr =
 +          (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
 +      dof_sec_t *ss, *rs, *ts;
 +      dof_relodesc_t *r;
 +      uint_t i, n;
 +
 +      if (sec->dofs_size < sizeof (dof_relohdr_t) ||
 +          sec->dofs_align != sizeof (dof_secidx_t)) {
 +              dtrace_dof_error(dof, "invalid relocation header");
 +              return (-1);
 +      }
 +
 +      ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
 +      rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
 +      ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
 +
 +      if (ss == NULL || rs == NULL || ts == NULL)
 +              return (-1); /* dtrace_dof_error() has been called already */
 +
 +      if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
 +          rs->dofs_align != sizeof (uint64_t)) {
 +              dtrace_dof_error(dof, "invalid relocation section");
 +              return (-1);
 +      }
 +
 +      r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
 +      n = rs->dofs_size / rs->dofs_entsize;
 +
 +      for (i = 0; i < n; i++) {
 +              uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
 +
 +              switch (r->dofr_type) {
 +              case DOF_RELO_NONE:
 +                      break;
 +              case DOF_RELO_SETX:
 +                      if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
 +                          sizeof (uint64_t) > ts->dofs_size) {
 +                              dtrace_dof_error(dof, "bad relocation offset");
 +                              return (-1);
 +                      }
 +
 +                      if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
 +                              dtrace_dof_error(dof, "misaligned setx relo");
 +                              return (-1);
 +                      }
 +
 +                      *(uint64_t *)taddr += ubase;
 +                      break;
 +              default:
 +                      dtrace_dof_error(dof, "invalid relocation type");
 +                      return (-1);
 +              }
 +
 +              r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
 +      }
 +
 +      return (0);
 +}
 +
 +/*
 + * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
 + * header:  it should be at the front of a memory region that is at least
 + * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
 + * size.  It need not be validated in any other way.
 + */
 +static int
 +dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
 +    dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
 +{
 +      uint64_t len = dof->dofh_loadsz, seclen;
 +      uintptr_t daddr = (uintptr_t)dof;
 +      dtrace_ecbdesc_t *ep;
 +      dtrace_enabling_t *enab;
 +      uint_t i;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
 +
 +      /*
 +       * Check the DOF header identification bytes.  In addition to checking
 +       * valid settings, we also verify that unused bits/bytes are zeroed so
 +       * we can use them later without fear of regressing existing binaries.
 +       */
 +      if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
 +          DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
 +              dtrace_dof_error(dof, "DOF magic string mismatch");
 +              return (-1);
 +      }
 +
 +      if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
 +          dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
 +              dtrace_dof_error(dof, "DOF has invalid data model");
 +              return (-1);
 +      }
 +
 +      if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
 +              dtrace_dof_error(dof, "DOF encoding mismatch");
 +              return (-1);
 +      }
 +
 +      if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
 +          dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
 +              dtrace_dof_error(dof, "DOF version mismatch");
 +              return (-1);
 +      }
 +
 +      if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
 +              dtrace_dof_error(dof, "DOF uses unsupported instruction set");
 +              return (-1);
 +      }
 +
 +      if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
 +              dtrace_dof_error(dof, "DOF uses too many integer registers");
 +              return (-1);
 +      }
 +
 +      if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
 +              dtrace_dof_error(dof, "DOF uses too many tuple registers");
 +              return (-1);
 +      }
 +
 +      for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
 +              if (dof->dofh_ident[i] != 0) {
 +                      dtrace_dof_error(dof, "DOF has invalid ident byte set");
 +                      return (-1);
 +              }
 +      }
 +
 +      if (dof->dofh_flags & ~DOF_FL_VALID) {
 +              dtrace_dof_error(dof, "DOF has invalid flag bits set");
 +              return (-1);
 +      }
 +
 +      if (dof->dofh_secsize == 0) {
 +              dtrace_dof_error(dof, "zero section header size");
 +              return (-1);
 +      }
 +
 +      /*
 +       * Check that the section headers don't exceed the amount of DOF
 +       * data.  Note that we cast the section size and number of sections
 +       * to uint64_t's to prevent possible overflow in the multiplication.
 +       */
 +      seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
 +
 +      if (dof->dofh_secoff > len || seclen > len ||
 +          dof->dofh_secoff + seclen > len) {
 +              dtrace_dof_error(dof, "truncated section headers");
 +              return (-1);
 +      }
 +
 +      if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
 +              dtrace_dof_error(dof, "misaligned section headers");
 +              return (-1);
 +      }
 +
 +      if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
 +              dtrace_dof_error(dof, "misaligned section size");
 +              return (-1);
 +      }
 +
 +      /*
 +       * Take an initial pass through the section headers to be sure that
 +       * the headers don't have stray offsets.  If the 'noprobes' flag is
 +       * set, do not permit sections relating to providers, probes, or args.
 +       */
 +      for (i = 0; i < dof->dofh_secnum; i++) {
 +              dof_sec_t *sec = (dof_sec_t *)(daddr +
 +                  (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
 +
 +              if (noprobes) {
 +                      switch (sec->dofs_type) {
 +                      case DOF_SECT_PROVIDER:
 +                      case DOF_SECT_PROBES:
 +                      case DOF_SECT_PRARGS:
 +                      case DOF_SECT_PROFFS:
 +                              dtrace_dof_error(dof, "illegal sections "
 +                                  "for enabling");
 +                              return (-1);
 +                      }
 +              }
 +
 +              if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
 +                  !(sec->dofs_flags & DOF_SECF_LOAD)) {
 +                      dtrace_dof_error(dof, "loadable section with load "
 +                          "flag unset");
 +                      return (-1);
 +              }
 +
 +              if (!(sec->dofs_flags & DOF_SECF_LOAD))
 +                      continue; /* just ignore non-loadable sections */
 +
 +              if (!ISP2(sec->dofs_align)) {
 +                      dtrace_dof_error(dof, "bad section alignment");
 +                      return (-1);
 +              }
 +
 +              if (sec->dofs_offset & (sec->dofs_align - 1)) {
 +                      dtrace_dof_error(dof, "misaligned section");
 +                      return (-1);
 +              }
 +
 +              if (sec->dofs_offset > len || sec->dofs_size > len ||
 +                  sec->dofs_offset + sec->dofs_size > len) {
 +                      dtrace_dof_error(dof, "corrupt section header");
 +                      return (-1);
 +              }
 +
 +              if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
 +                  sec->dofs_offset + sec->dofs_size - 1) != '\0') {
 +                      dtrace_dof_error(dof, "non-terminating string table");
 +                      return (-1);
 +              }
 +      }
 +
 +      /*
 +       * Take a second pass through the sections and locate and perform any
 +       * relocations that are present.  We do this after the first pass to
 +       * be sure that all sections have had their headers validated.
 +       */
 +      for (i = 0; i < dof->dofh_secnum; i++) {
 +              dof_sec_t *sec = (dof_sec_t *)(daddr +
 +                  (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
 +
 +              if (!(sec->dofs_flags & DOF_SECF_LOAD))
 +                      continue; /* skip sections that are not loadable */
 +
 +              switch (sec->dofs_type) {
 +              case DOF_SECT_URELHDR:
 +                      if (dtrace_dof_relocate(dof, sec, ubase) != 0)
 +                              return (-1);
 +                      break;
 +              }
 +      }
 +
 +      if ((enab = *enabp) == NULL)
 +              enab = *enabp = dtrace_enabling_create(vstate);
 +
 +      for (i = 0; i < dof->dofh_secnum; i++) {
 +              dof_sec_t *sec = (dof_sec_t *)(daddr +
 +                  (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
 +
 +              if (sec->dofs_type != DOF_SECT_ECBDESC)
 +                      continue;
 +
 +              if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
 +                      dtrace_enabling_destroy(enab);
 +                      *enabp = NULL;
 +                      return (-1);
 +              }
 +
 +              dtrace_enabling_add(enab, ep);
 +      }
 +
 +      return (0);
 +}
 +
 +/*
 + * Process DOF for any options.  This routine assumes that the DOF has been
 + * at least processed by dtrace_dof_slurp().
 + */
 +static int
 +dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
 +{
 +      int i, rval;
 +      uint32_t entsize;
 +      size_t offs;
 +      dof_optdesc_t *desc;
 +
 +      for (i = 0; i < dof->dofh_secnum; i++) {
 +              dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
 +                  (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
 +
 +              if (sec->dofs_type != DOF_SECT_OPTDESC)
 +                      continue;
 +
 +              if (sec->dofs_align != sizeof (uint64_t)) {
 +                      dtrace_dof_error(dof, "bad alignment in "
 +                          "option description");
 +                      return (EINVAL);
 +              }
 +
 +              if ((entsize = sec->dofs_entsize) == 0) {
 +                      dtrace_dof_error(dof, "zeroed option entry size");
 +                      return (EINVAL);
 +              }
 +
 +              if (entsize < sizeof (dof_optdesc_t)) {
 +                      dtrace_dof_error(dof, "bad option entry size");
 +                      return (EINVAL);
 +              }
 +
 +              for (offs = 0; offs < sec->dofs_size; offs += entsize) {
 +                      desc = (dof_optdesc_t *)((uintptr_t)dof +
 +                          (uintptr_t)sec->dofs_offset + offs);
 +
 +                      if (desc->dofo_strtab != DOF_SECIDX_NONE) {
 +                              dtrace_dof_error(dof, "non-zero option string");
 +                              return (EINVAL);
 +                      }
 +
 +                      if (desc->dofo_value == DTRACEOPT_UNSET) {
 +                              dtrace_dof_error(dof, "unset option");
 +                              return (EINVAL);
 +                      }
 +
 +                      if ((rval = dtrace_state_option(state,
 +                          desc->dofo_option, desc->dofo_value)) != 0) {
 +                              dtrace_dof_error(dof, "rejected option");
 +                              return (rval);
 +                      }
 +              }
 +      }
 +
 +      return (0);
 +}
 +
 +/*
 + * DTrace Consumer State Functions
 + */
 +static int
 +dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
 +{
 +      size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
 +      void *base;
 +      uintptr_t limit;
 +      dtrace_dynvar_t *dvar, *next, *start;
 +      int i;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
 +
 +      bzero(dstate, sizeof (dtrace_dstate_t));
 +
 +      if ((dstate->dtds_chunksize = chunksize) == 0)
 +              dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
 +
++      VERIFY(dstate->dtds_chunksize < LONG_MAX);
++
 +      if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
 +              size = min;
 +
 +      if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
 +              return (ENOMEM);
 +
 +      dstate->dtds_size = size;
 +      dstate->dtds_base = base;
 +      dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
 +      bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
 +
 +      hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
 +
 +      if (hashsize != 1 && (hashsize & 1))
 +              hashsize--;
 +
 +      dstate->dtds_hashsize = hashsize;
 +      dstate->dtds_hash = dstate->dtds_base;
 +
 +      /*
 +       * Set all of our hash buckets to point to the single sink, and (if
 +       * it hasn't already been set), set the sink's hash value to be the
 +       * sink sentinel value.  The sink is needed for dynamic variable
 +       * lookups to know that they have iterated over an entire, valid hash
 +       * chain.
 +       */
 +      for (i = 0; i < hashsize; i++)
 +              dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
 +
 +      if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
 +              dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
 +
 +      /*
 +       * Determine number of active CPUs.  Divide free list evenly among
 +       * active CPUs.
 +       */
 +      start = (dtrace_dynvar_t *)
 +          ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
 +      limit = (uintptr_t)base + size;
 +
++      VERIFY((uintptr_t)start < limit);
++      VERIFY((uintptr_t)start >= (uintptr_t)base);
++
 +      maxper = (limit - (uintptr_t)start) / NCPU;
 +      maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
 +
 +#ifndef illumos
 +      CPU_FOREACH(i) {
 +#else
 +      for (i = 0; i < NCPU; i++) {
 +#endif
 +              dstate->dtds_percpu[i].dtdsc_free = dvar = start;
 +
 +              /*
 +               * If we don't even have enough chunks to make it once through
 +               * NCPUs, we're just going to allocate everything to the first
 +               * CPU.  And if we're on the last CPU, we're going to allocate
 +               * whatever is left over.  In either case, we set the limit to
 +               * be the limit of the dynamic variable space.
 +               */
 +              if (maxper == 0 || i == NCPU - 1) {
 +                      limit = (uintptr_t)base + size;
 +                      start = NULL;
 +              } else {
 +                      limit = (uintptr_t)start + maxper;
 +                      start = (dtrace_dynvar_t *)limit;
 +              }
 +
++              VERIFY(limit <= (uintptr_t)base + size);
 +
 +              for (;;) {
 +                      next = (dtrace_dynvar_t *)((uintptr_t)dvar +
 +                          dstate->dtds_chunksize);
 +
 +                      if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
 +                              break;
 +
++                      VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
++                          (uintptr_t)dvar <= (uintptr_t)base + size);
 +                      dvar->dtdv_next = next;
 +                      dvar = next;
 +              }
 +
 +              if (maxper == 0)
 +                      break;
 +      }
 +
 +      return (0);
 +}
 +
 +static void
 +dtrace_dstate_fini(dtrace_dstate_t *dstate)
 +{
 +      ASSERT(MUTEX_HELD(&cpu_lock));
 +
 +      if (dstate->dtds_base == NULL)
 +              return;
 +
 +      kmem_free(dstate->dtds_base, dstate->dtds_size);
 +      kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
 +}
 +
 +static void
 +dtrace_vstate_fini(dtrace_vstate_t *vstate)
 +{
 +      /*
 +       * Logical XOR, where are you?
 +       */
 +      ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
 +
 +      if (vstate->dtvs_nglobals > 0) {
 +              kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
 +                  sizeof (dtrace_statvar_t *));
 +      }
 +
 +      if (vstate->dtvs_ntlocals > 0) {
 +              kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
 +                  sizeof (dtrace_difv_t));
 +      }
 +
 +      ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
 +
 +      if (vstate->dtvs_nlocals > 0) {
 +              kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
 +                  sizeof (dtrace_statvar_t *));
 +      }
 +}
 +
 +#ifdef illumos
 +static void
 +dtrace_state_clean(dtrace_state_t *state)
 +{
 +      if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
 +              return;
 +
 +      dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
 +      dtrace_speculation_clean(state);
 +}
 +
 +static void
 +dtrace_state_deadman(dtrace_state_t *state)
 +{
 +      hrtime_t now;
 +
 +      dtrace_sync();
 +
 +      now = dtrace_gethrtime();
 +
 +      if (state != dtrace_anon.dta_state &&
 +          now - state->dts_laststatus >= dtrace_deadman_user)
 +              return;
 +
 +      /*
 +       * We must be sure that dts_alive never appears to be less than the
 +       * value upon entry to dtrace_state_deadman(), and because we lack a
 +       * dtrace_cas64(), we cannot store to it atomically.  We thus instead
 +       * store INT64_MAX to it, followed by a memory barrier, followed by
 +       * the new value.  This assures that dts_alive never appears to be
 +       * less than its true value, regardless of the order in which the
 +       * stores to the underlying storage are issued.
 +       */
 +      state->dts_alive = INT64_MAX;
 +      dtrace_membar_producer();
 +      state->dts_alive = now;
 +}
 +#else /* !illumos */
 +static void
 +dtrace_state_clean(void *arg)
 +{
 +      dtrace_state_t *state = arg;
 +      dtrace_optval_t *opt = state->dts_options;
 +
 +      if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
 +              return;
 +
 +      dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
 +      dtrace_speculation_clean(state);
 +
 +      callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
 +          dtrace_state_clean, state);
 +}
 +
 +static void
 +dtrace_state_deadman(void *arg)
 +{
 +      dtrace_state_t *state = arg;
 +      hrtime_t now;
 +
 +      dtrace_sync();
 +
 +      dtrace_debug_output();
 +
 +      now = dtrace_gethrtime();
 +
 +      if (state != dtrace_anon.dta_state &&
 +          now - state->dts_laststatus >= dtrace_deadman_user)
 +              return;
 +
 +      /*
 +       * We must be sure that dts_alive never appears to be less than the
 +       * value upon entry to dtrace_state_deadman(), and because we lack a
 +       * dtrace_cas64(), we cannot store to it atomically.  We thus instead
 +       * store INT64_MAX to it, followed by a memory barrier, followed by
 +       * the new value.  This assures that dts_alive never appears to be
 +       * less than its true value, regardless of the order in which the
 +       * stores to the underlying storage are issued.
 +       */
 +      state->dts_alive = INT64_MAX;
 +      dtrace_membar_producer();
 +      state->dts_alive = now;
 +
 +      callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
 +          dtrace_state_deadman, state);
 +}
 +#endif        /* illumos */
 +
 +static dtrace_state_t *
 +#ifdef illumos
 +dtrace_state_create(dev_t *devp, cred_t *cr)
 +#else
 +dtrace_state_create(struct cdev *dev)
 +#endif
 +{
 +#ifdef illumos
 +      minor_t minor;
 +      major_t major;
 +#else
 +      cred_t *cr = NULL;
 +      int m = 0;
 +#endif
 +      char c[30];
 +      dtrace_state_t *state;
 +      dtrace_optval_t *opt;
 +      int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(MUTEX_HELD(&cpu_lock));
 +
 +#ifdef illumos
 +      minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
 +          VM_BESTFIT | VM_SLEEP);
 +
 +      if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
 +              vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
 +              return (NULL);
 +      }
 +
 +      state = ddi_get_soft_state(dtrace_softstate, minor);
 +#else
 +      if (dev != NULL) {
 +              cr = dev->si_cred;
 +              m = dev2unit(dev);
 +      }
 +
 +      /* Allocate memory for the state. */
 +      state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
 +#endif
 +
 +      state->dts_epid = DTRACE_EPIDNONE + 1;
 +
 +      (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
 +#ifdef illumos
 +      state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
 +          NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
 +
 +      if (devp != NULL) {
 +              major = getemajor(*devp);
 +      } else {
 +              major = ddi_driver_major(dtrace_devi);
 +      }
 +
 +      state->dts_dev = makedevice(major, minor);
 +
 +      if (devp != NULL)
 +              *devp = state->dts_dev;
 +#else
 +      state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
 +      state->dts_dev = dev;
 +#endif
 +
 +      /*
 +       * We allocate NCPU buffers.  On the one hand, this can be quite
 +       * a bit of memory per instance (nearly 36K on a Starcat).  On the
 +       * other hand, it saves an additional memory reference in the probe
 +       * path.
 +       */
 +      state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
 +      state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
 +
 +#ifdef illumos
 +      state->dts_cleaner = CYCLIC_NONE;
 +      state->dts_deadman = CYCLIC_NONE;
 +#else
 +      callout_init(&state->dts_cleaner, 1);
 +      callout_init(&state->dts_deadman, 1);
 +#endif
 +      state->dts_vstate.dtvs_state = state;
 +
 +      for (i = 0; i < DTRACEOPT_MAX; i++)
 +              state->dts_options[i] = DTRACEOPT_UNSET;
 +
 +      /*
 +       * Set the default options.
 +       */
 +      opt = state->dts_options;
 +      opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
 +      opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
 +      opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
 +      opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
 +      opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
 +      opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
 +      opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
 +      opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
 +      opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
 +      opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
 +      opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
 +      opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
 +      opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
 +      opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
 +
 +      state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
 +
 +      /*
 +       * Depending on the user credentials, we set flag bits which alter probe
 +       * visibility or the amount of destructiveness allowed.  In the case of
 +       * actual anonymous tracing, or the possession of all privileges, all of
 +       * the normal checks are bypassed.
 +       */
 +      if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
 +              state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
 +              state->dts_cred.dcr_action = DTRACE_CRA_ALL;
 +      } else {
 +              /*
 +               * Set up the credentials for this instantiation.  We take a
 +               * hold on the credential to prevent it from disappearing on
 +               * us; this in turn prevents the zone_t referenced by this
 +               * credential from disappearing.  This means that we can
 +               * examine the credential and the zone from probe context.
 +               */
 +              crhold(cr);
 +              state->dts_cred.dcr_cred = cr;
 +
 +              /*
 +               * CRA_PROC means "we have *some* privilege for dtrace" and
 +               * unlocks the use of variables like pid, zonename, etc.
 +               */
 +              if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
 +                  PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
 +                      state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
 +              }
 +
 +              /*
 +               * dtrace_user allows use of syscall and profile providers.
 +               * If the user also has proc_owner and/or proc_zone, we
 +               * extend the scope to include additional visibility and
 +               * destructive power.
 +               */
 +              if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
 +                      if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
 +                              state->dts_cred.dcr_visible |=
 +                                  DTRACE_CRV_ALLPROC;
 +
 +                              state->dts_cred.dcr_action |=
 +                                  DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
 +                      }
 +
 +                      if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
 +                              state->dts_cred.dcr_visible |=
 +                                  DTRACE_CRV_ALLZONE;
 +
 +                              state->dts_cred.dcr_action |=
 +                                  DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
 +                      }
 +
 +                      /*
 +                       * If we have all privs in whatever zone this is,
 +                       * we can do destructive things to processes which
 +                       * have altered credentials.
 +                       */
 +#ifdef illumos
 +                      if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
 +                          cr->cr_zone->zone_privset)) {
 +                              state->dts_cred.dcr_action |=
 +                                  DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
 +                      }
 +#endif
 +              }
 +
 +              /*
 +               * Holding the dtrace_kernel privilege also implies that
 +               * the user has the dtrace_user privilege from a visibility
 +               * perspective.  But without further privileges, some
 +               * destructive actions are not available.
 +               */
 +              if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
 +                      /*
 +                       * Make all probes in all zones visible.  However,
 +                       * this doesn't mean that all actions become available
 +                       * to all zones.
 +                       */
 +                      state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
 +                          DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
 +
 +                      state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
 +                          DTRACE_CRA_PROC;
 +                      /*
 +                       * Holding proc_owner means that destructive actions
 +                       * for *this* zone are allowed.
 +                       */
 +                      if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
 +                              state->dts_cred.dcr_action |=
 +                                  DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
 +
 +                      /*
 +                       * Holding proc_zone means that destructive actions
 +                       * for this user/group ID in all zones is allowed.
 +                       */
 +                      if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
 +                              state->dts_cred.dcr_action |=
 +                                  DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
 +
 +#ifdef illumos
 +                      /*
 +                       * If we have all privs in whatever zone this is,
 +                       * we can do destructive things to processes which
 +                       * have altered credentials.
 +                       */
 +                      if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
 +                          cr->cr_zone->zone_privset)) {
 +                              state->dts_cred.dcr_action |=
 +                                  DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
 +                      }
 +#endif
 +              }
 +
 +              /*
 +               * Holding the dtrace_proc privilege gives control over fasttrap
 +               * and pid providers.  We need to grant wider destructive
 +               * privileges in the event that the user has proc_owner and/or
 +               * proc_zone.
 +               */
 +              if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
 +                      if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
 +                              state->dts_cred.dcr_action |=
 +                                  DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
 +
 +                      if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
 +                              state->dts_cred.dcr_action |=
 +                                  DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
 +              }
 +      }
 +
 +      return (state);
 +}
 +
 +static int
 +dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
 +{
 +      dtrace_optval_t *opt = state->dts_options, size;
 +      processorid_t cpu = 0;;
 +      int flags = 0, rval, factor, divisor = 1;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(MUTEX_HELD(&cpu_lock));
 +      ASSERT(which < DTRACEOPT_MAX);
 +      ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
 +          (state == dtrace_anon.dta_state &&
 +          state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
 +
 +      if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
 +              return (0);
 +
 +      if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
 +              cpu = opt[DTRACEOPT_CPU];
 +
 +      if (which == DTRACEOPT_SPECSIZE)
 +              flags |= DTRACEBUF_NOSWITCH;
 +
 +      if (which == DTRACEOPT_BUFSIZE) {
 +              if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
 +                      flags |= DTRACEBUF_RING;
 +
 +              if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
 +                      flags |= DTRACEBUF_FILL;
 +
 +              if (state != dtrace_anon.dta_state ||
 +                  state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
 +                      flags |= DTRACEBUF_INACTIVE;
 +      }
 +
 +      for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
 +              /*
 +               * The size must be 8-byte aligned.  If the size is not 8-byte
 +               * aligned, drop it down by the difference.
 +               */
 +              if (size & (sizeof (uint64_t) - 1))
 +                      size -= size & (sizeof (uint64_t) - 1);
 +
 +              if (size < state->dts_reserve) {
 +                      /*
 +                       * Buffers always must be large enough to accommodate
 +                       * their prereserved space.  We return E2BIG instead
 +                       * of ENOMEM in this case to allow for user-level
 +                       * software to differentiate the cases.
 +                       */
 +                      return (E2BIG);
 +              }
 +
 +              rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
 +
 +              if (rval != ENOMEM) {
 +                      opt[which] = size;
 +                      return (rval);
 +              }
 +
 +              if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
 +                      return (rval);
 +
 +              for (divisor = 2; divisor < factor; divisor <<= 1)
 +                      continue;
 +      }
 +
 +      return (ENOMEM);
 +}
 +
 +static int
 +dtrace_state_buffers(dtrace_state_t *state)
 +{
 +      dtrace_speculation_t *spec = state->dts_speculations;
 +      int rval, i;
 +
 +      if ((rval = dtrace_state_buffer(state, state->dts_buffer,
 +          DTRACEOPT_BUFSIZE)) != 0)
 +              return (rval);
 +
 +      if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
 +          DTRACEOPT_AGGSIZE)) != 0)
 +              return (rval);
 +
 +      for (i = 0; i < state->dts_nspeculations; i++) {
 +              if ((rval = dtrace_state_buffer(state,
 +                  spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
 +                      return (rval);
 +      }
 +
 +      return (0);
 +}
 +
 +static void
 +dtrace_state_prereserve(dtrace_state_t *state)
 +{
 +      dtrace_ecb_t *ecb;
 +      dtrace_probe_t *probe;
 +
 +      state->dts_reserve = 0;
 +
 +      if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
 +              return;
 +
 +      /*
 +       * If our buffer policy is a "fill" buffer policy, we need to set the
 +       * prereserved space to be the space required by the END probes.
 +       */
 +      probe = dtrace_probes[dtrace_probeid_end - 1];
 +      ASSERT(probe != NULL);
 +
 +      for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
 +              if (ecb->dte_state != state)
 +                      continue;
 +
 +              state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
 +      }
 +}
 +
 +static int
 +dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
 +{
 +      dtrace_optval_t *opt = state->dts_options, sz, nspec;
 +      dtrace_speculation_t *spec;
 +      dtrace_buffer_t *buf;
 +#ifdef illumos
 +      cyc_handler_t hdlr;
 +      cyc_time_t when;
 +#endif
 +      int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
 +      dtrace_icookie_t cookie;
 +
 +      mutex_enter(&cpu_lock);
 +      mutex_enter(&dtrace_lock);
 +
 +      if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
 +              rval = EBUSY;
 +              goto out;
 +      }
 +
 +      /*
 +       * Before we can perform any checks, we must prime all of the
 +       * retained enablings that correspond to this state.
 +       */
 +      dtrace_enabling_prime(state);
 +
 +      if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
 +              rval = EACCES;
 +              goto out;
 +      }
 +
 +      dtrace_state_prereserve(state);
 +
 +      /*
 +       * Now we want to do is try to allocate our speculations.
 +       * We do not automatically resize the number of speculations; if
 +       * this fails, we will fail the operation.
 +       */
 +      nspec = opt[DTRACEOPT_NSPEC];
 +      ASSERT(nspec != DTRACEOPT_UNSET);
 +
 +      if (nspec > INT_MAX) {
 +              rval = ENOMEM;
 +              goto out;
 +      }
 +
 +      spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
 +          KM_NOSLEEP | KM_NORMALPRI);
 +
 +      if (spec == NULL) {
 +              rval = ENOMEM;
 +              goto out;
 +      }
 +
 +      state->dts_speculations = spec;
 +      state->dts_nspeculations = (int)nspec;
 +
 +      for (i = 0; i < nspec; i++) {
 +              if ((buf = kmem_zalloc(bufsize,
 +                  KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
 +                      rval = ENOMEM;
 +                      goto err;
 +              }
 +
 +              spec[i].dtsp_buffer = buf;
 +      }
 +
 +      if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
 +              if (dtrace_anon.dta_state == NULL) {
 +                      rval = ENOENT;
 +                      goto out;
 +              }
 +
 +              if (state->dts_necbs != 0) {
 +                      rval = EALREADY;
 +                      goto out;
 +              }
 +
 +              state->dts_anon = dtrace_anon_grab();
 +              ASSERT(state->dts_anon != NULL);
 +              state = state->dts_anon;
 +
 +              /*
 +               * We want "grabanon" to be set in the grabbed state, so we'll
 +               * copy that option value from the grabbing state into the
 +               * grabbed state.
 +               */
 +              state->dts_options[DTRACEOPT_GRABANON] =
 +                  opt[DTRACEOPT_GRABANON];
 +
 +              *cpu = dtrace_anon.dta_beganon;
 +
 +              /*
 +               * If the anonymous state is active (as it almost certainly
 +               * is if the anonymous enabling ultimately matched anything),
 +               * we don't allow any further option processing -- but we
 +               * don't return failure.
 +               */
 +              if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
 +                      goto out;
 +      }
 +
 +      if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
 +          opt[DTRACEOPT_AGGSIZE] != 0) {
 +              if (state->dts_aggregations == NULL) {
 +                      /*
 +                       * We're not going to create an aggregation buffer
 +                       * because we don't have any ECBs that contain
 +                       * aggregations -- set this option to 0.
 +                       */
 +                      opt[DTRACEOPT_AGGSIZE] = 0;
 +              } else {
 +                      /*
 +                       * If we have an aggregation buffer, we must also have
 +                       * a buffer to use as scratch.
 +                       */
 +                      if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
 +                          opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
 +                              opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
 +                      }
 +              }
 +      }
 +
 +      if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
 +          opt[DTRACEOPT_SPECSIZE] != 0) {
 +              if (!state->dts_speculates) {
 +                      /*
 +                       * We're not going to create speculation buffers
 +                       * because we don't have any ECBs that actually
 +                       * speculate -- set the speculation size to 0.
 +                       */
 +                      opt[DTRACEOPT_SPECSIZE] = 0;
 +              }
 +      }
 +
 +      /*
 +       * The bare minimum size for any buffer that we're actually going to
 +       * do anything to is sizeof (uint64_t).
 +       */
 +      sz = sizeof (uint64_t);
 +
 +      if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
 +          (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
 +          (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
 +              /*
 +               * A buffer size has been explicitly set to 0 (or to a size
 +               * that will be adjusted to 0) and we need the space -- we
 +               * need to return failure.  We return ENOSPC to differentiate
 +               * it from failing to allocate a buffer due to failure to meet
 +               * the reserve (for which we return E2BIG).
 +               */
 +              rval = ENOSPC;
 +              goto out;
 +      }
 +
 +      if ((rval = dtrace_state_buffers(state)) != 0)
 +              goto err;
 +
 +      if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
 +              sz = dtrace_dstate_defsize;
 +
 +      do {
 +              rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
 +
 +              if (rval == 0)
 +                      break;
 +
 +              if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
 +                      goto err;
 +      } while (sz >>= 1);
 +
 +      opt[DTRACEOPT_DYNVARSIZE] = sz;
 +
 +      if (rval != 0)
 +              goto err;
 +
 +      if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
 +              opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
 +
 +      if (opt[DTRACEOPT_CLEANRATE] == 0)
 +              opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
 +
 +      if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
 +              opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
 +
 +      if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
 +              opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
 +
 +      state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
 +#ifdef illumos
 +      hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
 +      hdlr.cyh_arg = state;
 +      hdlr.cyh_level = CY_LOW_LEVEL;
 +
 +      when.cyt_when = 0;
 +      when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
 +
 +      state->dts_cleaner = cyclic_add(&hdlr, &when);
 +
 +      hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
 +      hdlr.cyh_arg = state;
 +      hdlr.cyh_level = CY_LOW_LEVEL;
 +
 +      when.cyt_when = 0;
 +      when.cyt_interval = dtrace_deadman_interval;
 +
 +      state->dts_deadman = cyclic_add(&hdlr, &when);
 +#else
 +      callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
 +          dtrace_state_clean, state);
 +      callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
 +          dtrace_state_deadman, state);
 +#endif
 +
 +      state->dts_activity = DTRACE_ACTIVITY_WARMUP;
 +
 +#ifdef illumos
 +      if (state->dts_getf != 0 &&
 +          !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
 +              /*
 +               * We don't have kernel privs but we have at least one call
 +               * to getf(); we need to bump our zone's count, and (if
 +               * this is the first enabling to have an unprivileged call
 +               * to getf()) we need to hook into closef().
 +               */
 +              state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
 +
 +              if (dtrace_getf++ == 0) {
 +                      ASSERT(dtrace_closef == NULL);
 +                      dtrace_closef = dtrace_getf_barrier;
 +              }
 +      }
 +#endif
 +
 +      /*
 +       * Now it's time to actually fire the BEGIN probe.  We need to disable
 +       * interrupts here both to record the CPU on which we fired the BEGIN
 +       * probe (the data from this CPU will be processed first at user
 +       * level) and to manually activate the buffer for this CPU.
 +       */
 +      cookie = dtrace_interrupt_disable();
 +      *cpu = curcpu;
 +      ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
 +      state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
 +
 +      dtrace_probe(dtrace_probeid_begin,
 +          (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
 +      dtrace_interrupt_enable(cookie);
 +      /*
 +       * We may have had an exit action from a BEGIN probe; only change our
 +       * state to ACTIVE if we're still in WARMUP.
 +       */
 +      ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
 +          state->dts_activity == DTRACE_ACTIVITY_DRAINING);
 +
 +      if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
 +              state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
 +
 +      /*
 +       * Regardless of whether or not now we're in ACTIVE or DRAINING, we
 +       * want each CPU to transition its principal buffer out of the
 +       * INACTIVE state.  Doing this assures that no CPU will suddenly begin
 +       * processing an ECB halfway down a probe's ECB chain; all CPUs will
 +       * atomically transition from processing none of a state's ECBs to
 +       * processing all of them.
 +       */
 +      dtrace_xcall(DTRACE_CPUALL,
 +          (dtrace_xcall_t)dtrace_buffer_activate, state);
 +      goto out;
 +
 +err:
 +      dtrace_buffer_free(state->dts_buffer);
 +      dtrace_buffer_free(state->dts_aggbuffer);
 +
 +      if ((nspec = state->dts_nspeculations) == 0) {
 +              ASSERT(state->dts_speculations == NULL);
 +              goto out;
 +      }
 +
 +      spec = state->dts_speculations;
 +      ASSERT(spec != NULL);
 +
 +      for (i = 0; i < state->dts_nspeculations; i++) {
 +              if ((buf = spec[i].dtsp_buffer) == NULL)
 +                      break;
 +
 +              dtrace_buffer_free(buf);
 +              kmem_free(buf, bufsize);
 +      }
 +
 +      kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
 +      state->dts_nspeculations = 0;
 +      state->dts_speculations = NULL;
 +
 +out:
 +      mutex_exit(&dtrace_lock);
 +      mutex_exit(&cpu_lock);
 +
 +      return (rval);
 +}
 +
 +static int
 +dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
 +{
 +      dtrace_icookie_t cookie;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
 +          state->dts_activity != DTRACE_ACTIVITY_DRAINING)
 +              return (EINVAL);
 +
 +      /*
 +       * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
 +       * to be sure that every CPU has seen it.  See below for the details
 +       * on why this is done.
 +       */
 +      state->dts_activity = DTRACE_ACTIVITY_DRAINING;
 +      dtrace_sync();
 +
 +      /*
 +       * By this point, it is impossible for any CPU to be still processing
 +       * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
 +       * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
 +       * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
 +       * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
 +       * iff we're in the END probe.
 +       */
 +      state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
 +      dtrace_sync();
 +      ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
 +
 +      /*
 +       * Finally, we can release the reserve and call the END probe.  We
 +       * disable interrupts across calling the END probe to allow us to
 +       * return the CPU on which we actually called the END probe.  This
 +       * allows user-land to be sure that this CPU's principal buffer is
 +       * processed last.
 +       */
 +      state->dts_reserve = 0;
 +
 +      cookie = dtrace_interrupt_disable();
 +      *cpu = curcpu;
 +      dtrace_probe(dtrace_probeid_end,
 +          (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
 +      dtrace_interrupt_enable(cookie);
 +
 +      state->dts_activity = DTRACE_ACTIVITY_STOPPED;
 +      dtrace_sync();
 +
 +#ifdef illumos
 +      if (state->dts_getf != 0 &&
 +          !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
 +              /*
 +               * We don't have kernel privs but we have at least one call
 +               * to getf(); we need to lower our zone's count, and (if
 +               * this is the last enabling to have an unprivileged call
 +               * to getf()) we need to clear the closef() hook.
 +               */
 +              ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
 +              ASSERT(dtrace_closef == dtrace_getf_barrier);
 +              ASSERT(dtrace_getf > 0);
 +
 +              state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
 +
 +              if (--dtrace_getf == 0)
 +                      dtrace_closef = NULL;
 +      }
 +#endif
 +
 +      return (0);
 +}
 +
 +static int
 +dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
 +    dtrace_optval_t val)
 +{
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
 +              return (EBUSY);
 +
 +      if (option >= DTRACEOPT_MAX)
 +              return (EINVAL);
 +
 +      if (option != DTRACEOPT_CPU && val < 0)
 +              return (EINVAL);
 +
 +      switch (option) {
 +      case DTRACEOPT_DESTRUCTIVE:
 +              if (dtrace_destructive_disallow)
 +                      return (EACCES);
 +
 +              state->dts_cred.dcr_destructive = 1;
 +              break;
 +
 +      case DTRACEOPT_BUFSIZE:
 +      case DTRACEOPT_DYNVARSIZE:
 +      case DTRACEOPT_AGGSIZE:
 +      case DTRACEOPT_SPECSIZE:
 +      case DTRACEOPT_STRSIZE:
 +              if (val < 0)
 +                      return (EINVAL);
 +
 +              if (val >= LONG_MAX) {
 +                      /*
 +                       * If this is an otherwise negative value, set it to
 +                       * the highest multiple of 128m less than LONG_MAX.
 +                       * Technically, we're adjusting the size without
 +                       * regard to the buffer resizing policy, but in fact,
 +                       * this has no effect -- if we set the buffer size to
 +                       * ~LONG_MAX and the buffer policy is ultimately set to
 +                       * be "manual", the buffer allocation is guaranteed to
 +                       * fail, if only because the allocation requires two
 +                       * buffers.  (We set the the size to the highest
 +                       * multiple of 128m because it ensures that the size
 +                       * will remain a multiple of a megabyte when
 +                       * repeatedly halved -- all the way down to 15m.)
 +                       */
 +                      val = LONG_MAX - (1 << 27) + 1;
 +              }
 +      }
 +
 +      state->dts_options[option] = val;
 +
 +      return (0);
 +}
 +
 +static void
 +dtrace_state_destroy(dtrace_state_t *state)
 +{
 +      dtrace_ecb_t *ecb;
 +      dtrace_vstate_t *vstate = &state->dts_vstate;
 +#ifdef illumos
 +      minor_t minor = getminor(state->dts_dev);
 +#endif
 +      int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
 +      dtrace_speculation_t *spec = state->dts_speculations;
 +      int nspec = state->dts_nspeculations;
 +      uint32_t match;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(MUTEX_HELD(&cpu_lock));
 +
 +      /*
 +       * First, retract any retained enablings for this state.
 +       */
 +      dtrace_enabling_retract(state);
 +      ASSERT(state->dts_nretained == 0);
 +
 +      if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
 +          state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
 +              /*
 +               * We have managed to come into dtrace_state_destroy() on a
 +               * hot enabling -- almost certainly because of a disorderly
 +               * shutdown of a consumer.  (That is, a consumer that is
 +               * exiting without having called dtrace_stop().) In this case,
 +               * we're going to set our activity to be KILLED, and then
 +               * issue a sync to be sure that everyone is out of probe
 +               * context before we start blowing away ECBs.
 +               */
 +              state->dts_activity = DTRACE_ACTIVITY_KILLED;
 +              dtrace_sync();
 +      }
 +
 +      /*
 +       * Release the credential hold we took in dtrace_state_create().
 +       */
 +      if (state->dts_cred.dcr_cred != NULL)
 +              crfree(state->dts_cred.dcr_cred);
 +
 +      /*
 +       * Now we can safely disable and destroy any enabled probes.  Because
 +       * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
 +       * (especially if they're all enabled), we take two passes through the
 +       * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
 +       * in the second we disable whatever is left over.
 +       */
 +      for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
 +              for (i = 0; i < state->dts_necbs; i++) {
 +                      if ((ecb = state->dts_ecbs[i]) == NULL)
 +                              continue;
 +
 +                      if (match && ecb->dte_probe != NULL) {
 +                              dtrace_probe_t *probe = ecb->dte_probe;
 +                              dtrace_provider_t *prov = probe->dtpr_provider;
 +
 +                              if (!(prov->dtpv_priv.dtpp_flags & match))
 +                                      continue;
 +                      }
 +
 +                      dtrace_ecb_disable(ecb);
 +                      dtrace_ecb_destroy(ecb);
 +              }
 +
 +              if (!match)
 +                      break;
 +      }
 +
 +      /*
 +       * Before we free the buffers, perform one more sync to assure that
 +       * every CPU is out of probe context.
 +       */
 +      dtrace_sync();
 +
 +      dtrace_buffer_free(state->dts_buffer);
 +      dtrace_buffer_free(state->dts_aggbuffer);
 +
 +      for (i = 0; i < nspec; i++)
 +              dtrace_buffer_free(spec[i].dtsp_buffer);
 +
 +#ifdef illumos
 +      if (state->dts_cleaner != CYCLIC_NONE)
 +              cyclic_remove(state->dts_cleaner);
 +
 +      if (state->dts_deadman != CYCLIC_NONE)
 +              cyclic_remove(state->dts_deadman);
 +#else
 +      callout_stop(&state->dts_cleaner);
 +      callout_drain(&state->dts_cleaner);
 +      callout_stop(&state->dts_deadman);
 +      callout_drain(&state->dts_deadman);
 +#endif
 +
 +      dtrace_dstate_fini(&vstate->dtvs_dynvars);
 +      dtrace_vstate_fini(vstate);
 +      if (state->dts_ecbs != NULL)
 +              kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
 +
 +      if (state->dts_aggregations != NULL) {
 +#ifdef DEBUG
 +              for (i = 0; i < state->dts_naggregations; i++)
 +                      ASSERT(state->dts_aggregations[i] == NULL);
 +#endif
 +              ASSERT(state->dts_naggregations > 0);
 +              kmem_free(state->dts_aggregations,
 +                  state->dts_naggregations * sizeof (dtrace_aggregation_t *));
 +      }
 +
 +      kmem_free(state->dts_buffer, bufsize);
 +      kmem_free(state->dts_aggbuffer, bufsize);
 +
 +      for (i = 0; i < nspec; i++)
 +              kmem_free(spec[i].dtsp_buffer, bufsize);
 +
 +      if (spec != NULL)
 +              kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
 +
 +      dtrace_format_destroy(state);
 +
 +      if (state->dts_aggid_arena != NULL) {
 +#ifdef illumos
 +              vmem_destroy(state->dts_aggid_arena);
 +#else
 +              delete_unrhdr(state->dts_aggid_arena);
 +#endif
 +              state->dts_aggid_arena = NULL;
 +      }
 +#ifdef illumos
 +      ddi_soft_state_free(dtrace_softstate, minor);
 +      vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
 +#endif
 +}
 +
 +/*
 + * DTrace Anonymous Enabling Functions
 + */
 +static dtrace_state_t *
 +dtrace_anon_grab(void)
 +{
 +      dtrace_state_t *state;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      if ((state = dtrace_anon.dta_state) == NULL) {
 +              ASSERT(dtrace_anon.dta_enabling == NULL);
 +              return (NULL);
 +      }
 +
 +      ASSERT(dtrace_anon.dta_enabling != NULL);
 +      ASSERT(dtrace_retained != NULL);
 +
 +      dtrace_enabling_destroy(dtrace_anon.dta_enabling);
 +      dtrace_anon.dta_enabling = NULL;
 +      dtrace_anon.dta_state = NULL;
 +
 +      return (state);
 +}
 +
 +static void
 +dtrace_anon_property(void)
 +{
 +      int i, rv;
 +      dtrace_state_t *state;
 +      dof_hdr_t *dof;
 +      char c[32];             /* enough for "dof-data-" + digits */
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(MUTEX_HELD(&cpu_lock));
 +
 +      for (i = 0; ; i++) {
 +              (void) snprintf(c, sizeof (c), "dof-data-%d", i);
 +
 +              dtrace_err_verbose = 1;
 +
 +              if ((dof = dtrace_dof_property(c)) == NULL) {
 +                      dtrace_err_verbose = 0;
 +                      break;
 +              }
 +
 +#ifdef illumos
 +              /*
 +               * We want to create anonymous state, so we need to transition
 +               * the kernel debugger to indicate that DTrace is active.  If
 +               * this fails (e.g. because the debugger has modified text in
 +               * some way), we won't continue with the processing.
 +               */
 +              if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
 +                      cmn_err(CE_NOTE, "kernel debugger active; anonymous "
 +                          "enabling ignored.");
 +                      dtrace_dof_destroy(dof);
 +                      break;
 +              }
 +#endif
 +
 +              /*
 +               * If we haven't allocated an anonymous state, we'll do so now.
 +               */
 +              if ((state = dtrace_anon.dta_state) == NULL) {
 +#ifdef illumos
 +                      state = dtrace_state_create(NULL, NULL);
 +#else
 +                      state = dtrace_state_create(NULL);
 +#endif
 +                      dtrace_anon.dta_state = state;
 +
 +                      if (state == NULL) {
 +                              /*
 +                               * This basically shouldn't happen:  the only
 +                               * failure mode from dtrace_state_create() is a
 +                               * failure of ddi_soft_state_zalloc() that
 +                               * itself should never happen.  Still, the
 +                               * interface allows for a failure mode, and
 +                               * we want to fail as gracefully as possible:
 +                               * we'll emit an error message and cease
 +                               * processing anonymous state in this case.
 +                               */
 +                              cmn_err(CE_WARN, "failed to create "
 +                                  "anonymous state");
 +                              dtrace_dof_destroy(dof);
 +                              break;
 +                      }
 +              }
 +
 +              rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
 +                  &dtrace_anon.dta_enabling, 0, B_TRUE);
 +
 +              if (rv == 0)
 +                      rv = dtrace_dof_options(dof, state);
 +
 +              dtrace_err_verbose = 0;
 +              dtrace_dof_destroy(dof);
 +
 +              if (rv != 0) {
 +                      /*
 +                       * This is malformed DOF; chuck any anonymous state
 +                       * that we created.
 +                       */
 +                      ASSERT(dtrace_anon.dta_enabling == NULL);
 +                      dtrace_state_destroy(state);
 +                      dtrace_anon.dta_state = NULL;
 +                      break;
 +              }
 +
 +              ASSERT(dtrace_anon.dta_enabling != NULL);
 +      }
 +
 +      if (dtrace_anon.dta_enabling != NULL) {
 +              int rval;
 +
 +              /*
 +               * dtrace_enabling_retain() can only fail because we are
 +               * trying to retain more enablings than are allowed -- but
 +               * we only have one anonymous enabling, and we are guaranteed
 +               * to be allowed at least one retained enabling; we assert
 +               * that dtrace_enabling_retain() returns success.
 +               */
 +              rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
 +              ASSERT(rval == 0);
 +
 +              dtrace_enabling_dump(dtrace_anon.dta_enabling);
 +      }
 +}
 +
 +/*
 + * DTrace Helper Functions
 + */
 +static void
 +dtrace_helper_trace(dtrace_helper_action_t *helper,
 +    dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
 +{
 +      uint32_t size, next, nnext, i;
 +      dtrace_helptrace_t *ent, *buffer;
 +      uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
 +
 +      if ((buffer = dtrace_helptrace_buffer) == NULL)
 +              return;
 +
 +      ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
 +
 +      /*
 +       * What would a tracing framework be without its own tracing
 +       * framework?  (Well, a hell of a lot simpler, for starters...)
 +       */
 +      size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
 +          sizeof (uint64_t) - sizeof (uint64_t);
 +
 +      /*
 +       * Iterate until we can allocate a slot in the trace buffer.
 +       */
 +      do {
 +              next = dtrace_helptrace_next;
 +
 +              if (next + size < dtrace_helptrace_bufsize) {
 +                      nnext = next + size;
 +              } else {
 +                      nnext = size;
 +              }
 +      } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
 +
 +      /*
 +       * We have our slot; fill it in.
 +       */
 +      if (nnext == size) {
 +              dtrace_helptrace_wrapped++;
 +              next = 0;
 +      }
 +
 +      ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
 +      ent->dtht_helper = helper;
 +      ent->dtht_where = where;
 +      ent->dtht_nlocals = vstate->dtvs_nlocals;
 +
 +      ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
 +          mstate->dtms_fltoffs : -1;
 +      ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
 +      ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
 +
 +      for (i = 0; i < vstate->dtvs_nlocals; i++) {
 +              dtrace_statvar_t *svar;
 +
 +              if ((svar = vstate->dtvs_locals[i]) == NULL)
 +                      continue;
 +
 +              ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
 +              ent->dtht_locals[i] =
 +                  ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
 +      }
 +}
 +
 +static uint64_t
 +dtrace_helper(int which, dtrace_mstate_t *mstate,
 +    dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
 +{
 +      uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
 +      uint64_t sarg0 = mstate->dtms_arg[0];
 +      uint64_t sarg1 = mstate->dtms_arg[1];
 +      uint64_t rval = 0;
 +      dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
 +      dtrace_helper_action_t *helper;
 +      dtrace_vstate_t *vstate;
 +      dtrace_difo_t *pred;
 +      int i, trace = dtrace_helptrace_buffer != NULL;
 +
 +      ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
 +
 +      if (helpers == NULL)
 +              return (0);
 +
 +      if ((helper = helpers->dthps_actions[which]) == NULL)
 +              return (0);
 +
 +      vstate = &helpers->dthps_vstate;
 +      mstate->dtms_arg[0] = arg0;
 +      mstate->dtms_arg[1] = arg1;
 +
 +      /*
 +       * Now iterate over each helper.  If its predicate evaluates to 'true',
 +       * we'll call the corresponding actions.  Note that the below calls
 +       * to dtrace_dif_emulate() may set faults in machine state.  This is
 +       * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
 +       * the stored DIF offset with its own (which is the desired behavior).
 +       * Also, note the calls to dtrace_dif_emulate() may allocate scratch
 +       * from machine state; this is okay, too.
 +       */
 +      for (; helper != NULL; helper = helper->dtha_next) {
 +              if ((pred = helper->dtha_predicate) != NULL) {
 +                      if (trace)
 +                              dtrace_helper_trace(helper, mstate, vstate, 0);
 +
 +                      if (!dtrace_dif_emulate(pred, mstate, vstate, state))
 +                              goto next;
 +
 +                      if (*flags & CPU_DTRACE_FAULT)
 +                              goto err;
 +              }
 +
 +              for (i = 0; i < helper->dtha_nactions; i++) {
 +                      if (trace)
 +                              dtrace_helper_trace(helper,
 +                                  mstate, vstate, i + 1);
 +
 +                      rval = dtrace_dif_emulate(helper->dtha_actions[i],
 +                          mstate, vstate, state);
 +
 +                      if (*flags & CPU_DTRACE_FAULT)
 +                              goto err;
 +              }
 +
 +next:
 +              if (trace)
 +                      dtrace_helper_trace(helper, mstate, vstate,
 +                          DTRACE_HELPTRACE_NEXT);
 +      }
 +
 +      if (trace)
 +              dtrace_helper_trace(helper, mstate, vstate,
 +                  DTRACE_HELPTRACE_DONE);
 +
 +      /*
 +       * Restore the arg0 that we saved upon entry.
 +       */
 +      mstate->dtms_arg[0] = sarg0;
 +      mstate->dtms_arg[1] = sarg1;
 +
 +      return (rval);
 +
 +err:
 +      if (trace)
 +              dtrace_helper_trace(helper, mstate, vstate,
 +                  DTRACE_HELPTRACE_ERR);
 +
 +      /*
 +       * Restore the arg0 that we saved upon entry.
 +       */
 +      mstate->dtms_arg[0] = sarg0;
 +      mstate->dtms_arg[1] = sarg1;
 +
 +      return (0);
 +}
 +
 +static void
 +dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
 +    dtrace_vstate_t *vstate)
 +{
 +      int i;
 +
 +      if (helper->dtha_predicate != NULL)
 +              dtrace_difo_release(helper->dtha_predicate, vstate);
 +
 +      for (i = 0; i < helper->dtha_nactions; i++) {
 +              ASSERT(helper->dtha_actions[i] != NULL);
 +              dtrace_difo_release(helper->dtha_actions[i], vstate);
 +      }
 +
 +      kmem_free(helper->dtha_actions,
 +          helper->dtha_nactions * sizeof (dtrace_difo_t *));
 +      kmem_free(helper, sizeof (dtrace_helper_action_t));
 +}
 +
 +static int
 +dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
 +{
 +      proc_t *p = curproc;
 +      dtrace_vstate_t *vstate;
 +      int i;
 +
 +      if (help == NULL)
 +              help = p->p_dtrace_helpers;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +      if (help == NULL || gen > help->dthps_generation)
 +              return (EINVAL);
 +
 +      vstate = &help->dthps_vstate;
 +
 +      for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
 +              dtrace_helper_action_t *last = NULL, *h, *next;
 +
 +              for (h = help->dthps_actions[i]; h != NULL; h = next) {
 +                      next = h->dtha_next;
 +
 +                      if (h->dtha_generation == gen) {
 +                              if (last != NULL) {
 +                                      last->dtha_next = next;
 +                              } else {
 +                                      help->dthps_actions[i] = next;
 +                              }
 +
 +                              dtrace_helper_action_destroy(h, vstate);
 +                      } else {
 +                              last = h;
 +                      }
 +              }
 +      }
 +
 +      /*
 +       * Interate until we've cleared out all helper providers with the
 +       * given generation number.
 +       */
 +      for (;;) {
 +              dtrace_helper_provider_t *prov;
 +
 +              /*
 +               * Look for a helper provider with the right generation. We
 +               * have to start back at the beginning of the list each time
 +               * because we drop dtrace_lock. It's unlikely that we'll make
 +               * more than two passes.
 +               */
 +              for (i = 0; i < help->dthps_nprovs; i++) {
 +                      prov = help->dthps_provs[i];
 +
 +                      if (prov->dthp_generation == gen)
 +                              break;
 +              }
 +
 +              /*
 +               * If there were no matches, we're done.
 +               */
 +              if (i == help->dthps_nprovs)
 +                      break;
 +
 +              /*
 +               * Move the last helper provider into this slot.
 +               */
 +              help->dthps_nprovs--;
 +              help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
 +              help->dthps_provs[help->dthps_nprovs] = NULL;
 +
 +              mutex_exit(&dtrace_lock);
 +
 +              /*
 +               * If we have a meta provider, remove this helper provider.
 +               */
 +              mutex_enter(&dtrace_meta_lock);
 +              if (dtrace_meta_pid != NULL) {
 +                      ASSERT(dtrace_deferred_pid == NULL);
 +                      dtrace_helper_provider_remove(&prov->dthp_prov,
 +                          p->p_pid);
 +              }
 +              mutex_exit(&dtrace_meta_lock);
 +
 +              dtrace_helper_provider_destroy(prov);
 +
 +              mutex_enter(&dtrace_lock);
 +      }
 +
 +      return (0);
 +}
 +
 +static int
 +dtrace_helper_validate(dtrace_helper_action_t *helper)
 +{
 +      int err = 0, i;
 +      dtrace_difo_t *dp;
 +
 +      if ((dp = helper->dtha_predicate) != NULL)
 +              err += dtrace_difo_validate_helper(dp);
 +
 +      for (i = 0; i < helper->dtha_nactions; i++)
 +              err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
 +
 +      return (err == 0);
 +}
 +
 +static int
 +dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
 +    dtrace_helpers_t *help)
 +{
 +      dtrace_helper_action_t *helper, *last;
 +      dtrace_actdesc_t *act;
 +      dtrace_vstate_t *vstate;
 +      dtrace_predicate_t *pred;
 +      int count = 0, nactions = 0, i;
 +
 +      if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
 +              return (EINVAL);
 +
 +      last = help->dthps_actions[which];
 +      vstate = &help->dthps_vstate;
 +
 +      for (count = 0; last != NULL; last = last->dtha_next) {
 +              count++;
 +              if (last->dtha_next == NULL)
 +                      break;
 +      }
 +
 +      /*
 +       * If we already have dtrace_helper_actions_max helper actions for this
 +       * helper action type, we'll refuse to add a new one.
 +       */
 +      if (count >= dtrace_helper_actions_max)
 +              return (ENOSPC);
 +
 +      helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
 +      helper->dtha_generation = help->dthps_generation;
 +
 +      if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
 +              ASSERT(pred->dtp_difo != NULL);
 +              dtrace_difo_hold(pred->dtp_difo);
 +              helper->dtha_predicate = pred->dtp_difo;
 +      }
 +
 +      for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
 +              if (act->dtad_kind != DTRACEACT_DIFEXPR)
 +                      goto err;
 +
 +              if (act->dtad_difo == NULL)
 +                      goto err;
 +
 +              nactions++;
 +      }
 +
 +      helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
 +          (helper->dtha_nactions = nactions), KM_SLEEP);
 +
 +      for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
 +              dtrace_difo_hold(act->dtad_difo);
 +              helper->dtha_actions[i++] = act->dtad_difo;
 +      }
 +
 +      if (!dtrace_helper_validate(helper))
 +              goto err;
 +
 +      if (last == NULL) {
 +              help->dthps_actions[which] = helper;
 +      } else {
 +              last->dtha_next = helper;
 +      }
 +
 +      if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
 +              dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
 +              dtrace_helptrace_next = 0;
 +      }
 +
 +      return (0);
 +err:
 +      dtrace_helper_action_destroy(helper, vstate);
 +      return (EINVAL);
 +}
 +
 +static void
 +dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
 +    dof_helper_t *dofhp)
 +{
 +      ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
 +
 +      mutex_enter(&dtrace_meta_lock);
 +      mutex_enter(&dtrace_lock);
 +
 +      if (!dtrace_attached() || dtrace_meta_pid == NULL) {
 +              /*
 +               * If the dtrace module is loaded but not attached, or if
 +               * there aren't isn't a meta provider registered to deal with
 +               * these provider descriptions, we need to postpone creating
 +               * the actual providers until later.
 +               */
 +
 +              if (help->dthps_next == NULL && help->dthps_prev == NULL &&
 +                  dtrace_deferred_pid != help) {
 +                      help->dthps_deferred = 1;
 +                      help->dthps_pid = p->p_pid;
 +                      help->dthps_next = dtrace_deferred_pid;
 +                      help->dthps_prev = NULL;
 +                      if (dtrace_deferred_pid != NULL)
 +                              dtrace_deferred_pid->dthps_prev = help;
 +                      dtrace_deferred_pid = help;
 +              }
 +
 +              mutex_exit(&dtrace_lock);
 +
 +      } else if (dofhp != NULL) {
 +              /*
 +               * If the dtrace module is loaded and we have a particular
 +               * helper provider description, pass that off to the
 +               * meta provider.
 +               */
 +
 +              mutex_exit(&dtrace_lock);
 +
 +              dtrace_helper_provide(dofhp, p->p_pid);
 +
 +      } else {
 +              /*
 +               * Otherwise, just pass all the helper provider descriptions
 +               * off to the meta provider.
 +               */
 +
 +              int i;
 +              mutex_exit(&dtrace_lock);
 +
 +              for (i = 0; i < help->dthps_nprovs; i++) {
 +                      dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
 +                          p->p_pid);
 +              }
 +      }
 +
 +      mutex_exit(&dtrace_meta_lock);
 +}
 +
 +static int
 +dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
 +{
 +      dtrace_helper_provider_t *hprov, **tmp_provs;
 +      uint_t tmp_maxprovs, i;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(help != NULL);
 +
 +      /*
 +       * If we already have dtrace_helper_providers_max helper providers,
 +       * we're refuse to add a new one.
 +       */
 +      if (help->dthps_nprovs >= dtrace_helper_providers_max)
 +              return (ENOSPC);
 +
 +      /*
 +       * Check to make sure this isn't a duplicate.
 +       */
 +      for (i = 0; i < help->dthps_nprovs; i++) {
 +              if (dofhp->dofhp_dof ==
 +                  help->dthps_provs[i]->dthp_prov.dofhp_dof)
 +                      return (EALREADY);
 +      }
 +
 +      hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
 +      hprov->dthp_prov = *dofhp;
 +      hprov->dthp_ref = 1;
 +      hprov->dthp_generation = gen;
 +
 +      /*
 +       * Allocate a bigger table for helper providers if it's already full.
 +       */
 +      if (help->dthps_maxprovs == help->dthps_nprovs) {
 +              tmp_maxprovs = help->dthps_maxprovs;
 +              tmp_provs = help->dthps_provs;
 +
 +              if (help->dthps_maxprovs == 0)
 +                      help->dthps_maxprovs = 2;
 +              else
 +                      help->dthps_maxprovs *= 2;
 +              if (help->dthps_maxprovs > dtrace_helper_providers_max)
 +                      help->dthps_maxprovs = dtrace_helper_providers_max;
 +
 +              ASSERT(tmp_maxprovs < help->dthps_maxprovs);
 +
 +              help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
 +                  sizeof (dtrace_helper_provider_t *), KM_SLEEP);
 +
 +              if (tmp_provs != NULL) {
 +                      bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
 +                          sizeof (dtrace_helper_provider_t *));
 +                      kmem_free(tmp_provs, tmp_maxprovs *
 +                          sizeof (dtrace_helper_provider_t *));
 +              }
 +      }
 +
 +      help->dthps_provs[help->dthps_nprovs] = hprov;
 +      help->dthps_nprovs++;
 +
 +      return (0);
 +}
 +
 +static void
 +dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
 +{
 +      mutex_enter(&dtrace_lock);
 +
 +      if (--hprov->dthp_ref == 0) {
 +              dof_hdr_t *dof;
 +              mutex_exit(&dtrace_lock);
 +              dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
 +              dtrace_dof_destroy(dof);
 +              kmem_free(hprov, sizeof (dtrace_helper_provider_t));
 +      } else {
 +              mutex_exit(&dtrace_lock);
 +      }
 +}
 +
 +static int
 +dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
 +{
 +      uintptr_t daddr = (uintptr_t)dof;
 +      dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
 +      dof_provider_t *provider;
 +      dof_probe_t *probe;
 +      uint8_t *arg;
 +      char *strtab, *typestr;
 +      dof_stridx_t typeidx;
 +      size_t typesz;
 +      uint_t nprobes, j, k;
 +
 +      ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
 +
 +      if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
 +              dtrace_dof_error(dof, "misaligned section offset");
 +              return (-1);
 +      }
 +
 +      /*
 +       * The section needs to be large enough to contain the DOF provider
 +       * structure appropriate for the given version.
 +       */
 +      if (sec->dofs_size <
 +          ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
 +          offsetof(dof_provider_t, dofpv_prenoffs) :
 +          sizeof (dof_provider_t))) {
 +              dtrace_dof_error(dof, "provider section too small");
 +              return (-1);
 +      }
 +
 +      provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
 +      str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
 +      prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
 +      arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
 +      off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
 +
 +      if (str_sec == NULL || prb_sec == NULL ||
 +          arg_sec == NULL || off_sec == NULL)
 +              return (-1);
 +
 +      enoff_sec = NULL;
 +
 +      if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
 +          provider->dofpv_prenoffs != DOF_SECT_NONE &&
 +          (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
 +          provider->dofpv_prenoffs)) == NULL)
 +              return (-1);
 +
 +      strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
 +
 +      if (provider->dofpv_name >= str_sec->dofs_size ||
 +          strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
 +              dtrace_dof_error(dof, "invalid provider name");
 +              return (-1);
 +      }
 +
 +      if (prb_sec->dofs_entsize == 0 ||
 +          prb_sec->dofs_entsize > prb_sec->dofs_size) {
 +              dtrace_dof_error(dof, "invalid entry size");
 +              return (-1);
 +      }
 +
 +      if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
 +              dtrace_dof_error(dof, "misaligned entry size");
 +              return (-1);
 +      }
 +
 +      if (off_sec->dofs_entsize != sizeof (uint32_t)) {
 +              dtrace_dof_error(dof, "invalid entry size");
 +              return (-1);
 +      }
 +
 +      if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
 +              dtrace_dof_error(dof, "misaligned section offset");
 +              return (-1);
 +      }
 +
 +      if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
 +              dtrace_dof_error(dof, "invalid entry size");
 +              return (-1);
 +      }
 +
 +      arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
 +
 +      nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
 +
 +      /*
 +       * Take a pass through the probes to check for errors.
 +       */
 +      for (j = 0; j < nprobes; j++) {
 +              probe = (dof_probe_t *)(uintptr_t)(daddr +
 +                  prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
 +
 +              if (probe->dofpr_func >= str_sec->dofs_size) {
 +                      dtrace_dof_error(dof, "invalid function name");
 +                      return (-1);
 +              }
 +
 +              if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
 +                      dtrace_dof_error(dof, "function name too long");
 +                      return (-1);
 +              }
 +
 +              if (probe->dofpr_name >= str_sec->dofs_size ||
 +                  strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
 +                      dtrace_dof_error(dof, "invalid probe name");
 +                      return (-1);
 +              }
 +
 +              /*
 +               * The offset count must not wrap the index, and the offsets
 +               * must also not overflow the section's data.
 +               */
 +              if (probe->dofpr_offidx + probe->dofpr_noffs <
 +                  probe->dofpr_offidx ||
 +                  (probe->dofpr_offidx + probe->dofpr_noffs) *
 +                  off_sec->dofs_entsize > off_sec->dofs_size) {
 +                      dtrace_dof_error(dof, "invalid probe offset");
 +                      return (-1);
 +              }
 +
 +              if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
 +                      /*
 +                       * If there's no is-enabled offset section, make sure
 +                       * there aren't any is-enabled offsets. Otherwise
 +                       * perform the same checks as for probe offsets
 +                       * (immediately above).
 +                       */
 +                      if (enoff_sec == NULL) {
 +                              if (probe->dofpr_enoffidx != 0 ||
 +                                  probe->dofpr_nenoffs != 0) {
 +                                      dtrace_dof_error(dof, "is-enabled "
 +                                          "offsets with null section");
 +                                      return (-1);
 +                              }
 +                      } else if (probe->dofpr_enoffidx +
 +                          probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
 +                          (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
 +                          enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
 +                              dtrace_dof_error(dof, "invalid is-enabled "
 +                                  "offset");
 +                              return (-1);
 +                      }
 +
 +                      if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
 +                              dtrace_dof_error(dof, "zero probe and "
 +                                  "is-enabled offsets");
 +                              return (-1);
 +                      }
 +              } else if (probe->dofpr_noffs == 0) {
 +                      dtrace_dof_error(dof, "zero probe offsets");
 +                      return (-1);
 +              }
 +
 +              if (probe->dofpr_argidx + probe->dofpr_xargc <
 +                  probe->dofpr_argidx ||
 +                  (probe->dofpr_argidx + probe->dofpr_xargc) *
 +                  arg_sec->dofs_entsize > arg_sec->dofs_size) {
 +                      dtrace_dof_error(dof, "invalid args");
 +                      return (-1);
 +              }
 +
 +              typeidx = probe->dofpr_nargv;
 +              typestr = strtab + probe->dofpr_nargv;
 +              for (k = 0; k < probe->dofpr_nargc; k++) {
 +                      if (typeidx >= str_sec->dofs_size) {
 +                              dtrace_dof_error(dof, "bad "
 +                                  "native argument type");
 +                              return (-1);
 +                      }
 +
 +                      typesz = strlen(typestr) + 1;
 +                      if (typesz > DTRACE_ARGTYPELEN) {
 +                              dtrace_dof_error(dof, "native "
 +                                  "argument type too long");
 +                              return (-1);
 +                      }
 +                      typeidx += typesz;
 +                      typestr += typesz;
 +              }
 +
 +              typeidx = probe->dofpr_xargv;
 +              typestr = strtab + probe->dofpr_xargv;
 +              for (k = 0; k < probe->dofpr_xargc; k++) {
 +                      if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
 +                              dtrace_dof_error(dof, "bad "
 +                                  "native argument index");
 +                              return (-1);
 +                      }
 +
 +                      if (typeidx >= str_sec->dofs_size) {
 +                              dtrace_dof_error(dof, "bad "
 +                                  "translated argument type");
 +                              return (-1);
 +                      }
 +
 +                      typesz = strlen(typestr) + 1;
 +                      if (typesz > DTRACE_ARGTYPELEN) {
 +                              dtrace_dof_error(dof, "translated argument "
 +                                  "type too long");
 +                              return (-1);
 +                      }
 +
 +                      typeidx += typesz;
 +                      typestr += typesz;
 +              }
 +      }
 +
 +      return (0);
 +}
 +
 +static int
 +dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
 +{
 +      dtrace_helpers_t *help;
 +      dtrace_vstate_t *vstate;
 +      dtrace_enabling_t *enab = NULL;
 +      proc_t *p = curproc;
 +      int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
 +      uintptr_t daddr = (uintptr_t)dof;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +
 +#ifdef __FreeBSD__
 +      if (dhp->dofhp_pid != p->p_pid) {
 +              if ((p = pfind(dhp->dofhp_pid)) == NULL)
 +                      return (-1);
 +              if (!P_SHOULDSTOP(p) ||
 +                  (p->p_flag & P_TRACED) == 0 ||
 +                  p->p_pptr->p_pid != curproc->p_pid) {
 +                      PROC_UNLOCK(p);
 +                      return (-1);
 +              }
 +              PROC_UNLOCK(p);
 +      }
 +#endif
 +
 +      if ((help = p->p_dtrace_helpers) == NULL)
 +              help = dtrace_helpers_create(p);
 +
 +      vstate = &help->dthps_vstate;
 +
 +      if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
 +          dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
 +              dtrace_dof_destroy(dof);
 +              return (rv);
 +      }
 +
 +      /*
 +       * Look for helper providers and validate their descriptions.
 +       */
 +      if (dhp != NULL) {
 +              for (i = 0; i < dof->dofh_secnum; i++) {
 +                      dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
 +                          dof->dofh_secoff + i * dof->dofh_secsize);
 +
 +                      if (sec->dofs_type != DOF_SECT_PROVIDER)
 +                              continue;
 +
 +                      if (dtrace_helper_provider_validate(dof, sec) != 0) {
 +                              dtrace_enabling_destroy(enab);
 +                              dtrace_dof_destroy(dof);
 +                              return (-1);
 +                      }
 +
 +                      nprovs++;
 +              }
 +      }
 +
 +      /*
 +       * Now we need to walk through the ECB descriptions in the enabling.
 +       */
 +      for (i = 0; i < enab->dten_ndesc; i++) {
 +              dtrace_ecbdesc_t *ep = enab->dten_desc[i];
 +              dtrace_probedesc_t *desc = &ep->dted_probe;
 +
 +              if (strcmp(desc->dtpd_provider, "dtrace") != 0)
 +                      continue;
 +
 +              if (strcmp(desc->dtpd_mod, "helper") != 0)
 +                      continue;
 +
 +              if (strcmp(desc->dtpd_func, "ustack") != 0)
 +                      continue;
 +
 +              if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
 +                  ep, help)) != 0) {
 +                      /*
 +                       * Adding this helper action failed -- we are now going
 +                       * to rip out the entire generation and return failure.
 +                       */
 +                      (void) dtrace_helper_destroygen(help,
 +                          help->dthps_generation);
 +                      dtrace_enabling_destroy(enab);
 +                      dtrace_dof_destroy(dof);
 +                      return (-1);
 +              }
 +
 +              nhelpers++;
 +      }
 +
 +      if (nhelpers < enab->dten_ndesc)
 +              dtrace_dof_error(dof, "unmatched helpers");
 +
 +      gen = help->dthps_generation++;
 +      dtrace_enabling_destroy(enab);
 +
 +      if (dhp != NULL && nprovs > 0) {
 +              dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
 +              if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
 +                      mutex_exit(&dtrace_lock);
 +                      dtrace_helper_provider_register(p, help, dhp);
 +                      mutex_enter(&dtrace_lock);
 +
 +                      destroy = 0;
 +              }
 +      }
 +
 +      if (destroy)
 +              dtrace_dof_destroy(dof);
 +
 +      return (gen);
 +}
 +
 +static dtrace_helpers_t *
 +dtrace_helpers_create(proc_t *p)
 +{
 +      dtrace_helpers_t *help;
 +
 +      ASSERT(MUTEX_HELD(&dtrace_lock));
 +      ASSERT(p->p_dtrace_helpers == NULL);
 +
 +      help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
 +      help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
 +          DTRACE_NHELPER_ACTIONS, KM_SLEEP);
 +
 +      p->p_dtrace_helpers = help;
 +      dtrace_helpers++;
 +
 +      return (help);
 +}
 +
 +#ifdef illumos
 +static
 +#endif
 +void
 +dtrace_helpers_destroy(proc_t *p)
 +{
 +      dtrace_helpers_t *help;
 +      dtrace_vstate_t *vstate;
 +#ifdef illumos
 +      proc_t *p = curproc;
 +#endif
 +      int i;
 +
 +      mutex_enter(&dtrace_lock);
 +
 +      ASSERT(p->p_dtrace_helpers != NULL);
 +      ASSERT(dtrace_helpers > 0);
 +
 +      help = p->p_dtrace_helpers;
 +      vstate = &help->dthps_vstate;
 +
 +      /*
 +       * We're now going to lose the help from this process.
 +       */
 +      p->p_dtrace_helpers = NULL;
 +      dtrace_sync();
 +
 +      /*
 +       * Destory the helper actions.
 +       */
 +      for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
 +              dtrace_helper_action_t *h, *next;
 +
 +              for (h = help->dthps_actions[i]; h != NULL; h = next) {
 +                      next = h->dtha_next;
 +                      dtrace_helper_action_destroy(h, vstate);
 +                      h = next;
 +              }
 +      }
 +
 +      mutex_exit(&dtrace_lock);
 +
 +      /*
 +       * Destroy the helper providers.
 +       */
 +      if (help->dthps_maxprovs > 0) {
 +              mutex_enter(&dtrace_meta_lock);
 +              if (dtrace_meta_pid != NULL) {
 +                      ASSERT(dtrace_deferred_pid == NULL);
 +
 +                      for (i = 0; i < help->dthps_nprovs; i++) {
 +                              dtrace_helper_provider_remove(
 +                                  &help->dthps_provs[i]->dthp_prov, p->p_pid);
 +                      }
 +              } else {
 +                      mutex_enter(&dtrace_lock);
 +                      ASSERT(help->dthps_deferred == 0 ||
 +                          help->dthps_next != NULL ||
 +                          help->dthps_prev != NULL ||
 +                          help == dtrace_deferred_pid);
 +
 +                      /*
 +                       * Remove the helper from the deferred list.
 +                       */
 +                      if (help->dthps_next != NULL)
 +                              help->dthps_next->dthps_prev = help->dthps_prev;
 +                      if (help->dthps_prev != NULL)
 +                              help->dthps_prev->dthps_next = help->dthps_next;
 +                      if (dtrace_deferred_pid == help) {
 +                              dtrace_deferred_pid = help->dthps_next;
 +                              ASSERT(help->dthps_prev == NULL);
 +                      }
 +
 +                      mutex_exit(&dtrace_lock);
 +              }
 +
 +              mutex_exit(&dtrace_meta_lock);
 +
 +              for (i = 0; i < help->dthps_nprovs; i++) {
 +                      dtrace_helper_provider_destroy(help->dthps_provs[i]);
 +              }
 +
 +              kmem_free(help->dthps_provs, help->dthps_maxprovs *
 +                  sizeof (dtrace_helper_provider_t *));
 +      }
 +
 +      mutex_enter(&dtrace_lock);
 +
 +      dtrace_vstate_fini(&help->dthps_vstate);
 +      kmem_free(help->dthps_actions,
 +          sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
 +      kmem_free(help, sizeof (dtrace_helpers_t));
 +
 +      --dtrace_helpers;
 +      mutex_exit(&dtrace_lock);
 +}
 +
 +#ifdef illumos
 +static
 +#endif
 +void
 +dtrace_helpers_duplicate(proc_t *from, proc_t *to)
 +{
 +      dtrace_helpers_t *help, *newhelp;
 +      dtrace_helper_action_t *helper, *new, *last;
 +      dtrace_difo_t *dp;
 +      dtrace_vstate_t *vstate;
 +      int i, j, sz, hasprovs = 0;
 +
 +      mutex_enter(&dtrace_lock);
 +      ASSERT(from->p_dtrace_helpers != NULL);
 +      ASSERT(dtrace_helpers > 0);
 +
 +      help = from->p_dtrace_helpers;
 +      newhelp = dtrace_helpers_create(to);
 +      ASSERT(to->p_dtrace_helpers != NULL);
 +
 +      newhelp->dthps_generation = help->dthps_generation;
 +      vstate = &newhelp->dthps_vstate;
 +
 +      /*
 +       * Duplicate the helper actions.
 +       */
 +      for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
 +              if ((helper = help->dthps_actions[i]) == NULL)
 +                      continue;
 +
 +              for (last = NULL; helper != NULL; helper = helper->dtha_next) {
 +                      new = kmem_zalloc(sizeof (dtrace_helper_action_t),
 +                          KM_SLEEP);
 +                      new->dtha_generation = helper->dtha_generation;
 +
 +                      if ((dp = helper->dtha_predicate) != NULL) {
 +                              dp = dtrace_difo_duplicate(dp, vstate);
 +                              new->dtha_predicate = dp;
 +                      }
 +
 +                      new->dtha_nactions = helper->dtha_nactions;
 +                      sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
 +                      new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
 +
 +                      for (j = 0; j < new->dtha_nactions; j++) {
 +                              dtrace_difo_t *dp = helper->dtha_actions[j];
 +
 +                              ASSERT(dp != NULL);
 +                              dp = dtrace_difo_duplicate(dp, vstate);
 +                              new->dtha_actions[j] = dp;
 +                      }
 +
 +                      if (last != NULL) {
 +                              last->dtha_next = new;
 +                      } else {
 +                              newhelp->dthps_actions[i] = new;
 +                      }
 +
 +                      last = new;
 +              }
 +      }
 +
 +      /*
 +       * Duplicate the helper providers and register them with the
 +       * DTrace framework.
 +       */
 +      if (help->dthps_nprovs > 0) {
 +              newhelp->dthps_nprovs = help->dthps_nprovs;
 +              newhelp->dthps_maxprovs = help->dthps_nprovs;
 +              newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
 +                  sizeof (dtrace_helper_provider_t *), KM_SLEEP);
 +              for (i = 0; i < newhelp->dthps_nprovs; i++) {
 +                      newhelp->dthps_provs[i] = help->dthps_provs[i];
 +                      newhelp->dthps_provs[i]->dthp_ref++;
 +              }
 +
 +              hasprovs = 1;
 +      }
 +
 +      mutex_exit(&dtrace_lock);
 +
 +      if (hasprovs)
 +              dtrace_helper_provider_register(to, newhelp, NULL);
 +}
 +
 +/*
 + * DTrace Hook Functions
 + */
 +static void
 +dtrace_module_loaded(modctl_t *ctl)
 +{
 +      dtrace_provider_t *prv;
 +
 +      mutex_enter(&dtrace_provider_lock);
 +#ifdef illumos
 +      mutex_enter(&mod_lock);
 +#endif
 +
 +#ifdef illumos
 +      ASSERT(ctl->mod_busy);
 +#endif
 +
 +      /*
 +       * We're going to call each providers per-module provide operation
 +       * specifying only this module.
 +       */
 +      for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
 +              prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
 +
 +#ifdef illumos
 +      mutex_exit(&mod_lock);
 +#endif
 +      mutex_exit(&dtrace_provider_lock);
 +
 +      /*
 +       * If we have any retained enablings, we need to match against them.
 +       * Enabling probes requires that cpu_lock be held, and we cannot hold
 +       * cpu_lock here -- it is legal for cpu_lock to be held when loading a
 +       * module.  (In particular, this happens when loading scheduling
 +       * classes.)  So if we have any retained enablings, we need to dispatch
 +       * our task queue to do the match for us.
 +       */
 +      mutex_enter(&dtrace_lock);
 +
 +      if (dtrace_retained == NULL) {
 +              mutex_exit(&dtrace_lock);
 +              return;
 +      }
 +
 +      (void) taskq_dispatch(dtrace_taskq,
 +          (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
 +
 +      mutex_exit(&dtrace_lock);
 +
 +      /*
 +       * And now, for a little heuristic sleaze:  in general, we want to
 +       * match modules as soon as they load.  However, we cannot guarantee
 +       * this, because it would lead us to the lock ordering violation
 +       * outlined above.  The common case, of course, is that cpu_lock is
 +       * _not_ held -- so we delay here for a clock tick, hoping that that's
 +       * long enough for the task queue to do its work.  If it's not, it's
 +       * not a serious problem -- it just means that the module that we
 +       * just loaded may not be immediately instrumentable.
 +       */
 +      delay(1);
 +}
 +
 +static void
 +#ifdef illumos
 +dtrace_module_unloaded(modctl_t *ctl)
 +#else
 +dtrace_module_unloaded(modctl_t *ctl, int *error)
 +#endif
 +{
 +      dtrace_probe_t template, *probe, *first, *next;
 +      dtrace_provider_t *prov;
 +#ifndef illumos
 +      char modname[DTRACE_MODNAMELEN];
 +      size_t len;
 +#endif
 +
 +#ifdef illumos
 +      template.dtpr_mod = ctl->mod_modname;
 +#else
 +      /* Handle the fact that ctl->filename may end in ".ko". */
 +      strlcpy(modname, ctl->filename, sizeof(modname));
 +      len = strlen(ctl->filename);
 +      if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
 +              modname[len - 3] = '\0';
 +      template.dtpr_mod = modname;
 +#endif
 +
 +      mutex_enter(&dtrace_provider_lock);
 +#ifdef illumos
 +      mutex_enter(&mod_lock);
 +#endif
 +      mutex_enter(&dtrace_lock);
 +
 +#ifndef illumos
 +      if (ctl->nenabled > 0) {
 +              /* Don't allow unloads if a probe is enabled. */
 +              mutex_exit(&dtrace_provider_lock);
 +              mutex_exit(&dtrace_lock);
 +              *error = -1;
 +              printf(
 +      "kldunload: attempt to unload module that has DTrace probes enabled\n");
 +              return;
 +      }
 +#endif
 +
 +      if (dtrace_bymod == NULL) {
 +              /*
 +               * The DTrace module is loaded (obviously) but not attached;
 +               * we don't have any work to do.
 +               */
 +              mutex_exit(&dtrace_provider_lock);
 +#ifdef illumos
 +              mutex_exit(&mod_lock);
 +#endif
 +              mutex_exit(&dtrace_lock);
 +              return;
 +      }
 +
 +      for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
 +          probe != NULL; probe = probe->dtpr_nextmod) {
 +              if (probe->dtpr_ecb != NULL) {
 +                      mutex_exit(&dtrace_provider_lock);
 +#ifdef illumos
 +                      mutex_exit(&mod_lock);
 +#endif
 +                      mutex_exit(&dtrace_lock);
 +
 +                      /*
 +                       * This shouldn't _actually_ be possible -- we're
 +                       * unloading a module that has an enabled probe in it.
 +                       * (It's normally up to the provider to make sure that
 +                       * this can't happen.)  However, because dtps_enable()
 +                       * doesn't have a failure mode, there can be an
 +                       * enable/unload race.  Upshot:  we don't want to
 +                       * assert, but we're not going to disable the
 +                       * probe, either.
 +                       */
 +                      if (dtrace_err_verbose) {
 +#ifdef illumos
 +                              cmn_err(CE_WARN, "unloaded module '%s' had "
 +                                  "enabled probes", ctl->mod_modname);
 +#else
 +                              cmn_err(CE_WARN, "unloaded module '%s' had "
 +                                  "enabled probes", modname);
 +#endif
 +                      }
 +
 +                      return;
 +              }
 +      }
 +
 +      probe = first;
 +
 +      for (first = NULL; probe != NULL; probe = next) {
 +              ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
 +
 +              dtrace_probes[probe->dtpr_id - 1] = NULL;
 +
 +              next = probe->dtpr_nextmod;
 +              dtrace_hash_remove(dtrace_bymod, probe);
 +              dtrace_hash_remove(dtrace_byfunc, probe);
 +              dtrace_hash_remove(dtrace_byname, probe);
 +
 +              if (first == NULL) {
 +                      first = probe;
 +                      probe->dtpr_nextmod = NULL;
 +              } else {
 +                      probe->dtpr_nextmod = first;
 +                      first = probe;
 +              }
 +      }
 +
 +      /*
 +       * We've removed all of the module's probes from the hash chains and
 +       * from the probe array.  Now issue a dtrace_sync() to be sure that
 +       * everyone has cleared out from any probe array processing.
 +       */
 +      dtrace_sync();
 +
 +      for (probe = first; probe != NULL; probe = first) {
 +              first = probe->dtpr_nextmod;
 +              prov = probe->dtpr_provider;
 +              prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
 +                  probe->dtpr_arg);
 +              kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
 +              kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
 +              kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
 +#ifdef illumos
 +              vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
 +#else
 +              free_unr(dtrace_arena, probe->dtpr_id);
 +#endif
 +              kmem_free(probe, sizeof (dtrace_probe_t));
 +      }
 +
 +      mutex_exit(&dtrace_lock);
 +#ifdef illumos
 +      mutex_exit(&mod_lock);
 +#endif
 +      mutex_exit(&dtrace_provider_lock);
 +}
 +
 +#ifndef illumos
 +static void
 +dtrace_kld_load(void *arg __unused, linker_file_t lf)
 +{
 +
 +      dtrace_module_loaded(lf);
 +}
 +
 +static void
 +dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
 +{
 +
 +      if (*error != 0)
 +              /* We already have an error, so don't do anything. */
 +              return;
 +      dtrace_module_unloaded(lf, error);
 +}
 +#endif
 +
 +#ifdef illumos
 +static void
 +dtrace_suspend(void)
 +{
 +      dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
 +}
 +
 +static void
 +dtrace_resume(void)
 +{
 +      dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
 +}
 +#endif
 +
 +static int
 +dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
 +{
 +      ASSERT(MUTEX_HELD(&cpu_lock));
 +      mutex_enter(&dtrace_lock);
 +
 +      switch (what) {
 +      case CPU_CONFIG: {
 +              dtrace_state_t *state;
 +              dtrace_optval_t *opt, rs, c;
 +
 +              /*
 +               * For now, we only allocate a new buffer for anonymous state.
 +               */
 +              if ((state = dtrace_anon.dta_state) == NULL)
 +                      break;
 +
 +              if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
 +                      break;
 +
 +              opt = state->dts_options;
 +              c = opt[DTRACEOPT_CPU];
 +
 +              if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
 +                      break;
 +
 +              /*
 +               * Regardless of what the actual policy is, we're going to
 +               * temporarily set our resize policy to be manual.  We're
 +               * also going to temporarily set our CPU option to denote
 +               * the newly configured CPU.
 +               */
 +              rs = opt[DTRACEOPT_BUFRESIZE];
 +              opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
 +              opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
 +
 +              (void) dtrace_state_buffers(state);
 +
 +              opt[DTRACEOPT_BUFRESIZE] = rs;
 +              opt[DTRACEOPT_CPU] = c;
 +
 +              break;
 +      }
 +
 +      case CPU_UNCONFIG:
 +              /*
 +               * We don't free the buffer in the CPU_UNCONFIG case.  (The
 +               * buffer will be freed when the consumer exits.)
 +               */
 +              break;
 +
 +      default:
 +              break;
 +      }
 +
 +      mutex_exit(&dtrace_lock);
 +      return (0);
 +}
 +
 +#ifdef illumos
 +static void
 +dtrace_cpu_setup_initial(processorid_t cpu)
 +{
 +      (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
 +}
 +#endif
 +
 +static void
 +dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
 +{
 +      if (dtrace_toxranges >= dtrace_toxranges_max) {
 +              int osize, nsize;
 +              dtrace_toxrange_t *range;
 +
 +              osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
 +
 +              if (osize == 0) {
 +                      ASSERT(dtrace_toxrange == NULL);
 +                      ASSERT(dtrace_toxranges_max == 0);
 +                      dtrace_toxranges_max = 1;
 +              } else {
 +                      dtrace_toxranges_max <<= 1;
 +              }
 +
 +              nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
 +              range = kmem_zalloc(nsize, KM_SLEEP);
 +
 +              if (dtrace_toxrange != NULL) {
 +                      ASSERT(osize != 0);
 +                      bcopy(dtrace_toxrange, range, osize);
 +                      kmem_free(dtrace_toxrange, osize);
 +              }
 +
 +              dtrace_toxrange = range;
 +      }
 +
 +      ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
 +      ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
 +
 +      dtrace_toxrange[dtrace_toxranges].dtt_base = base;
 +      dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
 +      dtrace_toxranges++;
 +}
 +
 +static void
 +dtrace_getf_barrier()
 +{
 +#ifdef illumos
 +      /*
 +       * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
 +       * that contain calls to getf(), this routine will be called on every
 +       * closef() before either the underlying vnode is released or the
 +       * file_t itself is freed.  By the time we are here, it is essential
 +       * that the file_t can no longer be accessed from a call to getf()
 +       * in probe context -- that assures that a dtrace_sync() can be used
 +       * to clear out any enablings referring to the old structures.
 +       */
 +      if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
 +          kcred->cr_zone->zone_dtrace_getf != 0)
 +              dtrace_sync();
 +#endif
 +}
 +
 +/*
 + * DTrace Driver Cookbook Functions
 + */
 +#ifdef illumos
 +/*ARGSUSED*/
 +static int
 +dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
 +{
 +      dtrace_provider_id_t id;
 +      dtrace_state_t *state = NULL;
 +      dtrace_enabling_t *enab;
 +
 +      mutex_enter(&cpu_lock);
 +      mutex_enter(&dtrace_provider_lock);
 +      mutex_enter(&dtrace_lock);
 +
 +      if (ddi_soft_state_init(&dtrace_softstate,
 +          sizeof (dtrace_state_t), 0) != 0) {
 +              cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
 +              mutex_exit(&cpu_lock);
 +              mutex_exit(&dtrace_provider_lock);
 +              mutex_exit(&dtrace_lock);
 +              return (DDI_FAILURE);
 +      }
 +
 +      if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
 +          DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
 +          ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
 +          DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
 +              cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
 +              ddi_remove_minor_node(devi, NULL);
 +              ddi_soft_state_fini(&dtrace_softstate);
 +              mutex_exit(&cpu_lock);
 +              mutex_exit(&dtrace_provider_lock);
 +              mutex_exit(&dtrace_lock);
 +              return (DDI_FAILURE);
 +      }
 +
 +      ddi_report_dev(devi);
 +      dtrace_devi = devi;
 +
 +      dtrace_modload = dtrace_module_loaded;
 +      dtrace_modunload = dtrace_module_unloaded;
 +      dtrace_cpu_init = dtrace_cpu_setup_initial;
 +      dtrace_helpers_cleanup = dtrace_helpers_destroy;
 +      dtrace_helpers_fork = dtrace_helpers_duplicate;
 +      dtrace_cpustart_init = dtrace_suspend;
 +      dtrace_cpustart_fini = dtrace_resume;
 +      dtrace_debugger_init = dtrace_suspend;
 +      dtrace_debugger_fini = dtrace_resume;
 +
 +      register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
 +
 +      ASSERT(MUTEX_HELD(&cpu_lock));
 +
 +      dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
 +          NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
 +      dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
 +          UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
 +          VM_SLEEP | VMC_IDENTIFIER);
 +      dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
 +          1, INT_MAX, 0);
 +
 +      dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
 +          sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
 +          NULL, NULL, NULL, NULL, NULL, 0);
 +
 +      ASSERT(MUTEX_HELD(&cpu_lock));
 +      dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
 +          offsetof(dtrace_probe_t, dtpr_nextmod),
 +          offsetof(dtrace_probe_t, dtpr_prevmod));
 +
 +      dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
 +          offsetof(dtrace_probe_t, dtpr_nextfunc),
 +          offsetof(dtrace_probe_t, dtpr_prevfunc));
 +
 +      dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
 +          offsetof(dtrace_probe_t, dtpr_nextname),
 +          offsetof(dtrace_probe_t, dtpr_prevname));
 +
 +      if (dtrace_retain_max < 1) {
 +              cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
 +                  "setting to 1", dtrace_retain_max);
 +              dtrace_retain_max = 1;
 +      }
 +
 +      /*
 +       * Now discover our toxic ranges.
 +       */
 +      dtrace_toxic_ranges(dtrace_toxrange_add);
 +
 +      /*
 +       * Before we register ourselves as a provider to our own framework,
 +       * we would like to assert that dtrace_provider is NULL -- but that's
 +       * not true if we were loaded as a dependency of a DTrace provider.
 +       * Once we've registered, we can assert that dtrace_provider is our
 +       * pseudo provider.
 +       */
 +      (void) dtrace_register("dtrace", &dtrace_provider_attr,
 +          DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
 +
 +      ASSERT(dtrace_provider != NULL);
 +      ASSERT((dtrace_provider_id_t)dtrace_provider == id);
 +
 +      dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
 +          dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
 +      dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
 +          dtrace_provider, NULL, NULL, "END", 0, NULL);
 +      dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
 +          dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
 +
 +      dtrace_anon_property();
 +      mutex_exit(&cpu_lock);
 +
 +      /*
 +       * If there are already providers, we must ask them to provide their
 +       * probes, and then match any anonymous enabling against them.  Note
 +       * that there should be no other retained enablings at this time:
 +       * the only retained enablings at this time should be the anonymous
 +       * enabling.
 +       */
 +      if (dtrace_anon.dta_enabling != NULL) {
 +              ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
 +
 +              dtrace_enabling_provide(NULL);
 +              state = dtrace_anon.dta_state;
 +
 +              /*
 +               * We couldn't hold cpu_lock across the above call to
 +               * dtrace_enabling_provide(), but we must hold it to actually
 +               * enable the probes.  We have to drop all of our locks, pick
 +               * up cpu_lock, and regain our locks before matching the
 +               * retained anonymous enabling.
 +               */
 +              mutex_exit(&dtrace_lock);
 +              mutex_exit(&dtrace_provider_lock);
 +
 +              mutex_enter(&cpu_lock);
 +              mutex_enter(&dtrace_provider_lock);
 +              mutex_enter(&dtrace_lock);
 +
 +              if ((enab = dtrace_anon.dta_enabling) != NULL)
 +                      (void) dtrace_enabling_match(enab, NULL);
 +
 +              mutex_exit(&cpu_lock);
 +      }
 +
 +      mutex_exit(&dtrace_lock);
 +      mutex_exit(&dtrace_provider_lock);
 +
 +      if (state != NULL) {
 +              /*
 +               * If we created any anonymous state, set it going now.
 +               */
 +              (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
 +      }
 +
 +      return (DDI_SUCCESS);
 +}
 +#endif        /* illumos */
 +
 +#ifndef illumos
 +static void dtrace_dtr(void *);
 +#endif
 +
 +/*ARGSUSED*/
 +static int
 +#ifdef illumos
 +dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
 +#else
 +dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
 +#endif
 +{
 +      dtrace_state_t *state;
 +      uint32_t priv;
 +      uid_t uid;
 +      zoneid_t zoneid;
 +
 +#ifdef illumos
 +      if (getminor(*devp) == DTRACEMNRN_HELPER)
 +              return (0);
 +
 +      /*
 +       * If this wasn't an open with the "helper" minor, then it must be
 +       * the "dtrace" minor.
 +       */
 +      if (getminor(*devp) == DTRACEMNRN_DTRACE)
 +              return (ENXIO);
 +#else
 +      cred_t *cred_p = NULL;
 +      cred_p = dev->si_cred;
 +
 +      /*
 +       * If no DTRACE_PRIV_* bits are set in the credential, then the
 +       * caller lacks sufficient permission to do anything with DTrace.
 +       */
 +      dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
 +      if (priv == DTRACE_PRIV_NONE) {
 +#endif
 +
 +              return (EACCES);
 +      }
 +
 +      /*
 +       * Ask all providers to provide all their probes.
 +       */
 +      mutex_enter(&dtrace_provider_lock);
 +      dtrace_probe_provide(NULL, NULL);
 +      mutex_exit(&dtrace_provider_lock);
 +
 +      mutex_enter(&cpu_lock);
 +      mutex_enter(&dtrace_lock);
 +      dtrace_opens++;
 +      dtrace_membar_producer();
 +
 +#ifdef illumos
 +      /*
 +       * If the kernel debugger is active (that is, if the kernel debugger
 +       * modified text in some way), we won't allow the open.
 +       */
 +      if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
 +              dtrace_opens--;
 +              mutex_exit(&cpu_lock);
 +              mutex_exit(&dtrace_lock);
 +              return (EBUSY);
 +      }
 +
 +      if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
 +              /*
 +               * If DTrace helper tracing is enabled, we need to allocate the
 +               * trace buffer and initialize the values.
 +               */
 +              dtrace_helptrace_buffer =
 +                  kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
 +              dtrace_helptrace_next = 0;
 +              dtrace_helptrace_wrapped = 0;
 +              dtrace_helptrace_enable = 0;
 +      }
 +
 +      state = dtrace_state_create(devp, cred_p);
 +#else
 +      state = dtrace_state_create(dev);
 +      devfs_set_cdevpriv(state, dtrace_dtr);
 +#endif
 +
 +      mutex_exit(&cpu_lock);
 +
 +      if (state == NULL) {
 +#ifdef illumos
 +              if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
 +                      (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
 +#else
 +              --dtrace_opens;
 +#endif
 +              mutex_exit(&dtrace_lock);
 +              return (EAGAIN);
 +      }
 +
 +      mutex_exit(&dtrace_lock);
 +
 +      return (0);
 +}
 +
 +/*ARGSUSED*/
 +#ifdef illumos
 +static int
 +dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
 +#else
 +static void
 +dtrace_dtr(void *data)
 +#endif
 +{
 +#ifdef illumos
 +      minor_t minor = getminor(dev);
 +      dtrace_state_t *state;
 +#endif
 +      dtrace_helptrace_t *buf = NULL;
 +
 +#ifdef illumos
 +      if (minor == DTRACEMNRN_HELPER)
 +              return (0);
 +
 +      state = ddi_get_soft_state(dtrace_softstate, minor);
 +#else
 +      dtrace_state_t *state = data;
 +#endif
 +
 +      mutex_enter(&cpu_lock);
 +      mutex_enter(&dtrace_lock);
 +
 +#ifdef illumos
 +      if (state->dts_anon)
 +#else
 +      if (state != NULL && state->dts_anon)
 +#endif
 +      {
 +              /*
 +               * There is anonymous state. Destroy that first.
 +               */
 +              ASSERT(dtrace_anon.dta_state == NULL);
 +              dtrace_state_destroy(state->dts_anon);
 +      }
 +
 +      if (dtrace_helptrace_disable) {
 +              /*
 +               * If we have been told to disable helper tracing, set the
 +               * buffer to NULL before calling into dtrace_state_destroy();
 +               * we take advantage of its dtrace_sync() to know that no
 +               * CPU is in probe context with enabled helper tracing
 +               * after it returns.
 +               */
 +              buf = dtrace_helptrace_buffer;
 +              dtrace_helptrace_buffer = NULL;
 +      }
 +
 +#ifdef illumos
 +      dtrace_state_destroy(state);
 +#else
 +      if (state != NULL) {
 +              dtrace_state_destroy(state);
 +              kmem_free(state, 0);
 +      }
 +#endif
 +      ASSERT(dtrace_opens > 0);
 +
 +#ifdef illumos
 +      /*
 +       * Only relinquish control of the kernel debugger interface when there
 +       * are no consumers and no anonymous enablings.
 +       */
 +      if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
 +              (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
 +#else
 +      --dtrace_opens;
 +#endif
 +
 +      if (buf != NULL) {
 +              kmem_free(buf, dtrace_helptrace_bufsize);
 +              dtrace_helptrace_disable = 0;
 +      }
 +
 +      mutex_exit(&dtrace_lock);
 +      mutex_exit(&cpu_lock);
 +
 +#ifdef illumos
 +      return (0);
 +#endif
 +}
 +
 +#ifdef illumos
 +/*ARGSUSED*/
 +static int
 +dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
 +{
 +      int rval;
 +      dof_helper_t help, *dhp = NULL;
 +
 +      switch (cmd) {
 +      case DTRACEHIOC_ADDDOF:
 +              if (copyin((void *)arg, &help, sizeof (help)) != 0) {
 +                      dtrace_dof_error(NULL, "failed to copyin DOF helper");
 +                      return (EFAULT);
 +              }
 +
 +              dhp = &help;
 +              arg = (intptr_t)help.dofhp_dof;
 +              /*FALLTHROUGH*/
 +
 +      case DTRACEHIOC_ADD: {
 +              dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
 +
 +              if (dof == NULL)
 +                      return (rval);
 +
 +              mutex_enter(&dtrace_lock);
 +
 +              /*
 +               * dtrace_helper_slurp() takes responsibility for the dof --
 +               * it may free it now or it may save it and free it later.
 +               */
 +              if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
 +                      *rv = rval;
 +                      rval = 0;
 +              } else {
 +                      rval = EINVAL;
 +              }
 +
 +              mutex_exit(&dtrace_lock);
 +              return (rval);
 +      }
 +
 +      case DTRACEHIOC_REMOVE: {
 +              mutex_enter(&dtrace_lock);
 +              rval = dtrace_helper_destroygen(NULL, arg);
 +              mutex_exit(&dtrace_lock);
 +
 +              return (rval);
 +      }
 +
 +      default:
 +              break;
 +      }
 +
 +      return (ENOTTY);
 +}
 +
 +/*ARGSUSED*/
 +static int
 +dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
 +{
 +      minor_t minor = getminor(dev);
 +      dtrace_state_t *state;
 +      int rval;
 +
 +      if (minor == DTRACEMNRN_HELPER)
 +              return (dtrace_ioctl_helper(cmd, arg, rv));
 +
 +      state = ddi_get_soft_state(dtrace_softstate, minor);
 +
 +      if (state->dts_anon) {
 +              ASSERT(dtrace_anon.dta_state == NULL);
 +              state = state->dts_anon;
 +      }
 +
 +      switch (cmd) {
 +      case DTRACEIOC_PROVIDER: {
 +              dtrace_providerdesc_t pvd;
 +              dtrace_provider_t *pvp;
 +
 +              if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
 +                      return (EFAULT);
 +
 +              pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
 +              mutex_enter(&dtrace_provider_lock);
 +
 +              for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
 +                      if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
 +                              break;
 +              }
 +
 +              mutex_exit(&dtrace_provider_lock);
 +
 +              if (pvp == NULL)
 +                      return (ESRCH);
 +
 +              bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
 +              bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
 +
 +              if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
 +                      return (EFAULT);
 +
 +              return (0);
 +      }
 +
 +      case DTRACEIOC_EPROBE: {
 +              dtrace_eprobedesc_t epdesc;
 +              dtrace_ecb_t *ecb;
 +              dtrace_action_t *act;
 +              void *buf;
 +              size_t size;
 +              uintptr_t dest;
 +              int nrecs;
 +
 +              if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
 +                      return (EFAULT);
 +
 +              mutex_enter(&dtrace_lock);
 +
 +              if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
 +                      mutex_exit(&dtrace_lock);
 +                      return (EINVAL);
 +              }
 +
 +              if (ecb->dte_probe == NULL) {
 +                      mutex_exit(&dtrace_lock);
 +                      return (EINVAL);
 +              }
 +
 +              epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
 +              epdesc.dtepd_uarg = ecb->dte_uarg;
 +              epdesc.dtepd_size = ecb->dte_size;
 +
 +              nrecs = epdesc.dtepd_nrecs;
 +              epdesc.dtepd_nrecs = 0;
 +              for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
 +                      if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
 +                              continue;
 +
 +                      epdesc.dtepd_nrecs++;
 +              }
 +
 +              /*
 +               * Now that we have the size, we need to allocate a temporary
 +               * buffer in which to store the complete description.  We need
 +               * the temporary buffer to be able to drop dtrace_lock()
 +               * across the copyout(), below.
 +               */
 +              size = sizeof (dtrace_eprobedesc_t) +
 +                  (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
 +
 +              buf = kmem_alloc(size, KM_SLEEP);
 +              dest = (uintptr_t)buf;
 +
 +              bcopy(&epdesc, (void *)dest, sizeof (epdesc));
 +              dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
 +
 +              for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
 +                      if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
 +                              continue;
 +
 +                      if (nrecs-- == 0)
 +                              break;
 +
 +                      bcopy(&act->dta_rec, (void *)dest,
 +                          sizeof (dtrace_recdesc_t));
 +                      dest += sizeof (dtrace_recdesc_t);
 +              }
 +
 +              mutex_exit(&dtrace_lock);
 +
 +              if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
 +                      kmem_free(buf, size);
 +                      return (EFAULT);
 +              }
 +
 +              kmem_free(buf, size);
 +              return (0);
 +      }
 +
 +      case DTRACEIOC_AGGDESC: {
 +              dtrace_aggdesc_t aggdesc;
 +              dtrace_action_t *act;
 +              dtrace_aggregation_t *agg;
 +              int nrecs;
 +              uint32_t offs;
 +              dtrace_recdesc_t *lrec;
 +              void *buf;
 +              size_t size;
 +              uintptr_t dest;
 +
 +              if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
 +                      return (EFAULT);
 +
 +              mutex_enter(&dtrace_lock);
 +
 +              if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
 +                      mutex_exit(&dtrace_lock);
 +                      return (EINVAL);
 +              }
 +
 +              aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
 +
 +              nrecs = aggdesc.dtagd_nrecs;
 +              aggdesc.dtagd_nrecs = 0;
 +
 +              offs = agg->dtag_base;
 +              lrec = &agg->dtag_action.dta_rec;
 +              aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
 +
 +              for (act = agg->dtag_first; ; act = act->dta_next) {
 +                      ASSERT(act->dta_intuple ||
 +                          DTRACEACT_ISAGG(act->dta_kind));
 +
 +                      /*
 +                       * If this action has a record size of zero, it
 +                       * denotes an argument to the aggregating action.
 +                       * Because the presence of this record doesn't (or
 +                       * shouldn't) affect the way the data is interpreted,
 +                       * we don't copy it out to save user-level the
 +                       * confusion of dealing with a zero-length record.
 +                       */
 +                      if (act->dta_rec.dtrd_size == 0) {
 +                              ASSERT(agg->dtag_hasarg);
 +                              continue;
 +                      }
 +
 +                      aggdesc.dtagd_nrecs++;
 +
 +                      if (act == &agg->dtag_action)
 +                              break;
 +              }
 +
 +              /*
 +               * Now that we have the size, we need to allocate a temporary
 +               * buffer in which to store the complete description.  We need
 +               * the temporary buffer to be able to drop dtrace_lock()
 +               * across the copyout(), below.
 +               */
 +              size = sizeof (dtrace_aggdesc_t) +
 +                  (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
 +
 +              buf = kmem_alloc(size, KM_SLEEP);
 +              dest = (uintptr_t)buf;
 +
 +              bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
 +              dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
 +
 +              for (act = agg->dtag_first; ; act = act->dta_next) {
 +                      dtrace_recdesc_t rec = act->dta_rec;
 +
 +                      /*
 +                       * See the comment in the above loop for why we pass
 +                       * over zero-length records.
 +                       */
 +                      if (rec.dtrd_size == 0) {
 +                              ASSERT(agg->dtag_hasarg);
 +                              continue;
 +                      }
 +
 +                      if (nrecs-- == 0)
 +                              break;
 +
 +                      rec.dtrd_offset -= offs;
 +                      bcopy(&rec, (void *)dest, sizeof (rec));
 +                      dest += sizeof (dtrace_recdesc_t);
 +
 +                      if (act == &agg->dtag_action)
 +                              break;
 +              }
 +
 +              mutex_exit(&dtrace_lock);
 +
 +              if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
 +                      kmem_free(buf, size);
 +                      return (EFAULT);
 +              }
 +
 +              kmem_free(buf, size);
 +              return (0);
 +      }
 +
 +      case DTRACEIOC_ENABLE: {
 +              dof_hdr_t *dof;
 +              dtrace_enabling_t *enab = NULL;
 +              dtrace_vstate_t *vstate;
 +              int err = 0;
 +
 +              *rv = 0;
 +
 +              /*
 +               * If a NULL argument has been passed, we take this as our
 +               * cue to reevaluate our enablings.
 +               */
 +              if (arg == NULL) {
 +                      dtrace_enabling_matchall();
 +
 +                      return (0);
 +              }
 +
 +              if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
 +                      return (rval);
 +
 +              mutex_enter(&cpu_lock);
 +              mutex_enter(&dtrace_lock);
 +              vstate = &state->dts_vstate;
 +
 +              if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
 +                      mutex_exit(&dtrace_lock);
 +                      mutex_exit(&cpu_lock);
 +                      dtrace_dof_destroy(dof);
 +                      return (EBUSY);
 +              }
 +
 +              if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
 +                      mutex_exit(&dtrace_lock);
 +                      mutex_exit(&cpu_lock);
 +                      dtrace_dof_destroy(dof);
 +                      return (EINVAL);
 +              }
 +
 +              if ((rval = dtrace_dof_options(dof, state)) != 0) {
 +                      dtrace_enabling_destroy(enab);
 +                      mutex_exit(&dtrace_lock);
 +                      mutex_exit(&cpu_lock);
 +                      dtrace_dof_destroy(dof);
 +                      return (rval);
 +              }
 +
 +              if ((err = dtrace_enabling_match(enab, rv)) == 0) {
 +                      err = dtrace_enabling_retain(enab);
 +              } else {
 +                      dtrace_enabling_destroy(enab);
 +              }
 +
 +              mutex_exit(&cpu_lock);
 +              mutex_exit(&dtrace_lock);
 +              dtrace_dof_destroy(dof);
 +
 +              return (err);
 +      }
 +
 +      case DTRACEIOC_REPLICATE: {
 +              dtrace_repldesc_t desc;
 +              dtrace_probedesc_t *match = &desc.dtrpd_match;
 +              dtrace_probedesc_t *create = &desc.dtrpd_create;
 +              int err;
 +
 +              if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
 +                      return (EFAULT);
 +
 +              match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
 +              match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
 +              match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
 +              match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
 +
 +              create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
 +              create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
 +              create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
 +              create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
 +
 +              mutex_enter(&dtrace_lock);
 +              err = dtrace_enabling_replicate(state, match, create);
 +              mutex_exit(&dtrace_lock);
 +
 +              return (err);
 +      }
 +
 +      case DTRACEIOC_PROBEMATCH:
 +      case DTRACEIOC_PROBES: {
 +              dtrace_probe_t *probe = NULL;
 +              dtrace_probedesc_t desc;
 +              dtrace_probekey_t pkey;
 +              dtrace_id_t i;
 +              int m = 0;
 +              uint32_t priv;
 +              uid_t uid;
 +              zoneid_t zoneid;
 +
 +              if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
 +                      return (EFAULT);
 +
 +              desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
 +              desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
 +              desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
 +              desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
 +
 +              /*
 +               * Before we attempt to match this probe, we want to give
 +               * all providers the opportunity to provide it.
 +               */
 +              if (desc.dtpd_id == DTRACE_IDNONE) {
 +                      mutex_enter(&dtrace_provider_lock);
 +                      dtrace_probe_provide(&desc, NULL);
 +                      mutex_exit(&dtrace_provider_lock);
 +                      desc.dtpd_id++;
 +              }
 +
 +              if (cmd == DTRACEIOC_PROBEMATCH)  {
 +                      dtrace_probekey(&desc, &pkey);
 +                      pkey.dtpk_id = DTRACE_IDNONE;
 +              }
 +
 +              dtrace_cred2priv(cr, &priv, &uid, &zoneid);
 +
 +              mutex_enter(&dtrace_lock);
 +
 +              if (cmd == DTRACEIOC_PROBEMATCH) {
 +                      for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
 +                              if ((probe = dtrace_probes[i - 1]) != NULL &&
 +                                  (m = dtrace_match_probe(probe, &pkey,
 +                                  priv, uid, zoneid)) != 0)
 +                                      break;
 +                      }
 +
 +                      if (m < 0) {
 +                              mutex_exit(&dtrace_lock);
 +                              return (EINVAL);
 +                      }
 +
 +              } else {
 +                      for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
 +                              if ((probe = dtrace_probes[i - 1]) != NULL &&
 +                                  dtrace_match_priv(probe, priv, uid, zoneid))
 +                                      break;
 +                      }
 +              }
 +
 +              if (probe == NULL) {
 +                      mutex_exit(&dtrace_lock);
 +                      return (ESRCH);
 +              }
 +
 +              dtrace_probe_description(probe, &desc);
 +              mutex_exit(&dtrace_lock);
 +
 +              if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
 +                      return (EFAULT);
 +
 +              return (0);
 +      }
 +
 +      case DTRACEIOC_PROBEARG: {
 +              dtrace_argdesc_t desc;
 +              dtrace_probe_t *probe;
 +              dtrace_provider_t *prov;
 +
 +              if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
 +                      return (EFAULT);
 +
 +              if (desc.dtargd_id == DTRACE_IDNONE)
 +                      return (EINVAL);
 +
 +              if (desc.dtargd_ndx == DTRACE_ARGNONE)
 +                      return (EINVAL);
 +
 +              mutex_enter(&dtrace_provider_lock);
 +              mutex_enter(&mod_lock);
 +              mutex_enter(&dtrace_lock);
 +
 +              if (desc.dtargd_id > dtrace_nprobes) {
 +                      mutex_exit(&dtrace_lock);
 +                      mutex_exit(&mod_lock);
 +                      mutex_exit(&dtrace_provider_lock);
 +                      return (EINVAL);
 +              }
 +
 +              if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
 +                      mutex_exit(&dtrace_lock);
 +                      mutex_exit(&mod_lock);
 +                      mutex_exit(&dtrace_provider_lock);
 +                      return (EINVAL);
 +              }
 +
 +              mutex_exit(&dtrace_lock);
 +
 +              prov = probe->dtpr_provider;
 +
 +              if (prov->dtpv_pops.dtps_getargdesc == NULL) {
 +                      /*
 +                       * There isn't any typed information for this probe.
 +                       * Set the argument number to DTRACE_ARGNONE.
 +                       */
 +                      desc.dtargd_ndx = DTRACE_ARGNONE;
 +              } else {
 +                      desc.dtargd_native[0] = '\0';
 +                      desc.dtargd_xlate[0] = '\0';
 +                      desc.dtargd_mapping = desc.dtargd_ndx;
 +
 +                      prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
 +                          probe->dtpr_id, probe->dtpr_arg, &desc);
 +              }
 +
 +              mutex_exit(&mod_lock);
 +              mutex_exit(&dtrace_provider_lock);
 +
 +              if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
 +                      return (EFAULT);
 +
 +              return (0);
 +      }
 +
 +      case DTRACEIOC_GO: {
 +              processorid_t cpuid;
 +              rval = dtrace_state_go(state, &cpuid);
 +
 +              if (rval != 0)
 +                      return (rval);
 +
 +              if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
 +                      return (EFAULT);
 +
 +              return (0);
 +      }
 +
 +      case DTRACEIOC_STOP: {
 +              processorid_t cpuid;
 +
 +              mutex_enter(&dtrace_lock);
 +              rval = dtrace_state_stop(state, &cpuid);
 +              mutex_exit(&dtrace_lock);
 +
 +              if (rval != 0)
 +                      return (rval);
 +
 +              if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
 +                      return (EFAULT);
 +
 +              return (0);
 +      }
 +
 +      case DTRACEIOC_DOFGET: {
 +              dof_hdr_t hdr, *dof;
 +              uint64_t len;
 +
 +              if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
 +                      return (EFAULT);
 +
 +              mutex_enter(&dtrace_lock);
 +              dof = dtrace_dof_create(state);
 +              mutex_exit(&dtrace_lock);
 +
 +              len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
 +              rval = copyout(dof, (void *)arg, len);
 +              dtrace_dof_destroy(dof);
 +
 +              return (rval == 0 ? 0 : EFAULT);
 +      }
 +
 +      case DTRACEIOC_AGGSNAP:
 +      case DTRACEIOC_BUFSNAP: {
 +              dtrace_bufdesc_t desc;
 +              caddr_t cached;
 +              dtrace_buffer_t *buf;
 +
 +              if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
 +                      return (EFAULT);
 +
 +              if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
 +                      return (EINVAL);
 +
 +              mutex_enter(&dtrace_lock);
 +
 +              if (cmd == DTRACEIOC_BUFSNAP) {
 +                      buf = &state->dts_buffer[desc.dtbd_cpu];
 +              } else {
 +                      buf = &state->dts_aggbuffer[desc.dtbd_cpu];
 +              }
 +
 +              if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
 +                      size_t sz = buf->dtb_offset;
 +
 +                      if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
 +                              mutex_exit(&dtrace_lock);
 +                              return (EBUSY);
 +                      }
 +
 +                      /*
 +                       * If this buffer has already been consumed, we're
 +                       * going to indicate that there's nothing left here
 +                       * to consume.
 +                       */
 +                      if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
 +                              mutex_exit(&dtrace_lock);
 +
 +                              desc.dtbd_size = 0;
 +                              desc.dtbd_drops = 0;
 +                              desc.dtbd_errors = 0;
 +                              desc.dtbd_oldest = 0;
 +                              sz = sizeof (desc);
 +
 +                              if (copyout(&desc, (void *)arg, sz) != 0)
 +                                      return (EFAULT);
 +
 +                              return (0);
 +                      }
 +
 +                      /*
 +                       * If this is a ring buffer that has wrapped, we want
 +                       * to copy the whole thing out.
 +                       */
 +                      if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
 +                              dtrace_buffer_polish(buf);
 +                              sz = buf->dtb_size;
 +                      }
 +
 +                      if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
 +                              mutex_exit(&dtrace_lock);
 +                              return (EFAULT);
 +                      }
 +
 +                      desc.dtbd_size = sz;
 +                      desc.dtbd_drops = buf->dtb_drops;
 +                      desc.dtbd_errors = buf->dtb_errors;
 +                      desc.dtbd_oldest = buf->dtb_xamot_offset;
 +                      desc.dtbd_timestamp = dtrace_gethrtime();
 +
 +                      mutex_exit(&dtrace_lock);
 +
 +                      if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
 +                              return (EFAULT);
 +
 +                      buf->dtb_flags |= DTRACEBUF_CONSUMED;
 +
 +                      return (0);
 +              }
 +
 +              if (buf->dtb_tomax == NULL) {
 +                      ASSERT(buf->dtb_xamot == NULL);
 +                      mutex_exit(&dtrace_lock);
 +                      return (ENOENT);
 +              }
 +
 +              cached = buf->dtb_tomax;
 +              ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
 +
 +              dtrace_xcall(desc.dtbd_cpu,
 +                  (dtrace_xcall_t)dtrace_buffer_switch, buf);
 +
 +              state->dts_errors += buf->dtb_xamot_errors;
 +
 +              /*
 +               * If the buffers did not actually switch, then the cross call
 +               * did not take place -- presumably because the given CPU is
 +               * not in the ready set.  If this is the case, we'll return
 +               * ENOENT.
 +               */
 +              if (buf->dtb_tomax == cached) {
 +                      ASSERT(buf->dtb_xamot != cached);
 +                      mutex_exit(&dtrace_lock);
 +                      return (ENOENT);
 +              }
 +
 +              ASSERT(cached == buf->dtb_xamot);
 +
 +              /*
 +               * We have our snapshot; now copy it out.
 +               */
 +              if (copyout(buf->dtb_xamot, desc.dtbd_data,
 +                  buf->dtb_xamot_offset) != 0) {
 +                      mutex_exit(&dtrace_lock);
 +                      return (EFAULT);
 +              }
 +
 +              desc.dtbd_size = buf->dtb_xamot_offset;
 +              desc.dtbd_drops = buf->dtb_xamot_drops;
 +              desc.dtbd_errors = buf->dtb_xamot_errors;
 +              desc.dtbd_oldest = 0;
 +              desc.dtbd_timestamp = buf->dtb_switched;
 +
 +              mutex_exit(&dtrace_lock);
 +
 +              /*
 +               * Finally, copy out the buffer description.
 +               */
 +              if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
 +                      return (EFAULT);
 +
 +              return (0);
 +      }
 +
 +      case DTRACEIOC_CONF: {
 +              dtrace_conf_t conf;
 +
 +              bzero(&conf, sizeof (conf));
 +              conf.dtc_difversion = DIF_VERSION;
 +              conf.dtc_difintregs = DIF_DIR_NREGS;
 +              conf.dtc_diftupregs = DIF_DTR_NREGS;
 +              conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
 +
 +              if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
 +                      return (EFAULT);
 +
 +              return (0);
 +      }
 +
 +      case DTRACEIOC_STATUS: {
 +              dtrace_status_t stat;
 +              dtrace_dstate_t *dstate;
 +              int i, j;
 +              uint64_t nerrs;
 +
 +              /*
 +               * See the comment in dtrace_state_deadman() for the reason
 +               * for setting dts_laststatus to INT64_MAX before setting
 +               * it to the correct value.
 +               */
 +              state->dts_laststatus = INT64_MAX;
 +              dtrace_membar_producer();
 +              state->dts_laststatus = dtrace_gethrtime();
 +
 +              bzero(&stat, sizeof (stat));
 +
 +              mutex_enter(&dtrace_lock);
 +
 +              if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
 +                      mutex_exit(&dtrace_lock);
 +                      return (ENOENT);
 +              }
 +
 +              if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
 +                      stat.dtst_exiting = 1;
 +
 +              nerrs = state->dts_errors;
 +              dstate = &state->dts_vstate.dtvs_dynvars;
 +
 +              for (i = 0; i < NCPU; i++) {
 +                      dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
 +
 +                      stat.dtst_dyndrops += dcpu->dtdsc_drops;
 +                      stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
 +                      stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
 +
 +                      if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
 +                              stat.dtst_filled++;
 +
 +                      nerrs += state->dts_buffer[i].dtb_errors;
 +
 +                      for (j = 0; j < state->dts_nspeculations; j++) {
 +                              dtrace_speculation_t *spec;
 +                              dtrace_buffer_t *buf;
 +
 +                              spec = &state->dts_speculations[j];
 +                              buf = &spec->dtsp_buffer[i];
 +                              stat.dtst_specdrops += buf->dtb_xamot_drops;
 +                      }
 +              }
 +
 +              stat.dtst_specdrops_busy = state->dts_speculations_busy;
 +              stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
 +              stat.dtst_stkstroverflows = state->dts_stkstroverflows;
 +              stat.dtst_dblerrors = state->dts_dblerrors;
 +              stat.dtst_killed =
 +                  (state->dts_activity == DTRACE_ACTIVITY_KILLED);
 +              stat.dtst_errors = nerrs;
 +
 +              mutex_exit(&dtrace_lock);
 +
 +              if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
 +                      return (EFAULT);
 +
 +              return (0);
 +      }
 +
 +      case DTRACEIOC_FORMAT: {
 +              dtrace_fmtdesc_t fmt;
 +              char *str;
 +              int len;
 +
 +              if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
 +                      return (EFAULT);
 +
 +              mutex_enter(&dtrace_lock);
 +
 +              if (fmt.dtfd_format == 0 ||
 +                  fmt.dtfd_format > state->dts_nformats) {
 +                      mutex_exit(&dtrace_lock);
 +                      return (EINVAL);
 +              }
 +
 +              /*
 +               * Format strings are allocated contiguously and they are
 +               * never freed; if a format index is less than the number
 +               * of formats, we can assert that the format map is non-NULL
 +               * and that the format for the specified index is non-NULL.
 +               */
 +              ASSERT(state->dts_formats != NULL);
 +              str = state->dts_formats[fmt.dtfd_format - 1];
 +              ASSERT(str != NULL);
 +
 +              len = strlen(str) + 1;
 +
 +              if (len > fmt.dtfd_length) {
 +                      fmt.dtfd_length = len;
 +
 +                      if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
 +                              mutex_exit(&dtrace_lock);
 +                              return (EINVAL);
 +                      }
 +              } else {
 +                      if (copyout(str, fmt.dtfd_string, len) != 0) {
 +                              mutex_exit(&dtrace_lock);
 +                              return (EINVAL);
 +                      }
 +              }
 +
 +              mutex_exit(&dtrace_lock);
 +              return (0);
 +      }
 +
 +      default:
 +              break;
 +      }
 +
 +      return (ENOTTY);
 +}
 +
 +/*ARGSUSED*/
 +static int
 +dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
 +{
 +      dtrace_state_t *state;
 +
 +      switch (cmd) {
 +      case DDI_DETACH:
 +              break;
 +
 +      case DDI_SUSPEND:
 +              return (DDI_SUCCESS);
 +
 +      default:
 +              return (DDI_FAILURE);
 +      }
 +
 +      mutex_enter(&cpu_lock);
 +      mutex_enter(&dtrace_provider_lock);
 +      mutex_enter(&dtrace_lock);
 +
 +      ASSERT(dtrace_opens == 0);
 +
 +      if (dtrace_helpers > 0) {
 +              mutex_exit(&dtrace_provider_lock);
 +              mutex_exit(&dtrace_lock);
 +              mutex_exit(&cpu_lock);
 +              return (DDI_FAILURE);
 +      }
 +
 +      if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
 +              mutex_exit(&dtrace_provider_lock);
 +              mutex_exit(&dtrace_lock);
 +              mutex_exit(&cpu_lock);
 +              return (DDI_FAILURE);
 +      }
 +
 +      dtrace_provider = NULL;
 +
 +      if ((state = dtrace_anon_grab()) != NULL) {
 +              /*
 +               * If there were ECBs on this state, the provider should
 +               * have not been allowed to detach; assert that there is
 +               * none.
 +               */
 +              ASSERT(state->dts_necbs == 0);
 +              dtrace_state_destroy(state);
 +
 +              /*
 +               * If we're being detached with anonymous state, we need to
 +               * indicate to the kernel debugger that DTrace is now inactive.
 +               */
 +              (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
 +      }
 +
 +      bzero(&dtrace_anon, sizeof (dtrace_anon_t));
 +      unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
 +      dtrace_cpu_init = NULL;
 +      dtrace_helpers_cleanup = NULL;
 +      dtrace_helpers_fork = NULL;
 +      dtrace_cpustart_init = NULL;
 +      dtrace_cpustart_fini = NULL;
 +      dtrace_debugger_init = NULL;
 +      dtrace_debugger_fini = NULL;
 +      dtrace_modload = NULL;
 +      dtrace_modunload = NULL;
 +
 +      ASSERT(dtrace_getf == 0);
 +      ASSERT(dtrace_closef == NULL);
 +
 +      mutex_exit(&cpu_lock);
 +
 +      kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
 +      dtrace_probes = NULL;
 +      dtrace_nprobes = 0;
 +
 +      dtrace_hash_destroy(dtrace_bymod);
 +      dtrace_hash_destroy(dtrace_byfunc);
 +      dtrace_hash_destroy(dtrace_byname);
 +      dtrace_bymod = NULL;
 +      dtrace_byfunc = NULL;
 +      dtrace_byname = NULL;
 +
 +      kmem_cache_destroy(dtrace_state_cache);
 +      vmem_destroy(dtrace_minor);
 +      vmem_destroy(dtrace_arena);
 +
 +      if (dtrace_toxrange != NULL) {
 +              kmem_free(dtrace_toxrange,
 +                  dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
 +              dtrace_toxrange = NULL;
 +              dtrace_toxranges = 0;
 +              dtrace_toxranges_max = 0;
 +      }
 +
 +      ddi_remove_minor_node(dtrace_devi, NULL);
 +      dtrace_devi = NULL;
 +
 +      ddi_soft_state_fini(&dtrace_softstate);
 +
 +      ASSERT(dtrace_vtime_references == 0);
 +      ASSERT(dtrace_opens == 0);
 +      ASSERT(dtrace_retained == NULL);
 +
 +      mutex_exit(&dtrace_lock);
 +      mutex_exit(&dtrace_provider_lock);
 +
 +      /*
 +       * We don't destroy the task queue until after we have dropped our
 +       * locks (taskq_destroy() may block on running tasks).  To prevent
 +       * attempting to do work after we have effectively detached but before
 +       * the task queue has been destroyed, all tasks dispatched via the
 +       * task queue must check that DTrace is still attached before
 +       * performing any operation.
 +       */
 +      taskq_destroy(dtrace_taskq);
 +      dtrace_taskq = NULL;
 +
 +      return (DDI_SUCCESS);
 +}
 +#endif
 +
 +#ifdef illumos
 +/*ARGSUSED*/
 +static int
 +dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
 +{
 +      int error;
 +
 +      switch (infocmd) {
 +      case DDI_INFO_DEVT2DEVINFO:
 +              *result = (void *)dtrace_devi;
 +              error = DDI_SUCCESS;
 +              break;
 +      case DDI_INFO_DEVT2INSTANCE:
 +              *result = (void *)0;
 +              error = DDI_SUCCESS;
 +              break;
 +      default:
 +              error = DDI_FAILURE;
 +      }
 +      return (error);
 +}
 +#endif
 +
 +#ifdef illumos
 +static struct cb_ops dtrace_cb_ops = {
 +      dtrace_open,            /* open */
 +      dtrace_close,           /* close */
 +      nulldev,                /* strategy */
 +      nulldev,                /* print */
 +      nodev,                  /* dump */
 +      nodev,                  /* read */
 +      nodev,                  /* write */
 +      dtrace_ioctl,           /* ioctl */
 +      nodev,                  /* devmap */
 +      nodev,                  /* mmap */
 +      nodev,                  /* segmap */
 +      nochpoll,               /* poll */
 +      ddi_prop_op,            /* cb_prop_op */
 +      0,                      /* streamtab  */
 +      D_NEW | D_MP            /* Driver compatibility flag */
 +};
 +
 +static struct dev_ops dtrace_ops = {
 +      DEVO_REV,               /* devo_rev */
 +      0,                      /* refcnt */
 +      dtrace_info,            /* get_dev_info */
 +      nulldev,                /* identify */
 +      nulldev,                /* probe */
 +      dtrace_attach,          /* attach */
 +      dtrace_detach,          /* detach */
 +      nodev,                  /* reset */
 +      &dtrace_cb_ops,         /* driver operations */
 +      NULL,                   /* bus operations */
 +      nodev                   /* dev power */
 +};
 +
 +static struct modldrv modldrv = {
 +      &mod_driverops,         /* module type (this is a pseudo driver) */
 +      "Dynamic Tracing",      /* name of module */
 +      &dtrace_ops,            /* driver ops */
 +};
 +
 +static struct modlinkage modlinkage = {
 +      MODREV_1,
 +      (void *)&modldrv,
 +      NULL
 +};
 +
 +int
 +_init(void)
 +{
 +      return (mod_install(&modlinkage));
 +}
 +
 +int
 +_info(struct modinfo *modinfop)
 +{
 +      return (mod_info(&modlinkage, modinfop));
 +}
 +
 +int
 +_fini(void)
 +{
 +      return (mod_remove(&modlinkage));
 +}
 +#else
 +
 +static d_ioctl_t      dtrace_ioctl;
 +static d_ioctl_t      dtrace_ioctl_helper;
 +static void           dtrace_load(void *);
 +static int            dtrace_unload(void);
 +static struct cdev    *dtrace_dev;
 +static struct cdev    *helper_dev;
 +
 +void dtrace_invop_init(void);
 +void dtrace_invop_uninit(void);
 +
 +static struct cdevsw dtrace_cdevsw = {
 +      .d_version      = D_VERSION,
 +      .d_ioctl        = dtrace_ioctl,
 +      .d_open         = dtrace_open,
 +      .d_name         = "dtrace",
 +};
 +
 +static struct cdevsw helper_cdevsw = {
 +      .d_version      = D_VERSION,
 +      .d_ioctl        = dtrace_ioctl_helper,
 +      .d_name         = "helper",
 +};
 +
 +#include <dtrace_anon.c>
 +#include <dtrace_ioctl.c>
 +#include <dtrace_load.c>
 +#include <dtrace_modevent.c>
 +#include <dtrace_sysctl.c>
 +#include <dtrace_unload.c>
 +#include <dtrace_vtime.c>
 +#include <dtrace_hacks.c>
 +#include <dtrace_isa.c>
 +
 +SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
 +SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
 +SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
 +
 +DEV_MODULE(dtrace, dtrace_modevent, NULL);
 +MODULE_VERSION(dtrace, 1);
 +MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
 +#endif
index a65d1ae16c1826dd85863ec09c834c2664228f2d,0000000000000000000000000000000000000000..1ec90914d5be03406381fa22a9ef1ccd4914f135
mode 100644,000000..100644
--- /dev/null
@@@ -1,1341 -1,0 +1,1344 @@@
-  * DTrace calls ASSERT from probe context.  To assure that a failed ASSERT
-  * does not induce a markedly more catastrophic failure (e.g., one from which
-  * a dump cannot be gleaned), DTrace must define its own ASSERT to be one that
-  * may safely be called from probe context.  This header file must thus be
-  * included by any DTrace component that calls ASSERT from probe context, and
-  * _only_ by those components.  (The only exception to this is kernel
-  * debugging infrastructure at user-level that doesn't depend on calling
-  * ASSERT.)
 +/*
 + * CDDL HEADER START
 + *
 + * The contents of this file are subject to the terms of the
 + * Common Development and Distribution License (the "License").
 + * You may not use this file except in compliance with the License.
 + *
 + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 + * or http://www.opensolaris.org/os/licensing.
 + * See the License for the specific language governing permissions
 + * and limitations under the License.
 + *
 + * When distributing Covered Code, include this CDDL HEADER in each
 + * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 + * If applicable, add the following below this CDDL HEADER, with the
 + * fields enclosed by brackets "[]" replaced with your own identifying
 + * information: Portions Copyright [yyyy] [name of copyright owner]
 + *
 + * CDDL HEADER END
 + *
 + * $FreeBSD$
 + */
 +
 +/*
 + * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
 + * Copyright (c) 2012 by Delphix. All rights reserved.
 + * Use is subject to license terms.
 + */
 +
 +/*
 + * Copyright (c) 2011, Joyent, Inc. All rights reserved.
 + */
 +
 +#ifndef _SYS_DTRACE_IMPL_H
 +#define       _SYS_DTRACE_IMPL_H
 +
 +#ifdef        __cplusplus
 +extern "C" {
 +#endif
 +
 +/*
 + * DTrace Dynamic Tracing Software: Kernel Implementation Interfaces
 + *
 + * Note: The contents of this file are private to the implementation of the
 + * Solaris system and DTrace subsystem and are subject to change at any time
 + * without notice.  Applications and drivers using these interfaces will fail
 + * to run on future releases.  These interfaces should not be used for any
 + * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
 + * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
 + */
 +
 +#include <sys/dtrace.h>
 +#ifndef illumos
 +#ifdef __sparcv9
 +typedef uint32_t              pc_t;
 +#else
 +typedef uintptr_t             pc_t;
 +#endif
 +typedef       u_long                  greg_t;
 +#endif
 +
 +/*
 + * DTrace Implementation Constants and Typedefs
 + */
 +#define       DTRACE_MAXPROPLEN               128
 +#define       DTRACE_DYNVAR_CHUNKSIZE         256
 +
 +struct dtrace_probe;
 +struct dtrace_ecb;
 +struct dtrace_predicate;
 +struct dtrace_action;
 +struct dtrace_provider;
 +struct dtrace_state;
 +
 +typedef struct dtrace_probe dtrace_probe_t;
 +typedef struct dtrace_ecb dtrace_ecb_t;
 +typedef struct dtrace_predicate dtrace_predicate_t;
 +typedef struct dtrace_action dtrace_action_t;
 +typedef struct dtrace_provider dtrace_provider_t;
 +typedef struct dtrace_meta dtrace_meta_t;
 +typedef struct dtrace_state dtrace_state_t;
 +typedef uint32_t dtrace_optid_t;
 +typedef uint32_t dtrace_specid_t;
 +typedef uint64_t dtrace_genid_t;
 +
 +/*
 + * DTrace Probes
 + *
 + * The probe is the fundamental unit of the DTrace architecture.  Probes are
 + * created by DTrace providers, and managed by the DTrace framework.  A probe
 + * is identified by a unique <provider, module, function, name> tuple, and has
 + * a unique probe identifier assigned to it.  (Some probes are not associated
 + * with a specific point in text; these are called _unanchored probes_ and have
 + * no module or function associated with them.)  Probes are represented as a
 + * dtrace_probe structure.  To allow quick lookups based on each element of the
 + * probe tuple, probes are hashed by each of provider, module, function and
 + * name.  (If a lookup is performed based on a regular expression, a
 + * dtrace_probekey is prepared, and a linear search is performed.) Each probe
 + * is additionally pointed to by a linear array indexed by its identifier.  The
 + * identifier is the provider's mechanism for indicating to the DTrace
 + * framework that a probe has fired:  the identifier is passed as the first
 + * argument to dtrace_probe(), where it is then mapped into the corresponding
 + * dtrace_probe structure.  From the dtrace_probe structure, dtrace_probe() can
 + * iterate over the probe's list of enabling control blocks; see "DTrace
 + * Enabling Control Blocks", below.)
 + */
 +struct dtrace_probe {
 +      dtrace_id_t dtpr_id;                    /* probe identifier */
 +      dtrace_ecb_t *dtpr_ecb;                 /* ECB list; see below */
 +      dtrace_ecb_t *dtpr_ecb_last;            /* last ECB in list */
 +      void *dtpr_arg;                         /* provider argument */
 +      dtrace_cacheid_t dtpr_predcache;        /* predicate cache ID */
 +      int dtpr_aframes;                       /* artificial frames */
 +      dtrace_provider_t *dtpr_provider;       /* pointer to provider */
 +      char *dtpr_mod;                         /* probe's module name */
 +      char *dtpr_func;                        /* probe's function name */
 +      char *dtpr_name;                        /* probe's name */
 +      dtrace_probe_t *dtpr_nextmod;           /* next in module hash */
 +      dtrace_probe_t *dtpr_prevmod;           /* previous in module hash */
 +      dtrace_probe_t *dtpr_nextfunc;          /* next in function hash */
 +      dtrace_probe_t *dtpr_prevfunc;          /* previous in function hash */
 +      dtrace_probe_t *dtpr_nextname;          /* next in name hash */
 +      dtrace_probe_t *dtpr_prevname;          /* previous in name hash */
 +      dtrace_genid_t dtpr_gen;                /* probe generation ID */
 +};
 +
 +typedef int dtrace_probekey_f(const char *, const char *, int);
 +
 +typedef struct dtrace_probekey {
 +      char *dtpk_prov;                        /* provider name to match */
 +      dtrace_probekey_f *dtpk_pmatch;         /* provider matching function */
 +      char *dtpk_mod;                         /* module name to match */
 +      dtrace_probekey_f *dtpk_mmatch;         /* module matching function */
 +      char *dtpk_func;                        /* func name to match */
 +      dtrace_probekey_f *dtpk_fmatch;         /* func matching function */
 +      char *dtpk_name;                        /* name to match */
 +      dtrace_probekey_f *dtpk_nmatch;         /* name matching function */
 +      dtrace_id_t dtpk_id;                    /* identifier to match */
 +} dtrace_probekey_t;
 +
 +typedef struct dtrace_hashbucket {
 +      struct dtrace_hashbucket *dthb_next;    /* next on hash chain */
 +      dtrace_probe_t *dthb_chain;             /* chain of probes */
 +      int dthb_len;                           /* number of probes here */
 +} dtrace_hashbucket_t;
 +
 +typedef struct dtrace_hash {
 +      dtrace_hashbucket_t **dth_tab;          /* hash table */
 +      int dth_size;                           /* size of hash table */
 +      int dth_mask;                           /* mask to index into table */
 +      int dth_nbuckets;                       /* total number of buckets */
 +      uintptr_t dth_nextoffs;                 /* offset of next in probe */
 +      uintptr_t dth_prevoffs;                 /* offset of prev in probe */
 +      uintptr_t dth_stroffs;                  /* offset of str in probe */
 +} dtrace_hash_t;
 +
 +/*
 + * DTrace Enabling Control Blocks
 + *
 + * When a provider wishes to fire a probe, it calls into dtrace_probe(),
 + * passing the probe identifier as the first argument.  As described above,
 + * dtrace_probe() maps the identifier into a pointer to a dtrace_probe_t
 + * structure.  This structure contains information about the probe, and a
 + * pointer to the list of Enabling Control Blocks (ECBs).  Each ECB points to
 + * DTrace consumer state, and contains an optional predicate, and a list of
 + * actions.  (Shown schematically below.)  The ECB abstraction allows a single
 + * probe to be multiplexed across disjoint consumers, or across disjoint
 + * enablings of a single probe within one consumer.
 + *
 + *   Enabling Control Block
 + *        dtrace_ecb_t
 + * +------------------------+
 + * | dtrace_epid_t ---------+--------------> Enabled Probe ID (EPID)
 + * | dtrace_state_t * ------+--------------> State associated with this ECB
 + * | dtrace_predicate_t * --+---------+
 + * | dtrace_action_t * -----+----+    |
 + * | dtrace_ecb_t * ---+    |    |    |       Predicate (if any)
 + * +-------------------+----+    |    |       dtrace_predicate_t
 + *                     |         |    +---> +--------------------+
 + *                     |         |          | dtrace_difo_t * ---+----> DIFO
 + *                     |         |          +--------------------+
 + *                     |         |
 + *            Next ECB |         |           Action
 + *            (if any) |         |       dtrace_action_t
 + *                     :         +--> +-------------------+
 + *                     :              | dtrace_actkind_t -+------> kind
 + *                     v              | dtrace_difo_t * --+------> DIFO (if any)
 + *                                    | dtrace_recdesc_t -+------> record descr.
 + *                                    | dtrace_action_t * +------+
 + *                                    +-------------------+      |
 + *                                                               | Next action
 + *                               +-------------------------------+  (if any)
 + *                               |
 + *                               |           Action
 + *                               |       dtrace_action_t
 + *                               +--> +-------------------+
 + *                                    | dtrace_actkind_t -+------> kind
 + *                                    | dtrace_difo_t * --+------> DIFO (if any)
 + *                                    | dtrace_action_t * +------+
 + *                                    +-------------------+      |
 + *                                                               | Next action
 + *                               +-------------------------------+  (if any)
 + *                               |
 + *                               :
 + *                               v
 + *
 + *
 + * dtrace_probe() iterates over the ECB list.  If the ECB needs less space
 + * than is available in the principal buffer, the ECB is processed:  if the
 + * predicate is non-NULL, the DIF object is executed.  If the result is
 + * non-zero, the action list is processed, with each action being executed
 + * accordingly.  When the action list has been completely executed, processing
 + * advances to the next ECB. The ECB abstraction allows disjoint consumers
 + * to multiplex on single probes.
 + *
 + * Execution of the ECB results in consuming dte_size bytes in the buffer
 + * to record data.  During execution, dte_needed bytes must be available in
 + * the buffer.  This space is used for both recorded data and tuple data.
 + */
 +struct dtrace_ecb {
 +      dtrace_epid_t dte_epid;                 /* enabled probe ID */
 +      uint32_t dte_alignment;                 /* required alignment */
 +      size_t dte_needed;                      /* space needed for execution */
 +      size_t dte_size;                        /* size of recorded payload */
 +      dtrace_predicate_t *dte_predicate;      /* predicate, if any */
 +      dtrace_action_t *dte_action;            /* actions, if any */
 +      dtrace_ecb_t *dte_next;                 /* next ECB on probe */
 +      dtrace_state_t *dte_state;              /* pointer to state */
 +      uint32_t dte_cond;                      /* security condition */
 +      dtrace_probe_t *dte_probe;              /* pointer to probe */
 +      dtrace_action_t *dte_action_last;       /* last action on ECB */
 +      uint64_t dte_uarg;                      /* library argument */
 +};
 +
 +struct dtrace_predicate {
 +      dtrace_difo_t *dtp_difo;                /* DIF object */
 +      dtrace_cacheid_t dtp_cacheid;           /* cache identifier */
 +      int dtp_refcnt;                         /* reference count */
 +};
 +
 +struct dtrace_action {
 +      dtrace_actkind_t dta_kind;              /* kind of action */
 +      uint16_t dta_intuple;                   /* boolean:  in aggregation */
 +      uint32_t dta_refcnt;                    /* reference count */
 +      dtrace_difo_t *dta_difo;                /* pointer to DIFO */
 +      dtrace_recdesc_t dta_rec;               /* record description */
 +      dtrace_action_t *dta_prev;              /* previous action */
 +      dtrace_action_t *dta_next;              /* next action */
 +};
 +
 +typedef struct dtrace_aggregation {
 +      dtrace_action_t dtag_action;            /* action; must be first */
 +      dtrace_aggid_t dtag_id;                 /* identifier */
 +      dtrace_ecb_t *dtag_ecb;                 /* corresponding ECB */
 +      dtrace_action_t *dtag_first;            /* first action in tuple */
 +      uint32_t dtag_base;                     /* base of aggregation */
 +      uint8_t dtag_hasarg;                    /* boolean:  has argument */
 +      uint64_t dtag_initial;                  /* initial value */
 +      void (*dtag_aggregate)(uint64_t *, uint64_t, uint64_t);
 +} dtrace_aggregation_t;
 +
 +/*
 + * DTrace Buffers
 + *
 + * Principal buffers, aggregation buffers, and speculative buffers are all
 + * managed with the dtrace_buffer structure.  By default, this structure
 + * includes twin data buffers -- dtb_tomax and dtb_xamot -- that serve as the
 + * active and passive buffers, respectively.  For speculative buffers,
 + * dtb_xamot will be NULL; for "ring" and "fill" buffers, dtb_xamot will point
 + * to a scratch buffer.  For all buffer types, the dtrace_buffer structure is
 + * always allocated on a per-CPU basis; a single dtrace_buffer structure is
 + * never shared among CPUs.  (That is, there is never true sharing of the
 + * dtrace_buffer structure; to prevent false sharing of the structure, it must
 + * always be aligned to the coherence granularity -- generally 64 bytes.)
 + *
 + * One of the critical design decisions of DTrace is that a given ECB always
 + * stores the same quantity and type of data.  This is done to assure that the
 + * only metadata required for an ECB's traced data is the EPID.  That is, from
 + * the EPID, the consumer can determine the data layout.  (The data buffer
 + * layout is shown schematically below.)  By assuring that one can determine
 + * data layout from the EPID, the metadata stream can be separated from the
 + * data stream -- simplifying the data stream enormously.  The ECB always
 + * proceeds the recorded data as part of the dtrace_rechdr_t structure that
 + * includes the EPID and a high-resolution timestamp used for output ordering
 + * consistency.
 + *
 + *      base of data buffer --->  +--------+--------------------+--------+
 + *                                | rechdr | data               | rechdr |
 + *                                +--------+------+--------+----+--------+
 + *                                | data          | rechdr | data        |
 + *                                +---------------+--------+-------------+
 + *                                | data, cont.                          |
 + *                                +--------+--------------------+--------+
 + *                                | rechdr | data               |        |
 + *                                +--------+--------------------+        |
 + *                                |                ||                    |
 + *                                |                ||                    |
 + *                                |                \/                    |
 + *                                :                                      :
 + *                                .                                      .
 + *                                .                                      .
 + *                                .                                      .
 + *                                :                                      :
 + *                                |                                      |
 + *     limit of data buffer --->  +--------------------------------------+
 + *
 + * When evaluating an ECB, dtrace_probe() determines if the ECB's needs of the
 + * principal buffer (both scratch and payload) exceed the available space.  If
 + * the ECB's needs exceed available space (and if the principal buffer policy
 + * is the default "switch" policy), the ECB is dropped, the buffer's drop count
 + * is incremented, and processing advances to the next ECB.  If the ECB's needs
 + * can be met with the available space, the ECB is processed, but the offset in
 + * the principal buffer is only advanced if the ECB completes processing
 + * without error.
 + *
 + * When a buffer is to be switched (either because the buffer is the principal
 + * buffer with a "switch" policy or because it is an aggregation buffer), a
 + * cross call is issued to the CPU associated with the buffer.  In the cross
 + * call context, interrupts are disabled, and the active and the inactive
 + * buffers are atomically switched.  This involves switching the data pointers,
 + * copying the various state fields (offset, drops, errors, etc.) into their
 + * inactive equivalents, and clearing the state fields.  Because interrupts are
 + * disabled during this procedure, the switch is guaranteed to appear atomic to
 + * dtrace_probe().
 + *
 + * DTrace Ring Buffering
 + *
 + * To process a ring buffer correctly, one must know the oldest valid record.
 + * Processing starts at the oldest record in the buffer and continues until
 + * the end of the buffer is reached.  Processing then resumes starting with
 + * the record stored at offset 0 in the buffer, and continues until the
 + * youngest record is processed.  If trace records are of a fixed-length,
 + * determining the oldest record is trivial:
 + *
 + *   - If the ring buffer has not wrapped, the oldest record is the record
 + *     stored at offset 0.
 + *
 + *   - If the ring buffer has wrapped, the oldest record is the record stored
 + *     at the current offset.
 + *
 + * With variable length records, however, just knowing the current offset
 + * doesn't suffice for determining the oldest valid record:  assuming that one
 + * allows for arbitrary data, one has no way of searching forward from the
 + * current offset to find the oldest valid record.  (That is, one has no way
 + * of separating data from metadata.) It would be possible to simply refuse to
 + * process any data in the ring buffer between the current offset and the
 + * limit, but this leaves (potentially) an enormous amount of otherwise valid
 + * data unprocessed.
 + *
 + * To effect ring buffering, we track two offsets in the buffer:  the current
 + * offset and the _wrapped_ offset.  If a request is made to reserve some
 + * amount of data, and the buffer has wrapped, the wrapped offset is
 + * incremented until the wrapped offset minus the current offset is greater
 + * than or equal to the reserve request.  This is done by repeatedly looking
 + * up the ECB corresponding to the EPID at the current wrapped offset, and
 + * incrementing the wrapped offset by the size of the data payload
 + * corresponding to that ECB.  If this offset is greater than or equal to the
 + * limit of the data buffer, the wrapped offset is set to 0.  Thus, the
 + * current offset effectively "chases" the wrapped offset around the buffer.
 + * Schematically:
 + *
 + *      base of data buffer --->  +------+--------------------+------+
 + *                                | EPID | data               | EPID |
 + *                                +------+--------+------+----+------+
 + *                                | data          | EPID | data      |
 + *                                +---------------+------+-----------+
 + *                                | data, cont.                      |
 + *                                +------+---------------------------+
 + *                                | EPID | data                      |
 + *           current offset --->  +------+---------------------------+
 + *                                | invalid data                     |
 + *           wrapped offset --->  +------+--------------------+------+
 + *                                | EPID | data               | EPID |
 + *                                +------+--------+------+----+------+
 + *                                | data          | EPID | data      |
 + *                                +---------------+------+-----------+
 + *                                :                                  :
 + *                                .                                  .
 + *                                .        ... valid data ...        .
 + *                                .                                  .
 + *                                :                                  :
 + *                                +------+-------------+------+------+
 + *                                | EPID | data        | EPID | data |
 + *                                +------+------------++------+------+
 + *                                | data, cont.       | leftover     |
 + *     limit of data buffer --->  +-------------------+--------------+
 + *
 + * If the amount of requested buffer space exceeds the amount of space
 + * available between the current offset and the end of the buffer:
 + *
 + *  (1)  all words in the data buffer between the current offset and the limit
 + *       of the data buffer (marked "leftover", above) are set to
 + *       DTRACE_EPIDNONE
 + *
 + *  (2)  the wrapped offset is set to zero
 + *
 + *  (3)  the iteration process described above occurs until the wrapped offset
 + *       is greater than the amount of desired space.
 + *
 + * The wrapped offset is implemented by (re-)using the inactive offset.
 + * In a "switch" buffer policy, the inactive offset stores the offset in
 + * the inactive buffer; in a "ring" buffer policy, it stores the wrapped
 + * offset.
 + *
 + * DTrace Scratch Buffering
 + *
 + * Some ECBs may wish to allocate dynamically-sized temporary scratch memory.
 + * To accommodate such requests easily, scratch memory may be allocated in
 + * the buffer beyond the current offset plus the needed memory of the current
 + * ECB.  If there isn't sufficient room in the buffer for the requested amount
 + * of scratch space, the allocation fails and an error is generated.  Scratch
 + * memory is tracked in the dtrace_mstate_t and is automatically freed when
 + * the ECB ceases processing.  Note that ring buffers cannot allocate their
 + * scratch from the principal buffer -- lest they needlessly overwrite older,
 + * valid data.  Ring buffers therefore have their own dedicated scratch buffer
 + * from which scratch is allocated.
 + */
 +#define       DTRACEBUF_RING          0x0001          /* bufpolicy set to "ring" */
 +#define       DTRACEBUF_FILL          0x0002          /* bufpolicy set to "fill" */
 +#define       DTRACEBUF_NOSWITCH      0x0004          /* do not switch buffer */
 +#define       DTRACEBUF_WRAPPED       0x0008          /* ring buffer has wrapped */
 +#define       DTRACEBUF_DROPPED       0x0010          /* drops occurred */
 +#define       DTRACEBUF_ERROR         0x0020          /* errors occurred */
 +#define       DTRACEBUF_FULL          0x0040          /* "fill" buffer is full */
 +#define       DTRACEBUF_CONSUMED      0x0080          /* buffer has been consumed */
 +#define       DTRACEBUF_INACTIVE      0x0100          /* buffer is not yet active */
 +
 +typedef struct dtrace_buffer {
 +      uint64_t dtb_offset;                    /* current offset in buffer */
 +      uint64_t dtb_size;                      /* size of buffer */
 +      uint32_t dtb_flags;                     /* flags */
 +      uint32_t dtb_drops;                     /* number of drops */
 +      caddr_t dtb_tomax;                      /* active buffer */
 +      caddr_t dtb_xamot;                      /* inactive buffer */
 +      uint32_t dtb_xamot_flags;               /* inactive flags */
 +      uint32_t dtb_xamot_drops;               /* drops in inactive buffer */
 +      uint64_t dtb_xamot_offset;              /* offset in inactive buffer */
 +      uint32_t dtb_errors;                    /* number of errors */
 +      uint32_t dtb_xamot_errors;              /* errors in inactive buffer */
 +#ifndef _LP64
 +      uint64_t dtb_pad1;                      /* pad out to 64 bytes */
 +#endif
 +      uint64_t dtb_switched;                  /* time of last switch */
 +      uint64_t dtb_interval;                  /* observed switch interval */
 +      uint64_t dtb_pad2[6];                   /* pad to avoid false sharing */
 +} dtrace_buffer_t;
 +
 +/*
 + * DTrace Aggregation Buffers
 + *
 + * Aggregation buffers use much of the same mechanism as described above
 + * ("DTrace Buffers").  However, because an aggregation is fundamentally a
 + * hash, there exists dynamic metadata associated with an aggregation buffer
 + * that is not associated with other kinds of buffers.  This aggregation
 + * metadata is _only_ relevant for the in-kernel implementation of
 + * aggregations; it is not actually relevant to user-level consumers.  To do
 + * this, we allocate dynamic aggregation data (hash keys and hash buckets)
 + * starting below the _limit_ of the buffer, and we allocate data from the
 + * _base_ of the buffer.  When the aggregation buffer is copied out, _only_ the
 + * data is copied out; the metadata is simply discarded.  Schematically,
 + * aggregation buffers look like:
 + *
 + *      base of data buffer --->  +-------+------+-----------+-------+
 + *                                | aggid | key  | value     | aggid |
 + *                                +-------+------+-----------+-------+
 + *                                | key                              |
 + *                                +-------+-------+-----+------------+
 + *                                | value | aggid | key | value      |
 + *                                +-------+------++-----+------+-----+
 + *                                | aggid | key  | value       |     |
 + *                                +-------+------+-------------+     |
 + *                                |                ||                |
 + *                                |                ||                |
 + *                                |                \/                |
 + *                                :                                  :
 + *                                .                                  .
 + *                                .                                  .
 + *                                .                                  .
 + *                                :                                  :
 + *                                |                /\                |
 + *                                |                ||   +------------+
 + *                                |                ||   |            |
 + *                                +---------------------+            |
 + *                                | hash keys                        |
 + *                                | (dtrace_aggkey structures)       |
 + *                                |                                  |
 + *                                +----------------------------------+
 + *                                | hash buckets                     |
 + *                                | (dtrace_aggbuffer structure)     |
 + *                                |                                  |
 + *     limit of data buffer --->  +----------------------------------+
 + *
 + *
 + * As implied above, just as we assure that ECBs always store a constant
 + * amount of data, we assure that a given aggregation -- identified by its
 + * aggregation ID -- always stores data of a constant quantity and type.
 + * As with EPIDs, this allows the aggregation ID to serve as the metadata for a
 + * given record.
 + *
 + * Note that the size of the dtrace_aggkey structure must be sizeof (uintptr_t)
 + * aligned.  (If this the structure changes such that this becomes false, an
 + * assertion will fail in dtrace_aggregate().)
 + */
 +typedef struct dtrace_aggkey {
 +      uint32_t dtak_hashval;                  /* hash value */
 +      uint32_t dtak_action:4;                 /* action -- 4 bits */
 +      uint32_t dtak_size:28;                  /* size -- 28 bits */
 +      caddr_t dtak_data;                      /* data pointer */
 +      struct dtrace_aggkey *dtak_next;        /* next in hash chain */
 +} dtrace_aggkey_t;
 +
 +typedef struct dtrace_aggbuffer {
 +      uintptr_t dtagb_hashsize;               /* number of buckets */
 +      uintptr_t dtagb_free;                   /* free list of keys */
 +      dtrace_aggkey_t **dtagb_hash;           /* hash table */
 +} dtrace_aggbuffer_t;
 +
 +/*
 + * DTrace Speculations
 + *
 + * Speculations have a per-CPU buffer and a global state.  Once a speculation
 + * buffer has been comitted or discarded, it cannot be reused until all CPUs
 + * have taken the same action (commit or discard) on their respective
 + * speculative buffer.  However, because DTrace probes may execute in arbitrary
 + * context, other CPUs cannot simply be cross-called at probe firing time to
 + * perform the necessary commit or discard.  The speculation states thus
 + * optimize for the case that a speculative buffer is only active on one CPU at
 + * the time of a commit() or discard() -- for if this is the case, other CPUs
 + * need not take action, and the speculation is immediately available for
 + * reuse.  If the speculation is active on multiple CPUs, it must be
 + * asynchronously cleaned -- potentially leading to a higher rate of dirty
 + * speculative drops.  The speculation states are as follows:
 + *
 + *  DTRACESPEC_INACTIVE       <= Initial state; inactive speculation
 + *  DTRACESPEC_ACTIVE         <= Allocated, but not yet speculatively traced to
 + *  DTRACESPEC_ACTIVEONE      <= Speculatively traced to on one CPU
 + *  DTRACESPEC_ACTIVEMANY     <= Speculatively traced to on more than one CPU
 + *  DTRACESPEC_COMMITTING     <= Currently being commited on one CPU
 + *  DTRACESPEC_COMMITTINGMANY <= Currently being commited on many CPUs
 + *  DTRACESPEC_DISCARDING     <= Currently being discarded on many CPUs
 + *
 + * The state transition diagram is as follows:
 + *
 + *     +----------------------------------------------------------+
 + *     |                                                          |
 + *     |                      +------------+                      |
 + *     |  +-------------------| COMMITTING |<-----------------+   |
 + *     |  |                   +------------+                  |   |
 + *     |  | copied spec.            ^             commit() on |   | discard() on
 + *     |  | into principal          |              active CPU |   | active CPU
 + *     |  |                         | commit()                |   |
 + *     V  V                         |                         |   |
 + * +----------+                 +--------+                +-----------+
 + * | INACTIVE |---------------->| ACTIVE |--------------->| ACTIVEONE |
 + * +----------+  speculation()  +--------+  speculate()   +-----------+
 + *     ^  ^                         |                         |   |
 + *     |  |                         | discard()               |   |
 + *     |  | asynchronously          |            discard() on |   | speculate()
 + *     |  | cleaned                 V            inactive CPU |   | on inactive
 + *     |  |                   +------------+                  |   | CPU
 + *     |  +-------------------| DISCARDING |<-----------------+   |
 + *     |                      +------------+                      |
 + *     | asynchronously             ^                             |
 + *     | copied spec.               |       discard()             |
 + *     | into principal             +------------------------+    |
 + *     |                                                     |    V
 + *  +----------------+             commit()              +------------+
 + *  | COMMITTINGMANY |<----------------------------------| ACTIVEMANY |
 + *  +----------------+                                   +------------+
 + */
 +typedef enum dtrace_speculation_state {
 +      DTRACESPEC_INACTIVE = 0,
 +      DTRACESPEC_ACTIVE,
 +      DTRACESPEC_ACTIVEONE,
 +      DTRACESPEC_ACTIVEMANY,
 +      DTRACESPEC_COMMITTING,
 +      DTRACESPEC_COMMITTINGMANY,
 +      DTRACESPEC_DISCARDING
 +} dtrace_speculation_state_t;
 +
 +typedef struct dtrace_speculation {
 +      dtrace_speculation_state_t dtsp_state;  /* current speculation state */
 +      int dtsp_cleaning;                      /* non-zero if being cleaned */
 +      dtrace_buffer_t *dtsp_buffer;           /* speculative buffer */
 +} dtrace_speculation_t;
 +
 +/*
 + * DTrace Dynamic Variables
 + *
 + * The dynamic variable problem is obviously decomposed into two subproblems:
 + * allocating new dynamic storage, and freeing old dynamic storage.  The
 + * presence of the second problem makes the first much more complicated -- or
 + * rather, the absence of the second renders the first trivial.  This is the
 + * case with aggregations, for which there is effectively no deallocation of
 + * dynamic storage.  (Or more accurately, all dynamic storage is deallocated
 + * when a snapshot is taken of the aggregation.)  As DTrace dynamic variables
 + * allow for both dynamic allocation and dynamic deallocation, the
 + * implementation of dynamic variables is quite a bit more complicated than
 + * that of their aggregation kin.
 + *
 + * We observe that allocating new dynamic storage is tricky only because the
 + * size can vary -- the allocation problem is much easier if allocation sizes
 + * are uniform.  We further observe that in D, the size of dynamic variables is
 + * actually _not_ dynamic -- dynamic variable sizes may be determined by static
 + * analysis of DIF text.  (This is true even of putatively dynamically-sized
 + * objects like strings and stacks, the sizes of which are dictated by the
 + * "stringsize" and "stackframes" variables, respectively.)  We exploit this by
 + * performing this analysis on all DIF before enabling any probes.  For each
 + * dynamic load or store, we calculate the dynamically-allocated size plus the
 + * size of the dtrace_dynvar structure plus the storage required to key the
 + * data.  For all DIF, we take the largest value and dub it the _chunksize_.
 + * We then divide dynamic memory into two parts:  a hash table that is wide
 + * enough to have every chunk in its own bucket, and a larger region of equal
 + * chunksize units.  Whenever we wish to dynamically allocate a variable, we
 + * always allocate a single chunk of memory.  Depending on the uniformity of
 + * allocation, this will waste some amount of memory -- but it eliminates the
 + * non-determinism inherent in traditional heap fragmentation.
 + *
 + * Dynamic objects are allocated by storing a non-zero value to them; they are
 + * deallocated by storing a zero value to them.  Dynamic variables are
 + * complicated enormously by being shared between CPUs.  In particular,
 + * consider the following scenario:
 + *
 + *                 CPU A                                 CPU B
 + *  +---------------------------------+   +---------------------------------+
 + *  |                                 |   |                                 |
 + *  | allocates dynamic object a[123] |   |                                 |
 + *  | by storing the value 345 to it  |   |                                 |
 + *  |                               --------->                              |
 + *  |                                 |   | wishing to load from object     |
 + *  |                                 |   | a[123], performs lookup in      |
 + *  |                                 |   | dynamic variable space          |
 + *  |                               <---------                              |
 + *  | deallocates object a[123] by    |   |                                 |
 + *  | storing 0 to it                 |   |                                 |
 + *  |                                 |   |                                 |
 + *  | allocates dynamic object b[567] |   | performs load from a[123]       |
 + *  | by storing the value 789 to it  |   |                                 |
 + *  :                                 :   :                                 :
 + *  .                                 .   .                                 .
 + *
 + * This is obviously a race in the D program, but there are nonetheless only
 + * two valid values for CPU B's load from a[123]:  345 or 0.  Most importantly,
 + * CPU B may _not_ see the value 789 for a[123].
 + *
 + * There are essentially two ways to deal with this:
 + *
 + *  (1)  Explicitly spin-lock variables.  That is, if CPU B wishes to load
 + *       from a[123], it needs to lock a[123] and hold the lock for the
 + *       duration that it wishes to manipulate it.
 + *
 + *  (2)  Avoid reusing freed chunks until it is known that no CPU is referring
 + *       to them.
 + *
 + * The implementation of (1) is rife with complexity, because it requires the
 + * user of a dynamic variable to explicitly decree when they are done using it.
 + * Were all variables by value, this perhaps wouldn't be debilitating -- but
 + * dynamic variables of non-scalar types are tracked by reference.  That is, if
 + * a dynamic variable is, say, a string, and that variable is to be traced to,
 + * say, the principal buffer, the DIF emulation code returns to the main
 + * dtrace_probe() loop a pointer to the underlying storage, not the contents of
 + * the storage.  Further, code calling on DIF emulation would have to be aware
 + * that the DIF emulation has returned a reference to a dynamic variable that
 + * has been potentially locked.  The variable would have to be unlocked after
 + * the main dtrace_probe() loop is finished with the variable, and the main
 + * dtrace_probe() loop would have to be careful to not call any further DIF
 + * emulation while the variable is locked to avoid deadlock.  More generally,
 + * if one were to implement (1), DIF emulation code dealing with dynamic
 + * variables could only deal with one dynamic variable at a time (lest deadlock
 + * result).  To sum, (1) exports too much subtlety to the users of dynamic
 + * variables -- increasing maintenance burden and imposing serious constraints
 + * on future DTrace development.
 + *
 + * The implementation of (2) is also complex, but the complexity is more
 + * manageable.  We need to be sure that when a variable is deallocated, it is
 + * not placed on a traditional free list, but rather on a _dirty_ list.  Once a
 + * variable is on a dirty list, it cannot be found by CPUs performing a
 + * subsequent lookup of the variable -- but it may still be in use by other
 + * CPUs.  To assure that all CPUs that may be seeing the old variable have
 + * cleared out of probe context, a dtrace_sync() can be issued.  Once the
 + * dtrace_sync() has completed, it can be known that all CPUs are done
 + * manipulating the dynamic variable -- the dirty list can be atomically
 + * appended to the free list.  Unfortunately, there's a slight hiccup in this
 + * mechanism:  dtrace_sync() may not be issued from probe context.  The
 + * dtrace_sync() must be therefore issued asynchronously from non-probe
 + * context.  For this we rely on the DTrace cleaner, a cyclic that runs at the
 + * "cleanrate" frequency.  To ease this implementation, we define several chunk
 + * lists:
 + *
 + *   - Dirty.  Deallocated chunks, not yet cleaned.  Not available.
 + *
 + *   - Rinsing.  Formerly dirty chunks that are currently being asynchronously
 + *     cleaned.  Not available, but will be shortly.  Dynamic variable
 + *     allocation may not spin or block for availability, however.
 + *
 + *   - Clean.  Clean chunks, ready for allocation -- but not on the free list.
 + *
 + *   - Free.  Available for allocation.
 + *
 + * Moreover, to avoid absurd contention, _each_ of these lists is implemented
 + * on a per-CPU basis.  This is only for performance, not correctness; chunks
 + * may be allocated from another CPU's free list.  The algorithm for allocation
 + * then is this:
 + *
 + *   (1)  Attempt to atomically allocate from current CPU's free list.  If list
 + *        is non-empty and allocation is successful, allocation is complete.
 + *
 + *   (2)  If the clean list is non-empty, atomically move it to the free list,
 + *        and reattempt (1).
 + *
 + *   (3)  If the dynamic variable space is in the CLEAN state, look for free
 + *        and clean lists on other CPUs by setting the current CPU to the next
 + *        CPU, and reattempting (1).  If the next CPU is the current CPU (that
 + *        is, if all CPUs have been checked), atomically switch the state of
 + *        the dynamic variable space based on the following:
 + *
 + *        - If no free chunks were found and no dirty chunks were found,
 + *          atomically set the state to EMPTY.
 + *
 + *        - If dirty chunks were found, atomically set the state to DIRTY.
 + *
 + *        - If rinsing chunks were found, atomically set the state to RINSING.
 + *
 + *   (4)  Based on state of dynamic variable space state, increment appropriate
 + *        counter to indicate dynamic drops (if in EMPTY state) vs. dynamic
 + *        dirty drops (if in DIRTY state) vs. dynamic rinsing drops (if in
 + *        RINSING state).  Fail the allocation.
 + *
 + * The cleaning cyclic operates with the following algorithm:  for all CPUs
 + * with a non-empty dirty list, atomically move the dirty list to the rinsing
 + * list.  Perform a dtrace_sync().  For all CPUs with a non-empty rinsing list,
 + * atomically move the rinsing list to the clean list.  Perform another
 + * dtrace_sync().  By this point, all CPUs have seen the new clean list; the
 + * state of the dynamic variable space can be restored to CLEAN.
 + *
 + * There exist two final races that merit explanation.  The first is a simple
 + * allocation race:
 + *
 + *                 CPU A                                 CPU B
 + *  +---------------------------------+   +---------------------------------+
 + *  |                                 |   |                                 |
 + *  | allocates dynamic object a[123] |   | allocates dynamic object a[123] |
 + *  | by storing the value 345 to it  |   | by storing the value 567 to it  |
 + *  |                                 |   |                                 |
 + *  :                                 :   :                                 :
 + *  .                                 .   .                                 .
 + *
 + * Again, this is a race in the D program.  It can be resolved by having a[123]
 + * hold the value 345 or a[123] hold the value 567 -- but it must be true that
 + * a[123] have only _one_ of these values.  (That is, the racing CPUs may not
 + * put the same element twice on the same hash chain.)  This is resolved
 + * simply:  before the allocation is undertaken, the start of the new chunk's
 + * hash chain is noted.  Later, after the allocation is complete, the hash
 + * chain is atomically switched to point to the new element.  If this fails
 + * (because of either concurrent allocations or an allocation concurrent with a
 + * deletion), the newly allocated chunk is deallocated to the dirty list, and
 + * the whole process of looking up (and potentially allocating) the dynamic
 + * variable is reattempted.
 + *
 + * The final race is a simple deallocation race:
 + *
 + *                 CPU A                                 CPU B
 + *  +---------------------------------+   +---------------------------------+
 + *  |                                 |   |                                 |
 + *  | deallocates dynamic object      |   | deallocates dynamic object      |
 + *  | a[123] by storing the value 0   |   | a[123] by storing the value 0   |
 + *  | to it                           |   | to it                           |
 + *  |                                 |   |                                 |
 + *  :                                 :   :                                 :
 + *  .                                 .   .                                 .
 + *
 + * Once again, this is a race in the D program, but it is one that we must
 + * handle without corrupting the underlying data structures.  Because
 + * deallocations require the deletion of a chunk from the middle of a hash
 + * chain, we cannot use a single-word atomic operation to remove it.  For this,
 + * we add a spin lock to the hash buckets that is _only_ used for deallocations
 + * (allocation races are handled as above).  Further, this spin lock is _only_
 + * held for the duration of the delete; before control is returned to the DIF
 + * emulation code, the hash bucket is unlocked.
 + */
 +typedef struct dtrace_key {
 +      uint64_t dttk_value;                    /* data value or data pointer */
 +      uint64_t dttk_size;                     /* 0 if by-val, >0 if by-ref */
 +} dtrace_key_t;
 +
 +typedef struct dtrace_tuple {
 +      uint32_t dtt_nkeys;                     /* number of keys in tuple */
 +      uint32_t dtt_pad;                       /* padding */
 +      dtrace_key_t dtt_key[1];                /* array of tuple keys */
 +} dtrace_tuple_t;
 +
 +typedef struct dtrace_dynvar {
 +      uint64_t dtdv_hashval;                  /* hash value -- 0 if free */
 +      struct dtrace_dynvar *dtdv_next;        /* next on list or hash chain */
 +      void *dtdv_data;                        /* pointer to data */
 +      dtrace_tuple_t dtdv_tuple;              /* tuple key */
 +} dtrace_dynvar_t;
 +
 +typedef enum dtrace_dynvar_op {
 +      DTRACE_DYNVAR_ALLOC,
 +      DTRACE_DYNVAR_NOALLOC,
 +      DTRACE_DYNVAR_DEALLOC
 +} dtrace_dynvar_op_t;
 +
 +typedef struct dtrace_dynhash {
 +      dtrace_dynvar_t *dtdh_chain;            /* hash chain for this bucket */
 +      uintptr_t dtdh_lock;                    /* deallocation lock */
 +#ifdef _LP64
 +      uintptr_t dtdh_pad[6];                  /* pad to avoid false sharing */
 +#else
 +      uintptr_t dtdh_pad[14];                 /* pad to avoid false sharing */
 +#endif
 +} dtrace_dynhash_t;
 +
 +typedef struct dtrace_dstate_percpu {
 +      dtrace_dynvar_t *dtdsc_free;            /* free list for this CPU */
 +      dtrace_dynvar_t *dtdsc_dirty;           /* dirty list for this CPU */
 +      dtrace_dynvar_t *dtdsc_rinsing;         /* rinsing list for this CPU */
 +      dtrace_dynvar_t *dtdsc_clean;           /* clean list for this CPU */
 +      uint64_t dtdsc_drops;                   /* number of capacity drops */
 +      uint64_t dtdsc_dirty_drops;             /* number of dirty drops */
 +      uint64_t dtdsc_rinsing_drops;           /* number of rinsing drops */
 +#ifdef _LP64
 +      uint64_t dtdsc_pad;                     /* pad to avoid false sharing */
 +#else
 +      uint64_t dtdsc_pad[2];                  /* pad to avoid false sharing */
 +#endif
 +} dtrace_dstate_percpu_t;
 +
 +typedef enum dtrace_dstate_state {
 +      DTRACE_DSTATE_CLEAN = 0,
 +      DTRACE_DSTATE_EMPTY,
 +      DTRACE_DSTATE_DIRTY,
 +      DTRACE_DSTATE_RINSING
 +} dtrace_dstate_state_t;
 +
 +typedef struct dtrace_dstate {
 +      void *dtds_base;                        /* base of dynamic var. space */
 +      size_t dtds_size;                       /* size of dynamic var. space */
 +      size_t dtds_hashsize;                   /* number of buckets in hash */
 +      size_t dtds_chunksize;                  /* size of each chunk */
 +      dtrace_dynhash_t *dtds_hash;            /* pointer to hash table */
 +      dtrace_dstate_state_t dtds_state;       /* current dynamic var. state */
 +      dtrace_dstate_percpu_t *dtds_percpu;    /* per-CPU dyn. var. state */
 +} dtrace_dstate_t;
 +
 +/*
 + * DTrace Variable State
 + *
 + * The DTrace variable state tracks user-defined variables in its dtrace_vstate
 + * structure.  Each DTrace consumer has exactly one dtrace_vstate structure,
 + * but some dtrace_vstate structures may exist without a corresponding DTrace
 + * consumer (see "DTrace Helpers", below).  As described in <sys/dtrace.h>,
 + * user-defined variables can have one of three scopes:
 + *
 + *  DIFV_SCOPE_GLOBAL  =>  global scope
 + *  DIFV_SCOPE_THREAD  =>  thread-local scope (i.e. "self->" variables)
 + *  DIFV_SCOPE_LOCAL   =>  clause-local scope (i.e. "this->" variables)
 + *
 + * The variable state tracks variables by both their scope and their allocation
 + * type:
 + *
 + *  - The dtvs_globals and dtvs_locals members each point to an array of
 + *    dtrace_statvar structures.  These structures contain both the variable
 + *    metadata (dtrace_difv structures) and the underlying storage for all
 + *    statically allocated variables, including statically allocated
 + *    DIFV_SCOPE_GLOBAL variables and all DIFV_SCOPE_LOCAL variables.
 + *
 + *  - The dtvs_tlocals member points to an array of dtrace_difv structures for
 + *    DIFV_SCOPE_THREAD variables.  As such, this array tracks _only_ the
 + *    variable metadata for DIFV_SCOPE_THREAD variables; the underlying storage
 + *    is allocated out of the dynamic variable space.
 + *
 + *  - The dtvs_dynvars member is the dynamic variable state associated with the
 + *    variable state.  The dynamic variable state (described in "DTrace Dynamic
 + *    Variables", above) tracks all DIFV_SCOPE_THREAD variables and all
 + *    dynamically-allocated DIFV_SCOPE_GLOBAL variables.
 + */
 +typedef struct dtrace_statvar {
 +      uint64_t dtsv_data;                     /* data or pointer to it */
 +      size_t dtsv_size;                       /* size of pointed-to data */
 +      int dtsv_refcnt;                        /* reference count */
 +      dtrace_difv_t dtsv_var;                 /* variable metadata */
 +} dtrace_statvar_t;
 +
 +typedef struct dtrace_vstate {
 +      dtrace_state_t *dtvs_state;             /* back pointer to state */
 +      dtrace_statvar_t **dtvs_globals;        /* statically-allocated glbls */
 +      int dtvs_nglobals;                      /* number of globals */
 +      dtrace_difv_t *dtvs_tlocals;            /* thread-local metadata */
 +      int dtvs_ntlocals;                      /* number of thread-locals */
 +      dtrace_statvar_t **dtvs_locals;         /* clause-local data */
 +      int dtvs_nlocals;                       /* number of clause-locals */
 +      dtrace_dstate_t dtvs_dynvars;           /* dynamic variable state */
 +} dtrace_vstate_t;
 +
 +/*
 + * DTrace Machine State
 + *
 + * In the process of processing a fired probe, DTrace needs to track and/or
 + * cache some per-CPU state associated with that particular firing.  This is
 + * state that is always discarded after the probe firing has completed, and
 + * much of it is not specific to any DTrace consumer, remaining valid across
 + * all ECBs.  This state is tracked in the dtrace_mstate structure.
 + */
 +#define       DTRACE_MSTATE_ARGS              0x00000001
 +#define       DTRACE_MSTATE_PROBE             0x00000002
 +#define       DTRACE_MSTATE_EPID              0x00000004
 +#define       DTRACE_MSTATE_TIMESTAMP         0x00000008
 +#define       DTRACE_MSTATE_STACKDEPTH        0x00000010
 +#define       DTRACE_MSTATE_CALLER            0x00000020
 +#define       DTRACE_MSTATE_IPL               0x00000040
 +#define       DTRACE_MSTATE_FLTOFFS           0x00000080
 +#define       DTRACE_MSTATE_WALLTIMESTAMP     0x00000100
 +#define       DTRACE_MSTATE_USTACKDEPTH       0x00000200
 +#define       DTRACE_MSTATE_UCALLER           0x00000400
 +
 +typedef struct dtrace_mstate {
 +      uintptr_t dtms_scratch_base;            /* base of scratch space */
 +      uintptr_t dtms_scratch_ptr;             /* current scratch pointer */
 +      size_t dtms_scratch_size;               /* scratch size */
 +      uint32_t dtms_present;                  /* variables that are present */
 +      uint64_t dtms_arg[5];                   /* cached arguments */
 +      dtrace_epid_t dtms_epid;                /* current EPID */
 +      uint64_t dtms_timestamp;                /* cached timestamp */
 +      hrtime_t dtms_walltimestamp;            /* cached wall timestamp */
 +      int dtms_stackdepth;                    /* cached stackdepth */
 +      int dtms_ustackdepth;                   /* cached ustackdepth */
 +      struct dtrace_probe *dtms_probe;        /* current probe */
 +      uintptr_t dtms_caller;                  /* cached caller */
 +      uint64_t dtms_ucaller;                  /* cached user-level caller */
 +      int dtms_ipl;                           /* cached interrupt pri lev */
 +      int dtms_fltoffs;                       /* faulting DIFO offset */
 +      uintptr_t dtms_strtok;                  /* saved strtok() pointer */
 +      uint32_t dtms_access;                   /* memory access rights */
 +      dtrace_difo_t *dtms_difo;               /* current dif object */
 +      file_t *dtms_getf;                      /* cached rval of getf() */
 +} dtrace_mstate_t;
 +
 +#define       DTRACE_COND_OWNER       0x1
 +#define       DTRACE_COND_USERMODE    0x2
 +#define       DTRACE_COND_ZONEOWNER   0x4
 +
 +#define       DTRACE_PROBEKEY_MAXDEPTH        8       /* max glob recursion depth */
 +
 +/*
 + * Access flag used by dtrace_mstate.dtms_access.
 + */
 +#define       DTRACE_ACCESS_KERNEL    0x1             /* the priv to read kmem */
 +
 +
 +/*
 + * DTrace Activity
 + *
 + * Each DTrace consumer is in one of several states, which (for purposes of
 + * avoiding yet-another overloading of the noun "state") we call the current
 + * _activity_.  The activity transitions on dtrace_go() (from DTRACIOCGO), on
 + * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action.  Activities may
 + * only transition in one direction; the activity transition diagram is a
 + * directed acyclic graph.  The activity transition diagram is as follows:
 + *
 + *
 + * +----------+                   +--------+                   +--------+
 + * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE |
 + * +----------+   dtrace_go(),    +--------+   dtrace_go(),    +--------+
 + *                before BEGIN        |        after BEGIN       |  |  |
 + *                                    |                          |  |  |
 + *                      exit() action |                          |  |  |
 + *                     from BEGIN ECB |                          |  |  |
 + *                                    |                          |  |  |
 + *                                    v                          |  |  |
 + *                               +----------+     exit() action  |  |  |
 + * +-----------------------------| DRAINING |<-------------------+  |  |
 + * |                             +----------+                       |  |
 + * |                                  |                             |  |
 + * |                   dtrace_stop(), |                             |  |
 + * |                     before END   |                             |  |
 + * |                                  |                             |  |
 + * |                                  v                             |  |
 + * | +---------+                 +----------+                       |  |
 + * | | STOPPED |<----------------| COOLDOWN |<----------------------+  |
 + * | +---------+  dtrace_stop(), +----------+     dtrace_stop(),       |
 + * |                after END                       before END         |
 + * |                                                                   |
 + * |                              +--------+                           |
 + * +----------------------------->| KILLED |<--------------------------+
 + *       deadman timeout or       +--------+     deadman timeout or
 + *        killed consumer                         killed consumer
 + *
 + * Note that once a DTrace consumer has stopped tracing, there is no way to
 + * restart it; if a DTrace consumer wishes to restart tracing, it must reopen
 + * the DTrace pseudodevice.
 + */
 +typedef enum dtrace_activity {
 +      DTRACE_ACTIVITY_INACTIVE = 0,           /* not yet running */
 +      DTRACE_ACTIVITY_WARMUP,                 /* while starting */
 +      DTRACE_ACTIVITY_ACTIVE,                 /* running */
 +      DTRACE_ACTIVITY_DRAINING,               /* before stopping */
 +      DTRACE_ACTIVITY_COOLDOWN,               /* while stopping */
 +      DTRACE_ACTIVITY_STOPPED,                /* after stopping */
 +      DTRACE_ACTIVITY_KILLED                  /* killed */
 +} dtrace_activity_t;
 +
 +/*
 + * DTrace Helper Implementation
 + *
 + * A description of the helper architecture may be found in <sys/dtrace.h>.
 + * Each process contains a pointer to its helpers in its p_dtrace_helpers
 + * member.  This is a pointer to a dtrace_helpers structure, which contains an
 + * array of pointers to dtrace_helper structures, helper variable state (shared
 + * among a process's helpers) and a generation count.  (The generation count is
 + * used to provide an identifier when a helper is added so that it may be
 + * subsequently removed.)  The dtrace_helper structure is self-explanatory,
 + * containing pointers to the objects needed to execute the helper.  Note that
 + * helpers are _duplicated_ across fork(2), and destroyed on exec(2).  No more
 + * than dtrace_helpers_max are allowed per-process.
 + */
 +#define       DTRACE_HELPER_ACTION_USTACK     0
 +#define       DTRACE_NHELPER_ACTIONS          1
 +
 +typedef struct dtrace_helper_action {
 +      int dtha_generation;                    /* helper action generation */
 +      int dtha_nactions;                      /* number of actions */
 +      dtrace_difo_t *dtha_predicate;          /* helper action predicate */
 +      dtrace_difo_t **dtha_actions;           /* array of actions */
 +      struct dtrace_helper_action *dtha_next; /* next helper action */
 +} dtrace_helper_action_t;
 +
 +typedef struct dtrace_helper_provider {
 +      int dthp_generation;                    /* helper provider generation */
 +      uint32_t dthp_ref;                      /* reference count */
 +      dof_helper_t dthp_prov;                 /* DOF w/ provider and probes */
 +} dtrace_helper_provider_t;
 +
 +typedef struct dtrace_helpers {
 +      dtrace_helper_action_t **dthps_actions; /* array of helper actions */
 +      dtrace_vstate_t dthps_vstate;           /* helper action var. state */
 +      dtrace_helper_provider_t **dthps_provs; /* array of providers */
 +      uint_t dthps_nprovs;                    /* count of providers */
 +      uint_t dthps_maxprovs;                  /* provider array size */
 +      int dthps_generation;                   /* current generation */
 +      pid_t dthps_pid;                        /* pid of associated proc */
 +      int dthps_deferred;                     /* helper in deferred list */
 +      struct dtrace_helpers *dthps_next;      /* next pointer */
 +      struct dtrace_helpers *dthps_prev;      /* prev pointer */
 +} dtrace_helpers_t;
 +
 +/*
 + * DTrace Helper Action Tracing
 + *
 + * Debugging helper actions can be arduous.  To ease the development and
 + * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing-
 + * framework: helper tracing.  If dtrace_helptrace_enabled is non-zero (which
 + * it is by default on DEBUG kernels), all helper activity will be traced to a
 + * global, in-kernel ring buffer.  Each entry includes a pointer to the specific
 + * helper, the location within the helper, and a trace of all local variables.
 + * The ring buffer may be displayed in a human-readable format with the
 + * ::dtrace_helptrace mdb(1) dcmd.
 + */
 +#define       DTRACE_HELPTRACE_NEXT   (-1)
 +#define       DTRACE_HELPTRACE_DONE   (-2)
 +#define       DTRACE_HELPTRACE_ERR    (-3)
 +
 +typedef struct dtrace_helptrace {
 +      dtrace_helper_action_t  *dtht_helper;   /* helper action */
 +      int dtht_where;                         /* where in helper action */
 +      int dtht_nlocals;                       /* number of locals */
 +      int dtht_fault;                         /* type of fault (if any) */
 +      int dtht_fltoffs;                       /* DIF offset */
 +      uint64_t dtht_illval;                   /* faulting value */
 +      uint64_t dtht_locals[1];                /* local variables */
 +} dtrace_helptrace_t;
 +
 +/*
 + * DTrace Credentials
 + *
 + * In probe context, we have limited flexibility to examine the credentials
 + * of the DTrace consumer that created a particular enabling.  We use
 + * the Least Privilege interfaces to cache the consumer's cred pointer and
 + * some facts about that credential in a dtrace_cred_t structure. These
 + * can limit the consumer's breadth of visibility and what actions the
 + * consumer may take.
 + */
 +#define       DTRACE_CRV_ALLPROC              0x01
 +#define       DTRACE_CRV_KERNEL               0x02
 +#define       DTRACE_CRV_ALLZONE              0x04
 +
 +#define       DTRACE_CRV_ALL          (DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \
 +      DTRACE_CRV_ALLZONE)
 +
 +#define       DTRACE_CRA_PROC                         0x0001
 +#define       DTRACE_CRA_PROC_CONTROL                 0x0002
 +#define       DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER     0x0004
 +#define       DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE     0x0008
 +#define       DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG     0x0010
 +#define       DTRACE_CRA_KERNEL                       0x0020
 +#define       DTRACE_CRA_KERNEL_DESTRUCTIVE           0x0040
 +
 +#define       DTRACE_CRA_ALL          (DTRACE_CRA_PROC | \
 +      DTRACE_CRA_PROC_CONTROL | \
 +      DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \
 +      DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \
 +      DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \
 +      DTRACE_CRA_KERNEL | \
 +      DTRACE_CRA_KERNEL_DESTRUCTIVE)
 +
 +typedef struct dtrace_cred {
 +      cred_t                  *dcr_cred;
 +      uint8_t                 dcr_destructive;
 +      uint8_t                 dcr_visible;
 +      uint16_t                dcr_action;
 +} dtrace_cred_t;
 +
 +/*
 + * DTrace Consumer State
 + *
 + * Each DTrace consumer has an associated dtrace_state structure that contains
 + * its in-kernel DTrace state -- including options, credentials, statistics and
 + * pointers to ECBs, buffers, speculations and formats.  A dtrace_state
 + * structure is also allocated for anonymous enablings.  When anonymous state
 + * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed
 + * dtrace_state structure.
 + */
 +struct dtrace_state {
 +#ifdef illumos
 +      dev_t dts_dev;                          /* device */
 +#else
 +      struct cdev *dts_dev;                   /* device */
 +#endif
 +      int dts_necbs;                          /* total number of ECBs */
 +      dtrace_ecb_t **dts_ecbs;                /* array of ECBs */
 +      dtrace_epid_t dts_epid;                 /* next EPID to allocate */
 +      size_t dts_needed;                      /* greatest needed space */
 +      struct dtrace_state *dts_anon;          /* anon. state, if grabbed */
 +      dtrace_activity_t dts_activity;         /* current activity */
 +      dtrace_vstate_t dts_vstate;             /* variable state */
 +      dtrace_buffer_t *dts_buffer;            /* principal buffer */
 +      dtrace_buffer_t *dts_aggbuffer;         /* aggregation buffer */
 +      dtrace_speculation_t *dts_speculations; /* speculation array */
 +      int dts_nspeculations;                  /* number of speculations */
 +      int dts_naggregations;                  /* number of aggregations */
 +      dtrace_aggregation_t **dts_aggregations; /* aggregation array */
 +#ifdef illumos
 +      vmem_t *dts_aggid_arena;                /* arena for aggregation IDs */
 +#else
 +      struct unrhdr *dts_aggid_arena;         /* arena for aggregation IDs */
 +#endif
 +      uint64_t dts_errors;                    /* total number of errors */
 +      uint32_t dts_speculations_busy;         /* number of spec. busy */
 +      uint32_t dts_speculations_unavail;      /* number of spec unavail */
 +      uint32_t dts_stkstroverflows;           /* stack string tab overflows */
 +      uint32_t dts_dblerrors;                 /* errors in ERROR probes */
 +      uint32_t dts_reserve;                   /* space reserved for END */
 +      hrtime_t dts_laststatus;                /* time of last status */
 +#ifdef illumos
 +      cyclic_id_t dts_cleaner;                /* cleaning cyclic */
 +      cyclic_id_t dts_deadman;                /* deadman cyclic */
 +#else
 +      struct callout dts_cleaner;             /* Cleaning callout. */
 +      struct callout dts_deadman;             /* Deadman callout. */
 +#endif
 +      hrtime_t dts_alive;                     /* time last alive */
 +      char dts_speculates;                    /* boolean: has speculations */
 +      char dts_destructive;                   /* boolean: has dest. actions */
 +      int dts_nformats;                       /* number of formats */
 +      char **dts_formats;                     /* format string array */
 +      dtrace_optval_t dts_options[DTRACEOPT_MAX]; /* options */
 +      dtrace_cred_t dts_cred;                 /* credentials */
 +      size_t dts_nretained;                   /* number of retained enabs */
 +      int dts_getf;                           /* number of getf() calls */
 +};
 +
 +struct dtrace_provider {
 +      dtrace_pattr_t dtpv_attr;               /* provider attributes */
 +      dtrace_ppriv_t dtpv_priv;               /* provider privileges */
 +      dtrace_pops_t dtpv_pops;                /* provider operations */
 +      char *dtpv_name;                        /* provider name */
 +      void *dtpv_arg;                         /* provider argument */
 +      hrtime_t dtpv_defunct;                  /* when made defunct */
 +      struct dtrace_provider *dtpv_next;      /* next provider */
 +};
 +
 +struct dtrace_meta {
 +      dtrace_mops_t dtm_mops;                 /* meta provider operations */
 +      char *dtm_name;                         /* meta provider name */
 +      void *dtm_arg;                          /* meta provider user arg */
 +      uint64_t dtm_count;                     /* no. of associated provs. */
 +};
 +
 +/*
 + * DTrace Enablings
 + *
 + * A dtrace_enabling structure is used to track a collection of ECB
 + * descriptions -- before they have been turned into actual ECBs.  This is
 + * created as a result of DOF processing, and is generally used to generate
 + * ECBs immediately thereafter.  However, enablings are also generally
 + * retained should the probes they describe be created at a later time; as
 + * each new module or provider registers with the framework, the retained
 + * enablings are reevaluated, with any new match resulting in new ECBs.  To
 + * prevent probes from being matched more than once, the enabling tracks the
 + * last probe generation matched, and only matches probes from subsequent
 + * generations.
 + */
 +typedef struct dtrace_enabling {
 +      dtrace_ecbdesc_t **dten_desc;           /* all ECB descriptions */
 +      int dten_ndesc;                         /* number of ECB descriptions */
 +      int dten_maxdesc;                       /* size of ECB array */
 +      dtrace_vstate_t *dten_vstate;           /* associated variable state */
 +      dtrace_genid_t dten_probegen;           /* matched probe generation */
 +      dtrace_ecbdesc_t *dten_current;         /* current ECB description */
 +      int dten_error;                         /* current error value */
 +      int dten_primed;                        /* boolean: set if primed */
 +      struct dtrace_enabling *dten_prev;      /* previous enabling */
 +      struct dtrace_enabling *dten_next;      /* next enabling */
 +} dtrace_enabling_t;
 +
 +/*
 + * DTrace Anonymous Enablings
 + *
 + * Anonymous enablings are DTrace enablings that are not associated with a
 + * controlling process, but rather derive their enabling from DOF stored as
 + * properties in the dtrace.conf file.  If there is an anonymous enabling, a
 + * DTrace consumer state and enabling are created on attach.  The state may be
 + * subsequently grabbed by the first consumer specifying the "grabanon"
 + * option.  As long as an anonymous DTrace enabling exists, dtrace(7D) will
 + * refuse to unload.
 + */
 +typedef struct dtrace_anon {
 +      dtrace_state_t *dta_state;              /* DTrace consumer state */
 +      dtrace_enabling_t *dta_enabling;        /* pointer to enabling */
 +      processorid_t dta_beganon;              /* which CPU BEGIN ran on */
 +} dtrace_anon_t;
 +
 +/*
 + * DTrace Error Debugging
 + */
 +#ifdef DEBUG
 +#define       DTRACE_ERRDEBUG
 +#endif
 +
 +#ifdef DTRACE_ERRDEBUG
 +
 +typedef struct dtrace_errhash {
 +      const char      *dter_msg;      /* error message */
 +      int             dter_count;     /* number of times seen */
 +} dtrace_errhash_t;
 +
 +#define       DTRACE_ERRHASHSZ        256     /* must be > number of err msgs */
 +
 +#endif        /* DTRACE_ERRDEBUG */
 +
 +/*
 + * DTrace Toxic Ranges
 + *
 + * DTrace supports safe loads from probe context; if the address turns out to
 + * be invalid, a bit will be set by the kernel indicating that DTrace
 + * encountered a memory error, and DTrace will propagate the error to the user
 + * accordingly.  However, there may exist some regions of memory in which an
 + * arbitrary load can change system state, and from which it is impossible to
 + * recover from such a load after it has been attempted.  Examples of this may
 + * include memory in which programmable I/O registers are mapped (for which a
 + * read may have some implications for the device) or (in the specific case of
 + * UltraSPARC-I and -II) the virtual address hole.  The platform is required
 + * to make DTrace aware of these toxic ranges; DTrace will then check that
 + * target addresses are not in a toxic range before attempting to issue a
 + * safe load.
 + */
 +typedef struct dtrace_toxrange {
 +      uintptr_t       dtt_base;               /* base of toxic range */
 +      uintptr_t       dtt_limit;              /* limit of toxic range */
 +} dtrace_toxrange_t;
 +
 +#ifdef illumos
 +extern uint64_t dtrace_getarg(int, int);
 +#else
 +extern uint64_t __noinline dtrace_getarg(int, int);
 +#endif
 +extern greg_t dtrace_getfp(void);
 +extern int dtrace_getipl(void);
 +extern uintptr_t dtrace_caller(int);
 +extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t);
 +extern void *dtrace_casptr(volatile void *, volatile void *, volatile void *);
 +extern void dtrace_copyin(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
 +extern void dtrace_copyinstr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
 +extern void dtrace_copyout(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
 +extern void dtrace_copyoutstr(uintptr_t, uintptr_t, size_t,
 +    volatile uint16_t *);
 +extern void dtrace_getpcstack(pc_t *, int, int, uint32_t *);
 +extern ulong_t dtrace_getreg(struct trapframe *, uint_t);
 +extern int dtrace_getstackdepth(int);
 +extern void dtrace_getupcstack(uint64_t *, int);
 +extern void dtrace_getufpstack(uint64_t *, uint64_t *, int);
 +extern int dtrace_getustackdepth(void);
 +extern uintptr_t dtrace_fulword(void *);
 +extern uint8_t dtrace_fuword8(void *);
 +extern uint16_t dtrace_fuword16(void *);
 +extern uint32_t dtrace_fuword32(void *);
 +extern uint64_t dtrace_fuword64(void *);
 +extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int,
 +    int, uintptr_t);
 +extern int dtrace_assfail(const char *, const char *, int);
 +extern int dtrace_attached(void);
 +#ifdef illumos
 +extern hrtime_t dtrace_gethrestime(void);
 +#endif
 +
 +#ifdef __sparc
 +extern void dtrace_flush_windows(void);
 +extern void dtrace_flush_user_windows(void);
 +extern uint_t dtrace_getotherwin(void);
 +extern uint_t dtrace_getfprs(void);
 +#else
 +extern void dtrace_copy(uintptr_t, uintptr_t, size_t);
 +extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
 +#endif
 +
 +/*
 + * DTrace Assertions
 + *
++ * DTrace calls ASSERT and VERIFY from probe context.  To assure that a failed
++ * ASSERT or VERIFY does not induce a markedly more catastrophic failure (e.g.,
++ * one from which a dump cannot be gleaned), DTrace must define its own ASSERT
++ * and VERIFY macros to be ones that may safely be called from probe context.
++ * This header file must thus be included by any DTrace component that calls
++ * ASSERT and/or VERIFY from probe context, and _only_ by those components.
++ * (The only exception to this is kernel debugging infrastructure at user-level
++ * that doesn't depend on calling ASSERT.)
 + */
 +#undef ASSERT
++#undef VERIFY
++#define       VERIFY(EX)      ((void)((EX) || \
++                      dtrace_assfail(#EX, __FILE__, __LINE__)))
 +#ifdef DEBUG
 +#define       ASSERT(EX)      ((void)((EX) || \
 +                      dtrace_assfail(#EX, __FILE__, __LINE__)))
 +#else
 +#define       ASSERT(X)       ((void)0)
 +#endif
 +
 +#ifdef        __cplusplus
 +}
 +#endif
 +
 +#endif /* _SYS_DTRACE_IMPL_H */