spread boot time page scrubbing across all available CPU's
The page scrubbing is done in 128MB chunks in lockstep across all the
non-SMT CPU's. This allows for the boot CPU to hold the heap_lock whilst each
chunk is being scrubbed and then release the heap_lock when the CPU's are
finished scrubing their individual chunk. This allows for the heap_lock to
not be held continously and for pending softirqs are to be serviced
periodically across the CPU's.
The page scrub memory chunks are allocated to the CPU's in a NUMA aware
fashion to reduce socket interconnect overhead and improve performance.
Specifically in the first phase we scrub at the same time on all the
NUMA nodes that have CPUs - we also weed out the SMT threads so that
we only use cores (that gives a 50% boost). The second phase is for NUMA
nodes that have no CPUs - for that we use the closest NUMA node's CPUs
(non-SMT again) to do the job.
This patch reduces the boot page scrub time on a 128GB 64 core AMD Opteron
6386 machine from 49 seconds to 3 seconds.
On a IvyBridge-EX 8 socket box with 1.5TB it cuts it down from 15 minutes
to 63 seconds.
Signed-off-by: Malcolm Crossley <malcolm.crossley@citrix.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Reviewed-by: Tim Deegan <tim@xen.org> Reviewed-by: Andrew Cooper <andrew.cooper3@citrix.com>