ia64/xen-unstable

view old/xenolinux-2.4.16-sparse/include/asm-xeno/floppy.h @ 235:d7d0a23b2e07

bitkeeper revision 1.93 (3e5a4e6bkPheUp3x1uufN2MS3LAB7A)

Latest and Greatest version of XenoLinux based on the Linux-2.4.21-pre4
kernel.
author iap10@labyrinth.cl.cam.ac.uk
date Mon Feb 24 16:55:07 2003 +0000 (2003-02-24)
parents
children
line source
1 /*
2 * Architecture specific parts of the Floppy driver
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1995
9 */
10 #ifndef __ASM_I386_FLOPPY_H
11 #define __ASM_I386_FLOPPY_H
13 #include <linux/vmalloc.h>
16 /*
17 * The DMA channel used by the floppy controller cannot access data at
18 * addresses >= 16MB
19 *
20 * Went back to the 1MB limit, as some people had problems with the floppy
21 * driver otherwise. It doesn't matter much for performance anyway, as most
22 * floppy accesses go through the track buffer.
23 */
24 #define _CROSS_64KB(a,s,vdma) \
25 (!vdma && ((unsigned long)(a)/K_64 != ((unsigned long)(a) + (s) - 1) / K_64))
27 #define CROSS_64KB(a,s) _CROSS_64KB(a,s,use_virtual_dma & 1)
30 #define SW fd_routine[use_virtual_dma&1]
31 #define CSW fd_routine[can_use_virtual_dma & 1]
34 #define fd_inb(port) inb_p(port)
35 #define fd_outb(port,value) outb_p(port,value)
37 #define fd_request_dma() CSW._request_dma(FLOPPY_DMA,"floppy")
38 #define fd_free_dma() CSW._free_dma(FLOPPY_DMA)
39 #define fd_enable_irq() enable_irq(FLOPPY_IRQ)
40 #define fd_disable_irq() disable_irq(FLOPPY_IRQ)
41 #define fd_free_irq() free_irq(FLOPPY_IRQ, NULL)
42 #define fd_get_dma_residue() SW._get_dma_residue(FLOPPY_DMA)
43 #define fd_dma_mem_alloc(size) SW._dma_mem_alloc(size)
44 #define fd_dma_setup(addr, size, mode, io) SW._dma_setup(addr, size, mode, io)
46 #define FLOPPY_CAN_FALLBACK_ON_NODMA
48 static int virtual_dma_count;
49 static int virtual_dma_residue;
50 static char *virtual_dma_addr;
51 static int virtual_dma_mode;
52 static int doing_pdma;
54 static void floppy_hardint(int irq, void *dev_id, struct pt_regs * regs)
55 {
56 register unsigned char st;
58 #undef TRACE_FLPY_INT
59 #define NO_FLOPPY_ASSEMBLER
61 #ifdef TRACE_FLPY_INT
62 static int calls=0;
63 static int bytes=0;
64 static int dma_wait=0;
65 #endif
66 if(!doing_pdma) {
67 floppy_interrupt(irq, dev_id, regs);
68 return;
69 }
71 #ifdef TRACE_FLPY_INT
72 if(!calls)
73 bytes = virtual_dma_count;
74 #endif
76 #ifndef NO_FLOPPY_ASSEMBLER
77 __asm__ (
78 "testl %1,%1
79 je 3f
80 1: inb %w4,%b0
81 andb $160,%b0
82 cmpb $160,%b0
83 jne 2f
84 incw %w4
85 testl %3,%3
86 jne 4f
87 inb %w4,%b0
88 movb %0,(%2)
89 jmp 5f
90 4: movb (%2),%0
91 outb %b0,%w4
92 5: decw %w4
93 outb %0,$0x80
94 decl %1
95 incl %2
96 testl %1,%1
97 jne 1b
98 3: inb %w4,%b0
99 2: "
100 : "=a" ((char) st),
101 "=c" ((long) virtual_dma_count),
102 "=S" ((long) virtual_dma_addr)
103 : "b" ((long) virtual_dma_mode),
104 "d" ((short) virtual_dma_port+4),
105 "1" ((long) virtual_dma_count),
106 "2" ((long) virtual_dma_addr));
107 #else
108 {
109 register int lcount;
110 register char *lptr;
112 st = 1;
113 for(lcount=virtual_dma_count, lptr=virtual_dma_addr;
114 lcount; lcount--, lptr++) {
115 st=inb(virtual_dma_port+4) & 0xa0 ;
116 if(st != 0xa0)
117 break;
118 if(virtual_dma_mode)
119 outb_p(*lptr, virtual_dma_port+5);
120 else
121 *lptr = inb_p(virtual_dma_port+5);
122 }
123 virtual_dma_count = lcount;
124 virtual_dma_addr = lptr;
125 st = inb(virtual_dma_port+4);
126 }
127 #endif
129 #ifdef TRACE_FLPY_INT
130 calls++;
131 #endif
132 if(st == 0x20)
133 return;
134 if(!(st & 0x20)) {
135 virtual_dma_residue += virtual_dma_count;
136 virtual_dma_count=0;
137 #ifdef TRACE_FLPY_INT
138 printk("count=%x, residue=%x calls=%d bytes=%d dma_wait=%d\n",
139 virtual_dma_count, virtual_dma_residue, calls, bytes,
140 dma_wait);
141 calls = 0;
142 dma_wait=0;
143 #endif
144 doing_pdma = 0;
145 floppy_interrupt(irq, dev_id, regs);
146 return;
147 }
148 #ifdef TRACE_FLPY_INT
149 if(!virtual_dma_count)
150 dma_wait++;
151 #endif
152 }
154 static void fd_disable_dma(void)
155 {
156 if(! (can_use_virtual_dma & 1))
157 disable_dma(FLOPPY_DMA);
158 doing_pdma = 0;
159 virtual_dma_residue += virtual_dma_count;
160 virtual_dma_count=0;
161 }
163 static int vdma_request_dma(unsigned int dmanr, const char * device_id)
164 {
165 return 0;
166 }
168 static void vdma_nop(unsigned int dummy)
169 {
170 }
173 static int vdma_get_dma_residue(unsigned int dummy)
174 {
175 return virtual_dma_count + virtual_dma_residue;
176 }
179 static int fd_request_irq(void)
180 {
181 if(can_use_virtual_dma)
182 return request_irq(FLOPPY_IRQ, floppy_hardint,SA_INTERRUPT,
183 "floppy", NULL);
184 else
185 return request_irq(FLOPPY_IRQ, floppy_interrupt,
186 SA_INTERRUPT|SA_SAMPLE_RANDOM,
187 "floppy", NULL);
189 }
191 static unsigned long dma_mem_alloc(unsigned long size)
192 {
193 return __get_dma_pages(GFP_KERNEL,get_order(size));
194 }
197 static unsigned long vdma_mem_alloc(unsigned long size)
198 {
199 return (unsigned long) vmalloc(size);
201 }
203 #define nodma_mem_alloc(size) vdma_mem_alloc(size)
205 static void _fd_dma_mem_free(unsigned long addr, unsigned long size)
206 {
207 if((unsigned int) addr >= (unsigned int) high_memory)
208 return vfree((void *)addr);
209 else
210 free_pages(addr, get_order(size));
211 }
213 #define fd_dma_mem_free(addr, size) _fd_dma_mem_free(addr, size)
215 static void _fd_chose_dma_mode(char *addr, unsigned long size)
216 {
217 if(can_use_virtual_dma == 2) {
218 if((unsigned int) addr >= (unsigned int) high_memory ||
219 virt_to_bus(addr) >= 0x1000000 ||
220 _CROSS_64KB(addr, size, 0))
221 use_virtual_dma = 1;
222 else
223 use_virtual_dma = 0;
224 } else {
225 use_virtual_dma = can_use_virtual_dma & 1;
226 }
227 }
229 #define fd_chose_dma_mode(addr, size) _fd_chose_dma_mode(addr, size)
232 static int vdma_dma_setup(char *addr, unsigned long size, int mode, int io)
233 {
234 doing_pdma = 1;
235 virtual_dma_port = io;
236 virtual_dma_mode = (mode == DMA_MODE_WRITE);
237 virtual_dma_addr = addr;
238 virtual_dma_count = size;
239 virtual_dma_residue = 0;
240 return 0;
241 }
243 static int hard_dma_setup(char *addr, unsigned long size, int mode, int io)
244 {
245 #ifdef FLOPPY_SANITY_CHECK
246 if (CROSS_64KB(addr, size)) {
247 printk("DMA crossing 64-K boundary %p-%p\n", addr, addr+size);
248 return -1;
249 }
250 #endif
251 /* actual, physical DMA */
252 doing_pdma = 0;
253 clear_dma_ff(FLOPPY_DMA);
254 set_dma_mode(FLOPPY_DMA,mode);
255 set_dma_addr(FLOPPY_DMA,virt_to_bus(addr));
256 set_dma_count(FLOPPY_DMA,size);
257 enable_dma(FLOPPY_DMA);
258 return 0;
259 }
261 struct fd_routine_l {
262 int (*_request_dma)(unsigned int dmanr, const char * device_id);
263 void (*_free_dma)(unsigned int dmanr);
264 int (*_get_dma_residue)(unsigned int dummy);
265 unsigned long (*_dma_mem_alloc) (unsigned long size);
266 int (*_dma_setup)(char *addr, unsigned long size, int mode, int io);
267 } fd_routine[] = {
268 {
269 request_dma,
270 free_dma,
271 get_dma_residue,
272 dma_mem_alloc,
273 hard_dma_setup
274 },
275 {
276 vdma_request_dma,
277 vdma_nop,
278 vdma_get_dma_residue,
279 vdma_mem_alloc,
280 vdma_dma_setup
281 }
282 };
285 static int FDC1 = 0x3f0;
286 static int FDC2 = -1;
288 /*
289 * Floppy types are stored in the rtc's CMOS RAM and so rtc_lock
290 * is needed to prevent corrupted CMOS RAM in case "insmod floppy"
291 * coincides with another rtc CMOS user. Paul G.
292 */
293 #define FLOPPY0_TYPE ({ \
294 unsigned long flags; \
295 unsigned char val; \
296 spin_lock_irqsave(&rtc_lock, flags); \
297 val = (CMOS_READ(0x10) >> 4) & 15; \
298 spin_unlock_irqrestore(&rtc_lock, flags); \
299 val; \
300 })
302 #define FLOPPY1_TYPE ({ \
303 unsigned long flags; \
304 unsigned char val; \
305 spin_lock_irqsave(&rtc_lock, flags); \
306 val = CMOS_READ(0x10) & 15; \
307 spin_unlock_irqrestore(&rtc_lock, flags); \
308 val; \
309 })
311 #define N_FDC 2
312 #define N_DRIVE 8
314 #define FLOPPY_MOTOR_MASK 0xf0
316 #define AUTO_DMA
318 #define EXTRA_FLOPPY_PARAMS
320 #endif /* __ASM_I386_FLOPPY_H */