ia64/xen-unstable

view xen/arch/ia64/linux-xen/process-linux-xen.c @ 9770:ced37bea0647

[IA64] FPH enabling + cleanup

Move contents of switch_to macro from xensystem.h to context_switch function.
Initialize FPU on all processors. FPH is always enabled in Xen.
Speed up context-switch (a little bit!) by not enabling/disabling FPH.
Cleanup (unused function/variablesi/fields, debug printf...)
vmx_ia64_switch_to removed (was unused).

Signed-off-by: Tristan Gingold <tristan.gingold@bull.net>
author awilliam@xenbuild.aw
date Tue Apr 25 22:35:41 2006 -0600 (2006-04-25)
parents 2133fb78dba3
children d42e9a6f5378
line source
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
7 */
8 #ifdef XEN
9 #include <xen/types.h>
10 #include <xen/lib.h>
11 #include <xen/symbols.h>
12 #include <xen/smp.h>
13 #include <asm/uaccess.h>
14 #include <asm/processor.h>
15 #include <asm/ptrace.h>
16 #include <asm/unwind.h>
17 #else
18 #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
19 #include <linux/config.h>
21 #include <linux/cpu.h>
22 #include <linux/pm.h>
23 #include <linux/elf.h>
24 #include <linux/errno.h>
25 #include <linux/kallsyms.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/notifier.h>
30 #include <linux/personality.h>
31 #include <linux/sched.h>
32 #include <linux/slab.h>
33 #include <linux/smp_lock.h>
34 #include <linux/stddef.h>
35 #include <linux/thread_info.h>
36 #include <linux/unistd.h>
37 #include <linux/efi.h>
38 #include <linux/interrupt.h>
39 #include <linux/delay.h>
40 #include <linux/kprobes.h>
42 #include <asm/cpu.h>
43 #include <asm/delay.h>
44 #include <asm/elf.h>
45 #include <asm/ia32.h>
46 #include <asm/irq.h>
47 #include <asm/pgalloc.h>
48 #include <asm/processor.h>
49 #include <asm/sal.h>
50 #include <asm/tlbflush.h>
51 #include <asm/uaccess.h>
52 #include <asm/unwind.h>
53 #include <asm/user.h>
55 #include "entry.h"
57 #ifdef CONFIG_PERFMON
58 # include <asm/perfmon.h>
59 #endif
61 #include "sigframe.h"
63 void (*ia64_mark_idle)(int);
64 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
66 unsigned long boot_option_idle_override = 0;
67 EXPORT_SYMBOL(boot_option_idle_override);
68 #endif
70 void
71 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
72 {
73 unsigned long ip, sp, bsp;
74 char buf[128]; /* don't make it so big that it overflows the stack! */
76 printk("\nCall Trace:\n");
77 do {
78 unw_get_ip(info, &ip);
79 if (ip == 0)
80 break;
82 unw_get_sp(info, &sp);
83 unw_get_bsp(info, &bsp);
84 snprintf(buf, sizeof(buf),
85 " [<%016lx>] %%s\n"
86 " sp=%016lx bsp=%016lx\n",
87 ip, sp, bsp);
88 print_symbol(buf, ip);
89 } while (unw_unwind(info) >= 0);
90 }
92 void
93 show_stack (struct task_struct *task, unsigned long *sp)
94 {
95 if (!task)
96 unw_init_running(ia64_do_show_stack, NULL);
97 else {
98 struct unw_frame_info info;
100 unw_init_from_blocked_task(&info, task);
101 ia64_do_show_stack(&info, NULL);
102 }
103 }
105 void
106 dump_stack (void)
107 {
108 show_stack(NULL, NULL);
109 }
111 EXPORT_SYMBOL(dump_stack);
113 #ifdef XEN
114 void
115 show_registers(struct pt_regs *regs)
116 #else
117 void
118 show_regs (struct pt_regs *regs)
119 #endif
120 {
121 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
123 #ifndef XEN
124 print_modules();
125 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
126 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
127 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
128 #else
129 struct vcpu* vcpu = current;
130 if (vcpu != NULL) {
131 struct domain* d = vcpu->domain;
132 printk("d 0x%p domid %d\n", d, d->domain_id);
133 printk("vcpu 0x%p vcpu %d\n",
134 vcpu, vcpu->vcpu_id);
135 }
136 printk("\nCPU %d\n", smp_processor_id());
137 printk("psr : %016lx ifs : %016lx ip : [<%016lx>]\n",
138 regs->cr_ipsr, regs->cr_ifs, ip);
139 #endif
140 print_symbol("ip is at %s\n", ip);
141 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
142 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
143 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
144 regs->ar_rnat, regs->ar_bspstore, regs->pr);
145 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
146 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
147 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
148 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
149 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
150 regs->f6.u.bits[1], regs->f6.u.bits[0],
151 regs->f7.u.bits[1], regs->f7.u.bits[0]);
152 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
153 regs->f8.u.bits[1], regs->f8.u.bits[0],
154 regs->f9.u.bits[1], regs->f9.u.bits[0]);
155 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
156 regs->f10.u.bits[1], regs->f10.u.bits[0],
157 regs->f11.u.bits[1], regs->f11.u.bits[0]);
159 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
160 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
161 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
162 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
163 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
164 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
165 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
166 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
167 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
169 if (user_mode(regs)) {
170 /* print the stacked registers */
171 unsigned long val, *bsp, ndirty;
172 int i, sof, is_nat = 0;
174 sof = regs->cr_ifs & 0x7f; /* size of frame */
175 ndirty = (regs->loadrs >> 19);
176 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
177 for (i = 0; i < sof; ++i) {
178 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
179 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
180 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
181 }
182 } else
183 show_stack(NULL, NULL);
184 }
186 #ifndef XEN
187 void
188 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
189 {
190 if (fsys_mode(current, &scr->pt)) {
191 /* defer signal-handling etc. until we return to privilege-level 0. */
192 if (!ia64_psr(&scr->pt)->lp)
193 ia64_psr(&scr->pt)->lp = 1;
194 return;
195 }
197 #ifdef CONFIG_PERFMON
198 if (current->thread.pfm_needs_checking)
199 pfm_handle_work();
200 #endif
202 /* deal with pending signal delivery */
203 if (test_thread_flag(TIF_SIGPENDING))
204 ia64_do_signal(oldset, scr, in_syscall);
205 }
207 static int pal_halt = 1;
208 static int can_do_pal_halt = 1;
210 static int __init nohalt_setup(char * str)
211 {
212 pal_halt = can_do_pal_halt = 0;
213 return 1;
214 }
215 __setup("nohalt", nohalt_setup);
217 void
218 update_pal_halt_status(int status)
219 {
220 can_do_pal_halt = pal_halt && status;
221 }
223 /*
224 * We use this if we don't have any better idle routine..
225 */
226 void
227 default_idle (void)
228 {
229 local_irq_enable();
230 while (!need_resched())
231 if (can_do_pal_halt)
232 safe_halt();
233 else
234 cpu_relax();
235 }
237 #ifdef CONFIG_HOTPLUG_CPU
238 /* We don't actually take CPU down, just spin without interrupts. */
239 static inline void play_dead(void)
240 {
241 extern void ia64_cpu_local_tick (void);
242 unsigned int this_cpu = smp_processor_id();
244 /* Ack it */
245 __get_cpu_var(cpu_state) = CPU_DEAD;
247 max_xtp();
248 local_irq_disable();
249 idle_domain_exit();
250 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
251 /*
252 * The above is a point of no-return, the processor is
253 * expected to be in SAL loop now.
254 */
255 BUG();
256 }
257 #else
258 static inline void play_dead(void)
259 {
260 BUG();
261 }
262 #endif /* CONFIG_HOTPLUG_CPU */
264 void cpu_idle_wait(void)
265 {
266 unsigned int cpu, this_cpu = get_cpu();
267 cpumask_t map;
269 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
270 put_cpu();
272 cpus_clear(map);
273 for_each_online_cpu(cpu) {
274 per_cpu(cpu_idle_state, cpu) = 1;
275 cpu_set(cpu, map);
276 }
278 __get_cpu_var(cpu_idle_state) = 0;
280 wmb();
281 do {
282 ssleep(1);
283 for_each_online_cpu(cpu) {
284 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
285 cpu_clear(cpu, map);
286 }
287 cpus_and(map, map, cpu_online_map);
288 } while (!cpus_empty(map));
289 }
290 EXPORT_SYMBOL_GPL(cpu_idle_wait);
292 void __attribute__((noreturn))
293 cpu_idle (void)
294 {
295 void (*mark_idle)(int) = ia64_mark_idle;
297 /* endless idle loop with no priority at all */
298 while (1) {
299 #ifdef CONFIG_SMP
300 if (!need_resched())
301 min_xtp();
302 #endif
303 while (!need_resched()) {
304 void (*idle)(void);
306 if (__get_cpu_var(cpu_idle_state))
307 __get_cpu_var(cpu_idle_state) = 0;
309 rmb();
310 if (mark_idle)
311 (*mark_idle)(1);
313 idle = pm_idle;
314 if (!idle)
315 idle = default_idle;
316 (*idle)();
317 }
319 if (mark_idle)
320 (*mark_idle)(0);
322 #ifdef CONFIG_SMP
323 normal_xtp();
324 #endif
325 schedule();
326 check_pgt_cache();
327 if (cpu_is_offline(smp_processor_id()))
328 play_dead();
329 }
330 }
332 void
333 ia64_save_extra (struct task_struct *task)
334 {
335 #ifdef CONFIG_PERFMON
336 unsigned long info;
337 #endif
339 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
340 ia64_save_debug_regs(&task->thread.dbr[0]);
342 #ifdef CONFIG_PERFMON
343 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
344 pfm_save_regs(task);
346 info = __get_cpu_var(pfm_syst_info);
347 if (info & PFM_CPUINFO_SYST_WIDE)
348 pfm_syst_wide_update_task(task, info, 0);
349 #endif
351 #ifdef CONFIG_IA32_SUPPORT
352 if (IS_IA32_PROCESS(ia64_task_regs(task)))
353 ia32_save_state(task);
354 #endif
355 }
357 void
358 ia64_load_extra (struct task_struct *task)
359 {
360 #ifdef CONFIG_PERFMON
361 unsigned long info;
362 #endif
364 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
365 ia64_load_debug_regs(&task->thread.dbr[0]);
367 #ifdef CONFIG_PERFMON
368 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
369 pfm_load_regs(task);
371 info = __get_cpu_var(pfm_syst_info);
372 if (info & PFM_CPUINFO_SYST_WIDE)
373 pfm_syst_wide_update_task(task, info, 1);
374 #endif
376 #ifdef CONFIG_IA32_SUPPORT
377 if (IS_IA32_PROCESS(ia64_task_regs(task)))
378 ia32_load_state(task);
379 #endif
380 }
382 /*
383 * Copy the state of an ia-64 thread.
384 *
385 * We get here through the following call chain:
386 *
387 * from user-level: from kernel:
388 *
389 * <clone syscall> <some kernel call frames>
390 * sys_clone :
391 * do_fork do_fork
392 * copy_thread copy_thread
393 *
394 * This means that the stack layout is as follows:
395 *
396 * +---------------------+ (highest addr)
397 * | struct pt_regs |
398 * +---------------------+
399 * | struct switch_stack |
400 * +---------------------+
401 * | |
402 * | memory stack |
403 * | | <-- sp (lowest addr)
404 * +---------------------+
405 *
406 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
407 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
408 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
409 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
410 * the stack is page aligned and the page size is at least 4KB, this is always the case,
411 * so there is nothing to worry about.
412 */
413 int
414 copy_thread (int nr, unsigned long clone_flags,
415 unsigned long user_stack_base, unsigned long user_stack_size,
416 struct task_struct *p, struct pt_regs *regs)
417 {
418 extern char ia64_ret_from_clone, ia32_ret_from_clone;
419 struct switch_stack *child_stack, *stack;
420 unsigned long rbs, child_rbs, rbs_size;
421 struct pt_regs *child_ptregs;
422 int retval = 0;
424 #ifdef CONFIG_SMP
425 /*
426 * For SMP idle threads, fork_by_hand() calls do_fork with
427 * NULL regs.
428 */
429 if (!regs)
430 return 0;
431 #endif
433 stack = ((struct switch_stack *) regs) - 1;
435 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
436 child_stack = (struct switch_stack *) child_ptregs - 1;
438 /* copy parent's switch_stack & pt_regs to child: */
439 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
441 rbs = (unsigned long) current + IA64_RBS_OFFSET;
442 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
443 rbs_size = stack->ar_bspstore - rbs;
445 /* copy the parent's register backing store to the child: */
446 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
448 if (likely(user_mode(child_ptregs))) {
449 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
450 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
451 if (user_stack_base) {
452 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
453 child_ptregs->ar_bspstore = user_stack_base;
454 child_ptregs->ar_rnat = 0;
455 child_ptregs->loadrs = 0;
456 }
457 } else {
458 /*
459 * Note: we simply preserve the relative position of
460 * the stack pointer here. There is no need to
461 * allocate a scratch area here, since that will have
462 * been taken care of by the caller of sys_clone()
463 * already.
464 */
465 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
466 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
467 }
468 child_stack->ar_bspstore = child_rbs + rbs_size;
469 if (IS_IA32_PROCESS(regs))
470 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
471 else
472 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
474 /* copy parts of thread_struct: */
475 p->thread.ksp = (unsigned long) child_stack - 16;
477 /* stop some PSR bits from being inherited.
478 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
479 * therefore we must specify them explicitly here and not include them in
480 * IA64_PSR_BITS_TO_CLEAR.
481 */
482 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
483 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
485 /*
486 * NOTE: The calling convention considers all floating point
487 * registers in the high partition (fph) to be scratch. Since
488 * the only way to get to this point is through a system call,
489 * we know that the values in fph are all dead. Hence, there
490 * is no need to inherit the fph state from the parent to the
491 * child and all we have to do is to make sure that
492 * IA64_THREAD_FPH_VALID is cleared in the child.
493 *
494 * XXX We could push this optimization a bit further by
495 * clearing IA64_THREAD_FPH_VALID on ANY system call.
496 * However, it's not clear this is worth doing. Also, it
497 * would be a slight deviation from the normal Linux system
498 * call behavior where scratch registers are preserved across
499 * system calls (unless used by the system call itself).
500 */
501 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
502 | IA64_THREAD_PM_VALID)
503 # define THREAD_FLAGS_TO_SET 0
504 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
505 | THREAD_FLAGS_TO_SET);
506 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
507 #ifdef CONFIG_IA32_SUPPORT
508 /*
509 * If we're cloning an IA32 task then save the IA32 extra
510 * state from the current task to the new task
511 */
512 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
513 ia32_save_state(p);
514 if (clone_flags & CLONE_SETTLS)
515 retval = ia32_clone_tls(p, child_ptregs);
517 /* Copy partially mapped page list */
518 if (!retval)
519 retval = ia32_copy_partial_page_list(p, clone_flags);
520 }
521 #endif
523 #ifdef CONFIG_PERFMON
524 if (current->thread.pfm_context)
525 pfm_inherit(p, child_ptregs);
526 #endif
527 return retval;
528 }
530 static void
531 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
532 {
533 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
534 elf_greg_t *dst = arg;
535 struct pt_regs *pt;
536 char nat;
537 int i;
539 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
541 if (unw_unwind_to_user(info) < 0)
542 return;
544 unw_get_sp(info, &sp);
545 pt = (struct pt_regs *) (sp + 16);
547 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
549 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
550 return;
552 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
553 &ar_rnat);
555 /*
556 * coredump format:
557 * r0-r31
558 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
559 * predicate registers (p0-p63)
560 * b0-b7
561 * ip cfm user-mask
562 * ar.rsc ar.bsp ar.bspstore ar.rnat
563 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
564 */
566 /* r0 is zero */
567 for (i = 1, mask = (1UL << i); i < 32; ++i) {
568 unw_get_gr(info, i, &dst[i], &nat);
569 if (nat)
570 nat_bits |= mask;
571 mask <<= 1;
572 }
573 dst[32] = nat_bits;
574 unw_get_pr(info, &dst[33]);
576 for (i = 0; i < 8; ++i)
577 unw_get_br(info, i, &dst[34 + i]);
579 unw_get_rp(info, &ip);
580 dst[42] = ip + ia64_psr(pt)->ri;
581 dst[43] = cfm;
582 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
584 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
585 /*
586 * For bsp and bspstore, unw_get_ar() would return the kernel
587 * addresses, but we need the user-level addresses instead:
588 */
589 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
590 dst[47] = pt->ar_bspstore;
591 dst[48] = ar_rnat;
592 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
593 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
594 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
595 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
596 unw_get_ar(info, UNW_AR_LC, &dst[53]);
597 unw_get_ar(info, UNW_AR_EC, &dst[54]);
598 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
599 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
600 }
602 void
603 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
604 {
605 elf_fpreg_t *dst = arg;
606 int i;
608 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
610 if (unw_unwind_to_user(info) < 0)
611 return;
613 /* f0 is 0.0, f1 is 1.0 */
615 for (i = 2; i < 32; ++i)
616 unw_get_fr(info, i, dst + i);
618 ia64_flush_fph(task);
619 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
620 memcpy(dst + 32, task->thread.fph, 96*16);
621 }
623 void
624 do_copy_regs (struct unw_frame_info *info, void *arg)
625 {
626 do_copy_task_regs(current, info, arg);
627 }
629 void
630 do_dump_fpu (struct unw_frame_info *info, void *arg)
631 {
632 do_dump_task_fpu(current, info, arg);
633 }
635 int
636 dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
637 {
638 struct unw_frame_info tcore_info;
640 if (current == task) {
641 unw_init_running(do_copy_regs, regs);
642 } else {
643 memset(&tcore_info, 0, sizeof(tcore_info));
644 unw_init_from_blocked_task(&tcore_info, task);
645 do_copy_task_regs(task, &tcore_info, regs);
646 }
647 return 1;
648 }
650 void
651 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
652 {
653 unw_init_running(do_copy_regs, dst);
654 }
656 int
657 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
658 {
659 struct unw_frame_info tcore_info;
661 if (current == task) {
662 unw_init_running(do_dump_fpu, dst);
663 } else {
664 memset(&tcore_info, 0, sizeof(tcore_info));
665 unw_init_from_blocked_task(&tcore_info, task);
666 do_dump_task_fpu(task, &tcore_info, dst);
667 }
668 return 1;
669 }
671 int
672 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
673 {
674 unw_init_running(do_dump_fpu, dst);
675 return 1; /* f0-f31 are always valid so we always return 1 */
676 }
678 long
679 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
680 struct pt_regs *regs)
681 {
682 char *fname;
683 int error;
685 fname = getname(filename);
686 error = PTR_ERR(fname);
687 if (IS_ERR(fname))
688 goto out;
689 error = do_execve(fname, argv, envp, regs);
690 putname(fname);
691 out:
692 return error;
693 }
695 pid_t
696 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
697 {
698 extern void start_kernel_thread (void);
699 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
700 struct {
701 struct switch_stack sw;
702 struct pt_regs pt;
703 } regs;
705 memset(&regs, 0, sizeof(regs));
706 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
707 regs.pt.r1 = helper_fptr[1]; /* set GP */
708 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
709 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
710 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
711 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
712 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
713 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
714 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
715 regs.sw.pr = (1 << PRED_KERNEL_STACK);
716 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
717 }
718 EXPORT_SYMBOL(kernel_thread);
720 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
721 int
722 kernel_thread_helper (int (*fn)(void *), void *arg)
723 {
724 #ifdef CONFIG_IA32_SUPPORT
725 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
726 /* A kernel thread is always a 64-bit process. */
727 current->thread.map_base = DEFAULT_MAP_BASE;
728 current->thread.task_size = DEFAULT_TASK_SIZE;
729 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
730 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
731 }
732 #endif
733 return (*fn)(arg);
734 }
736 /*
737 * Flush thread state. This is called when a thread does an execve().
738 */
739 void
740 flush_thread (void)
741 {
742 /*
743 * Remove function-return probe instances associated with this task
744 * and put them back on the free list. Do not insert an exit probe for
745 * this function, it will be disabled by kprobe_flush_task if you do.
746 */
747 kprobe_flush_task(current);
749 /* drop floating-point and debug-register state if it exists: */
750 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
751 ia64_drop_fpu(current);
752 if (IS_IA32_PROCESS(ia64_task_regs(current)))
753 ia32_drop_partial_page_list(current);
754 }
756 /*
757 * Clean up state associated with current thread. This is called when
758 * the thread calls exit().
759 */
760 void
761 exit_thread (void)
762 {
764 /*
765 * Remove function-return probe instances associated with this task
766 * and put them back on the free list. Do not insert an exit probe for
767 * this function, it will be disabled by kprobe_flush_task if you do.
768 */
769 kprobe_flush_task(current);
771 ia64_drop_fpu(current);
772 #ifdef CONFIG_PERFMON
773 /* if needed, stop monitoring and flush state to perfmon context */
774 if (current->thread.pfm_context)
775 pfm_exit_thread(current);
777 /* free debug register resources */
778 if (current->thread.flags & IA64_THREAD_DBG_VALID)
779 pfm_release_debug_registers(current);
780 #endif
781 if (IS_IA32_PROCESS(ia64_task_regs(current)))
782 ia32_drop_partial_page_list(current);
783 }
785 unsigned long
786 get_wchan (struct task_struct *p)
787 {
788 struct unw_frame_info info;
789 unsigned long ip;
790 int count = 0;
792 /*
793 * Note: p may not be a blocked task (it could be current or
794 * another process running on some other CPU. Rather than
795 * trying to determine if p is really blocked, we just assume
796 * it's blocked and rely on the unwind routines to fail
797 * gracefully if the process wasn't really blocked after all.
798 * --davidm 99/12/15
799 */
800 unw_init_from_blocked_task(&info, p);
801 do {
802 if (unw_unwind(&info) < 0)
803 return 0;
804 unw_get_ip(&info, &ip);
805 if (!in_sched_functions(ip))
806 return ip;
807 } while (count++ < 16);
808 return 0;
809 }
811 void
812 cpu_halt (void)
813 {
814 pal_power_mgmt_info_u_t power_info[8];
815 unsigned long min_power;
816 int i, min_power_state;
818 if (ia64_pal_halt_info(power_info) != 0)
819 return;
821 min_power_state = 0;
822 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
823 for (i = 1; i < 8; ++i)
824 if (power_info[i].pal_power_mgmt_info_s.im
825 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
826 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
827 min_power_state = i;
828 }
830 while (1)
831 ia64_pal_halt(min_power_state);
832 }
834 void
835 machine_restart (char *restart_cmd)
836 {
837 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
838 }
840 void
841 machine_halt (void)
842 {
843 cpu_halt();
844 }
846 void
847 machine_power_off (void)
848 {
849 if (pm_power_off)
850 pm_power_off();
851 machine_halt();
852 }
853 #endif // !XEN