ia64/xen-unstable

view tools/blktap/drivers/bswap.h @ 15783:c93e2a822d6f

[xen, xencomm] xencomm multiple page support
Current implementation doesn't allow struct xencomm_desc::address
array to be more than single page. On IA64 it causes 64GB+ domain
creation failure. This patch generalizes xencomm to allow multipage

Signed-off-by: Isaku Yamahata <yamahata@valinux.co.jp>
author kfraser@localhost.localdomain
date Tue Aug 28 15:32:27 2007 +0100 (2007-08-28)
parents 2937703f0ed0
children b1da8762f853
line source
1 #ifndef BSWAP_H
2 #define BSWAP_H
4 //#include "config-host.h"
6 #include <inttypes.h>
8 #ifdef HAVE_BYTESWAP_H
9 #include <byteswap.h>
10 #else
12 #define bswap_16(x) \
13 ({ \
14 uint16_t __x = (x); \
15 ((uint16_t)( \
16 (((uint16_t)(__x) & (uint16_t)0x00ffU) << 8) | \
17 (((uint16_t)(__x) & (uint16_t)0xff00U) >> 8) )); \
18 })
20 #define bswap_32(x) \
21 ({ \
22 uint32_t __x = (x); \
23 ((uint32_t)( \
24 (((uint32_t)(__x) & (uint32_t)0x000000ffUL) << 24) | \
25 (((uint32_t)(__x) & (uint32_t)0x0000ff00UL) << 8) | \
26 (((uint32_t)(__x) & (uint32_t)0x00ff0000UL) >> 8) | \
27 (((uint32_t)(__x) & (uint32_t)0xff000000UL) >> 24) )); \
28 })
30 #define bswap_64(x) \
31 ({ \
32 uint64_t __x = (x); \
33 ((uint64_t)( \
34 (uint64_t)(((uint64_t)(__x) & (uint64_t)0x00000000000000ffULL) << 56) | \
35 (uint64_t)(((uint64_t)(__x) & (uint64_t)0x000000000000ff00ULL) << 40) | \
36 (uint64_t)(((uint64_t)(__x) & (uint64_t)0x0000000000ff0000ULL) << 24) | \
37 (uint64_t)(((uint64_t)(__x) & (uint64_t)0x00000000ff000000ULL) << 8) | \
38 (uint64_t)(((uint64_t)(__x) & (uint64_t)0x000000ff00000000ULL) >> 8) | \
39 (uint64_t)(((uint64_t)(__x) & (uint64_t)0x0000ff0000000000ULL) >> 24) | \
40 (uint64_t)(((uint64_t)(__x) & (uint64_t)0x00ff000000000000ULL) >> 40) | \
41 (uint64_t)(((uint64_t)(__x) & (uint64_t)0xff00000000000000ULL) >> 56) )); \
42 })
44 #endif /* !HAVE_BYTESWAP_H */
46 static inline uint16_t bswap16(uint16_t x)
47 {
48 return bswap_16(x);
49 }
51 static inline uint32_t bswap32(uint32_t x)
52 {
53 return bswap_32(x);
54 }
56 static inline uint64_t bswap64(uint64_t x)
57 {
58 return bswap_64(x);
59 }
61 static inline void bswap16s(uint16_t *s)
62 {
63 *s = bswap16(*s);
64 }
66 static inline void bswap32s(uint32_t *s)
67 {
68 *s = bswap32(*s);
69 }
71 static inline void bswap64s(uint64_t *s)
72 {
73 *s = bswap64(*s);
74 }
76 #if defined(WORDS_BIGENDIAN)
77 #define be_bswap(v, size) (v)
78 #define le_bswap(v, size) bswap ## size(v)
79 #define be_bswaps(v, size)
80 #define le_bswaps(p, size) *p = bswap ## size(*p);
81 #else
82 #define le_bswap(v, size) (v)
83 #define be_bswap(v, size) bswap ## size(v)
84 #define le_bswaps(v, size)
85 #define be_bswaps(p, size) *p = bswap ## size(*p);
86 #endif
88 #define CPU_CONVERT(endian, size, type)\
89 static inline type endian ## size ## _to_cpu(type v)\
90 {\
91 return endian ## _bswap(v, size);\
92 }\
93 \
94 static inline type cpu_to_ ## endian ## size(type v)\
95 {\
96 return endian ## _bswap(v, size);\
97 }\
98 \
99 static inline void endian ## size ## _to_cpus(type *p)\
100 {\
101 endian ## _bswaps(p, size)\
102 }\
103 \
104 static inline void cpu_to_ ## endian ## size ## s(type *p)\
105 {\
106 endian ## _bswaps(p, size)\
107 }\
108 \
109 static inline type endian ## size ## _to_cpup(const type *p)\
110 {\
111 return endian ## size ## _to_cpu(*p);\
112 }\
113 \
114 static inline void cpu_to_ ## endian ## size ## w(type *p, type v)\
115 {\
116 *p = cpu_to_ ## endian ## size(v);\
117 }
119 CPU_CONVERT(be, 16, uint16_t)
120 CPU_CONVERT(be, 32, uint32_t)
121 CPU_CONVERT(be, 64, uint64_t)
123 CPU_CONVERT(le, 16, uint16_t)
124 CPU_CONVERT(le, 32, uint32_t)
125 CPU_CONVERT(le, 64, uint64_t)
127 /* unaligned versions (optimized for frequent unaligned accesses)*/
129 #if defined(__i386__) || defined(__powerpc__)
131 #define cpu_to_le16wu(p, v) cpu_to_le16w(p, v)
132 #define cpu_to_le32wu(p, v) cpu_to_le32w(p, v)
133 #define le16_to_cpupu(p) le16_to_cpup(p)
134 #define le32_to_cpupu(p) le32_to_cpup(p)
136 #define cpu_to_be16wu(p, v) cpu_to_be16w(p, v)
137 #define cpu_to_be32wu(p, v) cpu_to_be32w(p, v)
139 #else
141 static inline void cpu_to_le16wu(uint16_t *p, uint16_t v)
142 {
143 uint8_t *p1 = (uint8_t *)p;
145 p1[0] = v;
146 p1[1] = v >> 8;
147 }
149 static inline void cpu_to_le32wu(uint32_t *p, uint32_t v)
150 {
151 uint8_t *p1 = (uint8_t *)p;
153 p1[0] = v;
154 p1[1] = v >> 8;
155 p1[2] = v >> 16;
156 p1[3] = v >> 24;
157 }
159 static inline uint16_t le16_to_cpupu(const uint16_t *p)
160 {
161 const uint8_t *p1 = (const uint8_t *)p;
162 return p1[0] | (p1[1] << 8);
163 }
165 static inline uint32_t le32_to_cpupu(const uint32_t *p)
166 {
167 const uint8_t *p1 = (const uint8_t *)p;
168 return p1[0] | (p1[1] << 8) | (p1[2] << 16) | (p1[3] << 24);
169 }
171 static inline void cpu_to_be16wu(uint16_t *p, uint16_t v)
172 {
173 uint8_t *p1 = (uint8_t *)p;
175 p1[0] = v >> 8;
176 p1[1] = v;
177 }
179 static inline void cpu_to_be32wu(uint32_t *p, uint32_t v)
180 {
181 uint8_t *p1 = (uint8_t *)p;
183 p1[0] = v >> 24;
184 p1[1] = v >> 16;
185 p1[2] = v >> 8;
186 p1[3] = v;
187 }
189 #endif
191 #ifdef WORDS_BIGENDIAN
192 #define cpu_to_32wu cpu_to_be32wu
193 #else
194 #define cpu_to_32wu cpu_to_le32wu
195 #endif
197 #undef le_bswap
198 #undef be_bswap
199 #undef le_bswaps
200 #undef be_bswaps
202 #endif /* BSWAP_H */