ia64/xen-unstable

view linux-2.6-xen-sparse/include/asm-i386/mach-xen/asm/pgtable.h @ 14019:4b9680c58d73

linux/x86: Clean up page table handling headers

- remove dead code
- fix line breaking and space vs. tab usage
- remove redundant parentheses

Signed-off-by: Jan Beulich <jbeulich@novell.com>
author kfraser@localhost.localdomain
date Tue Feb 20 09:41:32 2007 +0000 (2007-02-20)
parents d2dff286994d
children 14c25e48a557
line source
1 #ifndef _I386_PGTABLE_H
2 #define _I386_PGTABLE_H
4 #include <asm/hypervisor.h>
6 /*
7 * The Linux memory management assumes a three-level page table setup. On
8 * the i386, we use that, but "fold" the mid level into the top-level page
9 * table, so that we physically have the same two-level page table as the
10 * i386 mmu expects.
11 *
12 * This file contains the functions and defines necessary to modify and use
13 * the i386 page table tree.
14 */
15 #ifndef __ASSEMBLY__
16 #include <asm/processor.h>
17 #include <asm/fixmap.h>
18 #include <linux/threads.h>
20 #ifndef _I386_BITOPS_H
21 #include <asm/bitops.h>
22 #endif
24 #include <linux/slab.h>
25 #include <linux/list.h>
26 #include <linux/spinlock.h>
28 /* Is this pagetable pinned? */
29 #define PG_pinned PG_arch_1
31 struct mm_struct;
32 struct vm_area_struct;
34 /*
35 * ZERO_PAGE is a global shared page that is always zero: used
36 * for zero-mapped memory areas etc..
37 */
38 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
39 extern unsigned long empty_zero_page[1024];
40 extern pgd_t *swapper_pg_dir;
41 extern kmem_cache_t *pgd_cache;
42 extern kmem_cache_t *pmd_cache;
43 extern spinlock_t pgd_lock;
44 extern struct page *pgd_list;
46 void pmd_ctor(void *, kmem_cache_t *, unsigned long);
47 void pgd_ctor(void *, kmem_cache_t *, unsigned long);
48 void pgd_dtor(void *, kmem_cache_t *, unsigned long);
49 void pgtable_cache_init(void);
50 void paging_init(void);
52 /*
53 * The Linux x86 paging architecture is 'compile-time dual-mode', it
54 * implements both the traditional 2-level x86 page tables and the
55 * newer 3-level PAE-mode page tables.
56 */
57 #ifdef CONFIG_X86_PAE
58 # include <asm/pgtable-3level-defs.h>
59 # define PMD_SIZE (1UL << PMD_SHIFT)
60 # define PMD_MASK (~(PMD_SIZE-1))
61 #else
62 # include <asm/pgtable-2level-defs.h>
63 #endif
65 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
66 #define PGDIR_MASK (~(PGDIR_SIZE-1))
68 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
69 #define FIRST_USER_ADDRESS 0
71 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
72 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
74 #define TWOLEVEL_PGDIR_SHIFT 22
75 #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
76 #define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
78 /* Just any arbitrary offset to the start of the vmalloc VM area: the
79 * current 8MB value just means that there will be a 8MB "hole" after the
80 * physical memory until the kernel virtual memory starts. That means that
81 * any out-of-bounds memory accesses will hopefully be caught.
82 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
83 * area for the same reason. ;)
84 */
85 #define VMALLOC_OFFSET (8*1024*1024)
86 #define VMALLOC_START (((unsigned long) high_memory + vmalloc_earlyreserve + \
87 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
88 #ifdef CONFIG_HIGHMEM
89 # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
90 #else
91 # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
92 #endif
94 /*
95 * _PAGE_PSE set in the page directory entry just means that
96 * the page directory entry points directly to a 4MB-aligned block of
97 * memory.
98 */
99 #define _PAGE_BIT_PRESENT 0
100 #define _PAGE_BIT_RW 1
101 #define _PAGE_BIT_USER 2
102 #define _PAGE_BIT_PWT 3
103 #define _PAGE_BIT_PCD 4
104 #define _PAGE_BIT_ACCESSED 5
105 #define _PAGE_BIT_DIRTY 6
106 #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page, Pentium+, if present.. */
107 #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
108 #define _PAGE_BIT_UNUSED1 9 /* available for programmer */
109 #define _PAGE_BIT_UNUSED2 10
110 #define _PAGE_BIT_UNUSED3 11
111 #define _PAGE_BIT_NX 63
113 #define _PAGE_PRESENT 0x001
114 #define _PAGE_RW 0x002
115 #define _PAGE_USER 0x004
116 #define _PAGE_PWT 0x008
117 #define _PAGE_PCD 0x010
118 #define _PAGE_ACCESSED 0x020
119 #define _PAGE_DIRTY 0x040
120 #define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */
121 #define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */
122 #define _PAGE_UNUSED1 0x200 /* available for programmer */
123 #define _PAGE_UNUSED2 0x400
124 #define _PAGE_UNUSED3 0x800
126 /* If _PAGE_PRESENT is clear, we use these: */
127 #define _PAGE_FILE 0x040 /* nonlinear file mapping, saved PTE; unset:swap */
128 #define _PAGE_PROTNONE 0x080 /* if the user mapped it with PROT_NONE;
129 pte_present gives true */
130 #ifdef CONFIG_X86_PAE
131 #define _PAGE_NX (1ULL<<_PAGE_BIT_NX)
132 #else
133 #define _PAGE_NX 0
134 #endif
136 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
137 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
138 #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
140 #define PAGE_NONE \
141 __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
142 #define PAGE_SHARED \
143 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
145 #define PAGE_SHARED_EXEC \
146 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
147 #define PAGE_COPY_NOEXEC \
148 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
149 #define PAGE_COPY_EXEC \
150 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
151 #define PAGE_COPY \
152 PAGE_COPY_NOEXEC
153 #define PAGE_READONLY \
154 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
155 #define PAGE_READONLY_EXEC \
156 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
158 #define _PAGE_KERNEL \
159 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
160 #define _PAGE_KERNEL_EXEC \
161 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
163 extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC;
164 #define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)
165 #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD)
166 #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
167 #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
169 #define PAGE_KERNEL __pgprot(__PAGE_KERNEL)
170 #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)
171 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
172 #define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)
173 #define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)
174 #define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)
176 /*
177 * The i386 can't do page protection for execute, and considers that
178 * the same are read. Also, write permissions imply read permissions.
179 * This is the closest we can get..
180 */
181 #define __P000 PAGE_NONE
182 #define __P001 PAGE_READONLY
183 #define __P010 PAGE_COPY
184 #define __P011 PAGE_COPY
185 #define __P100 PAGE_READONLY_EXEC
186 #define __P101 PAGE_READONLY_EXEC
187 #define __P110 PAGE_COPY_EXEC
188 #define __P111 PAGE_COPY_EXEC
190 #define __S000 PAGE_NONE
191 #define __S001 PAGE_READONLY
192 #define __S010 PAGE_SHARED
193 #define __S011 PAGE_SHARED
194 #define __S100 PAGE_READONLY_EXEC
195 #define __S101 PAGE_READONLY_EXEC
196 #define __S110 PAGE_SHARED_EXEC
197 #define __S111 PAGE_SHARED_EXEC
199 /*
200 * Define this if things work differently on an i386 and an i486:
201 * it will (on an i486) warn about kernel memory accesses that are
202 * done without a 'access_ok(VERIFY_WRITE,..)'
203 */
204 #undef TEST_ACCESS_OK
206 /* The boot page tables (all created as a single array) */
207 extern unsigned long pg0[];
209 #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
211 /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
212 #define pmd_none(x) (!(unsigned long)pmd_val(x))
213 /* pmd_present doesn't just test the _PAGE_PRESENT bit since wr.p.t.
214 can temporarily clear it. */
215 #define pmd_present(x) (pmd_val(x))
216 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER & ~_PAGE_PRESENT)) != (_KERNPG_TABLE & ~_PAGE_PRESENT))
219 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
221 /*
222 * The following only work if pte_present() is true.
223 * Undefined behaviour if not..
224 */
225 static inline int pte_user(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
226 static inline int pte_read(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
227 static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; }
228 static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; }
229 static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; }
230 static inline int pte_huge(pte_t pte) { return (pte).pte_low & _PAGE_PSE; }
232 /*
233 * The following only works if pte_present() is not true.
234 */
235 static inline int pte_file(pte_t pte) { return (pte).pte_low & _PAGE_FILE; }
237 static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
238 static inline pte_t pte_exprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
239 static inline pte_t pte_mkclean(pte_t pte) { (pte).pte_low &= ~_PAGE_DIRTY; return pte; }
240 static inline pte_t pte_mkold(pte_t pte) { (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }
241 static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; }
242 static inline pte_t pte_mkread(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
243 static inline pte_t pte_mkexec(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
244 static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte_low |= _PAGE_DIRTY; return pte; }
245 static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte_low |= _PAGE_ACCESSED; return pte; }
246 static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte_low |= _PAGE_RW; return pte; }
247 static inline pte_t pte_mkhuge(pte_t pte) { (pte).pte_low |= _PAGE_PSE; return pte; }
249 #ifdef CONFIG_X86_PAE
250 # include <asm/pgtable-3level.h>
251 #else
252 # include <asm/pgtable-2level.h>
253 #endif
255 static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
256 {
257 if (!pte_dirty(*ptep))
258 return 0;
259 return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte_low);
260 }
262 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
263 {
264 if (!pte_young(*ptep))
265 return 0;
266 return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte_low);
267 }
269 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full)
270 {
271 pte_t pte;
272 if (full) {
273 pte = *ptep;
274 pte_clear(mm, addr, ptep);
275 } else {
276 pte = ptep_get_and_clear(mm, addr, ptep);
277 }
278 return pte;
279 }
281 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
282 {
283 if (pte_write(*ptep))
284 clear_bit(_PAGE_BIT_RW, &ptep->pte_low);
285 }
287 /*
288 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
289 *
290 * dst - pointer to pgd range anwhere on a pgd page
291 * src - ""
292 * count - the number of pgds to copy.
293 *
294 * dst and src can be on the same page, but the range must not overlap,
295 * and must not cross a page boundary.
296 */
297 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
298 {
299 memcpy(dst, src, count * sizeof(pgd_t));
300 }
302 /*
303 * Macro to mark a page protection value as "uncacheable". On processors which do not support
304 * it, this is a no-op.
305 */
306 #define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \
307 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
309 /*
310 * Conversion functions: convert a page and protection to a page entry,
311 * and a page entry and page directory to the page they refer to.
312 */
314 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
316 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
317 {
318 /*
319 * Since this might change the present bit (which controls whether
320 * a pte_t object has undergone p2m translation), we must use
321 * pte_val() on the input pte and __pte() for the return value.
322 */
323 paddr_t pteval = pte_val(pte);
325 pteval &= _PAGE_CHG_MASK;
326 pteval |= pgprot_val(newprot);
327 #ifdef CONFIG_X86_PAE
328 pteval &= __supported_pte_mask;
329 #endif
330 return __pte(pteval);
331 }
333 #define pmd_large(pmd) \
334 ((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT))
336 /*
337 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
338 *
339 * this macro returns the index of the entry in the pgd page which would
340 * control the given virtual address
341 */
342 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
343 #define pgd_index_k(addr) pgd_index(addr)
345 /*
346 * pgd_offset() returns a (pgd_t *)
347 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
348 */
349 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
351 /*
352 * a shortcut which implies the use of the kernel's pgd, instead
353 * of a process's
354 */
355 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
357 /*
358 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
359 *
360 * this macro returns the index of the entry in the pmd page which would
361 * control the given virtual address
362 */
363 #define pmd_index(address) \
364 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
366 /*
367 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
368 *
369 * this macro returns the index of the entry in the pte page which would
370 * control the given virtual address
371 */
372 #define pte_index(address) \
373 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
374 #define pte_offset_kernel(dir, address) \
375 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address))
377 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
379 #define pmd_page_kernel(pmd) \
380 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
382 /*
383 * Helper function that returns the kernel pagetable entry controlling
384 * the virtual address 'address'. NULL means no pagetable entry present.
385 * NOTE: the return type is pte_t but if the pmd is PSE then we return it
386 * as a pte too.
387 */
388 extern pte_t *lookup_address(unsigned long address);
390 /*
391 * Make a given kernel text page executable/non-executable.
392 * Returns the previous executability setting of that page (which
393 * is used to restore the previous state). Used by the SMP bootup code.
394 * NOTE: this is an __init function for security reasons.
395 */
396 #ifdef CONFIG_X86_PAE
397 extern int set_kernel_exec(unsigned long vaddr, int enable);
398 #else
399 static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}
400 #endif
402 extern void noexec_setup(const char *str);
404 #if defined(CONFIG_HIGHPTE)
405 #define pte_offset_map(dir, address) \
406 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + \
407 pte_index(address))
408 #define pte_offset_map_nested(dir, address) \
409 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + \
410 pte_index(address))
411 #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
412 #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
413 #else
414 #define pte_offset_map(dir, address) \
415 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
416 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
417 #define pte_unmap(pte) do { } while (0)
418 #define pte_unmap_nested(pte) do { } while (0)
419 #endif
421 /*
422 * The i386 doesn't have any external MMU info: the kernel page
423 * tables contain all the necessary information.
424 *
425 * Also, we only update the dirty/accessed state if we set
426 * the dirty bit by hand in the kernel, since the hardware
427 * will do the accessed bit for us, and we don't want to
428 * race with other CPU's that might be updating the dirty
429 * bit at the same time.
430 */
431 #define update_mmu_cache(vma,address,pte) do { } while (0)
432 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
433 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
434 do { \
435 if (__dirty) { \
436 if ( likely((__vma)->vm_mm == current->mm) ) { \
437 BUG_ON(HYPERVISOR_update_va_mapping(__address, \
438 __entry, \
439 (unsigned long)(__vma)->vm_mm->cpu_vm_mask.bits| \
440 UVMF_INVLPG|UVMF_MULTI)); \
441 } else { \
442 xen_l1_entry_update(__ptep, __entry); \
443 flush_tlb_page(__vma, __address); \
444 } \
445 } \
446 } while (0)
448 #define __HAVE_ARCH_PTEP_ESTABLISH
449 #define ptep_establish(__vma, __address, __ptep, __entry) \
450 do { \
451 ptep_set_access_flags(__vma, __address, __ptep, __entry, 1); \
452 } while (0)
454 #include <xen/features.h>
455 void make_lowmem_page_readonly(void *va, unsigned int feature);
456 void make_lowmem_page_writable(void *va, unsigned int feature);
457 void make_page_readonly(void *va, unsigned int feature);
458 void make_page_writable(void *va, unsigned int feature);
459 void make_pages_readonly(void *va, unsigned int nr, unsigned int feature);
460 void make_pages_writable(void *va, unsigned int nr, unsigned int feature);
462 #define virt_to_ptep(__va) \
463 ({ \
464 pgd_t *__pgd = pgd_offset_k((unsigned long)(__va)); \
465 pud_t *__pud = pud_offset(__pgd, (unsigned long)(__va)); \
466 pmd_t *__pmd = pmd_offset(__pud, (unsigned long)(__va)); \
467 pte_offset_kernel(__pmd, (unsigned long)(__va)); \
468 })
470 #define arbitrary_virt_to_machine(__va) \
471 ({ \
472 maddr_t m = (maddr_t)pte_mfn(*virt_to_ptep(__va)) << PAGE_SHIFT;\
473 m | ((unsigned long)(__va) & (PAGE_SIZE-1)); \
474 })
476 #endif /* !__ASSEMBLY__ */
478 #ifdef CONFIG_FLATMEM
479 #define kern_addr_valid(addr) (1)
480 #endif /* CONFIG_FLATMEM */
482 int direct_remap_pfn_range(struct vm_area_struct *vma,
483 unsigned long address,
484 unsigned long mfn,
485 unsigned long size,
486 pgprot_t prot,
487 domid_t domid);
488 int direct_kernel_remap_pfn_range(unsigned long address,
489 unsigned long mfn,
490 unsigned long size,
491 pgprot_t prot,
492 domid_t domid);
493 int create_lookup_pte_addr(struct mm_struct *mm,
494 unsigned long address,
495 uint64_t *ptep);
496 int touch_pte_range(struct mm_struct *mm,
497 unsigned long address,
498 unsigned long size);
500 #define io_remap_pfn_range(vma,from,pfn,size,prot) \
501 direct_remap_pfn_range(vma,from,pfn,size,prot,DOMID_IO)
503 #define MK_IOSPACE_PFN(space, pfn) (pfn)
504 #define GET_IOSPACE(pfn) 0
505 #define GET_PFN(pfn) (pfn)
507 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
508 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
509 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
510 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
511 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
512 #define __HAVE_ARCH_PTE_SAME
513 #include <asm-generic/pgtable.h>
515 #endif /* _I386_PGTABLE_H */