ia64/xen-unstable

view xen/arch/ia64/linux-xen/process-linux-xen.c @ 9401:138c76d5e493

[IA64] dump_stack() for debug.

Signed-off-by: Isaku Yamahata <yamahata@valinux.co.jp>
author awilliam@xenbuild.aw
date Fri Mar 24 10:38:41 2006 -0700 (2006-03-24)
parents 84cf56328ce0
children 2133fb78dba3
line source
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
7 */
8 #ifdef XEN
9 #include <xen/types.h>
10 #include <xen/lib.h>
11 #include <xen/symbols.h>
12 #include <xen/smp.h>
13 #include <asm/uaccess.h>
14 #include <asm/processor.h>
15 #include <asm/ptrace.h>
16 #include <asm/unwind.h>
17 #else
18 #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
19 #include <linux/config.h>
21 #include <linux/cpu.h>
22 #include <linux/pm.h>
23 #include <linux/elf.h>
24 #include <linux/errno.h>
25 #include <linux/kallsyms.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/notifier.h>
30 #include <linux/personality.h>
31 #include <linux/sched.h>
32 #include <linux/slab.h>
33 #include <linux/smp_lock.h>
34 #include <linux/stddef.h>
35 #include <linux/thread_info.h>
36 #include <linux/unistd.h>
37 #include <linux/efi.h>
38 #include <linux/interrupt.h>
39 #include <linux/delay.h>
40 #include <linux/kprobes.h>
42 #include <asm/cpu.h>
43 #include <asm/delay.h>
44 #include <asm/elf.h>
45 #include <asm/ia32.h>
46 #include <asm/irq.h>
47 #include <asm/pgalloc.h>
48 #include <asm/processor.h>
49 #include <asm/sal.h>
50 #include <asm/tlbflush.h>
51 #include <asm/uaccess.h>
52 #include <asm/unwind.h>
53 #include <asm/user.h>
55 #include "entry.h"
57 #ifdef CONFIG_PERFMON
58 # include <asm/perfmon.h>
59 #endif
61 #include "sigframe.h"
63 void (*ia64_mark_idle)(int);
64 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
66 unsigned long boot_option_idle_override = 0;
67 EXPORT_SYMBOL(boot_option_idle_override);
68 #endif
70 void
71 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
72 {
73 unsigned long ip, sp, bsp;
74 char buf[128]; /* don't make it so big that it overflows the stack! */
76 printk("\nCall Trace:\n");
77 do {
78 unw_get_ip(info, &ip);
79 if (ip == 0)
80 break;
82 unw_get_sp(info, &sp);
83 unw_get_bsp(info, &bsp);
84 snprintf(buf, sizeof(buf),
85 " [<%016lx>] %%s\n"
86 " sp=%016lx bsp=%016lx\n",
87 ip, sp, bsp);
88 print_symbol(buf, ip);
89 } while (unw_unwind(info) >= 0);
90 }
92 void
93 show_stack (struct task_struct *task, unsigned long *sp)
94 {
95 if (!task)
96 unw_init_running(ia64_do_show_stack, NULL);
97 else {
98 struct unw_frame_info info;
100 unw_init_from_blocked_task(&info, task);
101 ia64_do_show_stack(&info, NULL);
102 }
103 }
105 void
106 dump_stack (void)
107 {
108 show_stack(NULL, NULL);
109 }
111 EXPORT_SYMBOL(dump_stack);
113 #ifdef XEN
114 void
115 show_registers(struct pt_regs *regs)
116 #else
117 void
118 show_regs (struct pt_regs *regs)
119 #endif
120 {
121 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
123 #ifndef XEN
124 print_modules();
125 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
126 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
127 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
128 #else
129 printk("\nCPU %d\n", smp_processor_id());
130 printk("psr : %016lx ifs : %016lx ip : [<%016lx>]\n",
131 regs->cr_ipsr, regs->cr_ifs, ip);
132 #endif
133 print_symbol("ip is at %s\n", ip);
134 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
135 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
136 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
137 regs->ar_rnat, regs->ar_bspstore, regs->pr);
138 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
139 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
140 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
141 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
142 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
143 regs->f6.u.bits[1], regs->f6.u.bits[0],
144 regs->f7.u.bits[1], regs->f7.u.bits[0]);
145 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
146 regs->f8.u.bits[1], regs->f8.u.bits[0],
147 regs->f9.u.bits[1], regs->f9.u.bits[0]);
148 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
149 regs->f10.u.bits[1], regs->f10.u.bits[0],
150 regs->f11.u.bits[1], regs->f11.u.bits[0]);
152 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
153 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
154 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
155 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
156 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
157 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
158 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
159 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
160 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
162 if (user_mode(regs)) {
163 /* print the stacked registers */
164 unsigned long val, *bsp, ndirty;
165 int i, sof, is_nat = 0;
167 sof = regs->cr_ifs & 0x7f; /* size of frame */
168 ndirty = (regs->loadrs >> 19);
169 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
170 for (i = 0; i < sof; ++i) {
171 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
172 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
173 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
174 }
175 } else
176 show_stack(NULL, NULL);
177 }
179 #ifndef XEN
180 void
181 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
182 {
183 if (fsys_mode(current, &scr->pt)) {
184 /* defer signal-handling etc. until we return to privilege-level 0. */
185 if (!ia64_psr(&scr->pt)->lp)
186 ia64_psr(&scr->pt)->lp = 1;
187 return;
188 }
190 #ifdef CONFIG_PERFMON
191 if (current->thread.pfm_needs_checking)
192 pfm_handle_work();
193 #endif
195 /* deal with pending signal delivery */
196 if (test_thread_flag(TIF_SIGPENDING))
197 ia64_do_signal(oldset, scr, in_syscall);
198 }
200 static int pal_halt = 1;
201 static int can_do_pal_halt = 1;
203 static int __init nohalt_setup(char * str)
204 {
205 pal_halt = can_do_pal_halt = 0;
206 return 1;
207 }
208 __setup("nohalt", nohalt_setup);
210 void
211 update_pal_halt_status(int status)
212 {
213 can_do_pal_halt = pal_halt && status;
214 }
216 /*
217 * We use this if we don't have any better idle routine..
218 */
219 void
220 default_idle (void)
221 {
222 local_irq_enable();
223 while (!need_resched())
224 if (can_do_pal_halt)
225 safe_halt();
226 else
227 cpu_relax();
228 }
230 #ifdef CONFIG_HOTPLUG_CPU
231 /* We don't actually take CPU down, just spin without interrupts. */
232 static inline void play_dead(void)
233 {
234 extern void ia64_cpu_local_tick (void);
235 unsigned int this_cpu = smp_processor_id();
237 /* Ack it */
238 __get_cpu_var(cpu_state) = CPU_DEAD;
240 max_xtp();
241 local_irq_disable();
242 idle_domain_exit();
243 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
244 /*
245 * The above is a point of no-return, the processor is
246 * expected to be in SAL loop now.
247 */
248 BUG();
249 }
250 #else
251 static inline void play_dead(void)
252 {
253 BUG();
254 }
255 #endif /* CONFIG_HOTPLUG_CPU */
257 void cpu_idle_wait(void)
258 {
259 unsigned int cpu, this_cpu = get_cpu();
260 cpumask_t map;
262 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
263 put_cpu();
265 cpus_clear(map);
266 for_each_online_cpu(cpu) {
267 per_cpu(cpu_idle_state, cpu) = 1;
268 cpu_set(cpu, map);
269 }
271 __get_cpu_var(cpu_idle_state) = 0;
273 wmb();
274 do {
275 ssleep(1);
276 for_each_online_cpu(cpu) {
277 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
278 cpu_clear(cpu, map);
279 }
280 cpus_and(map, map, cpu_online_map);
281 } while (!cpus_empty(map));
282 }
283 EXPORT_SYMBOL_GPL(cpu_idle_wait);
285 void __attribute__((noreturn))
286 cpu_idle (void)
287 {
288 void (*mark_idle)(int) = ia64_mark_idle;
290 /* endless idle loop with no priority at all */
291 while (1) {
292 #ifdef CONFIG_SMP
293 if (!need_resched())
294 min_xtp();
295 #endif
296 while (!need_resched()) {
297 void (*idle)(void);
299 if (__get_cpu_var(cpu_idle_state))
300 __get_cpu_var(cpu_idle_state) = 0;
302 rmb();
303 if (mark_idle)
304 (*mark_idle)(1);
306 idle = pm_idle;
307 if (!idle)
308 idle = default_idle;
309 (*idle)();
310 }
312 if (mark_idle)
313 (*mark_idle)(0);
315 #ifdef CONFIG_SMP
316 normal_xtp();
317 #endif
318 schedule();
319 check_pgt_cache();
320 if (cpu_is_offline(smp_processor_id()))
321 play_dead();
322 }
323 }
325 void
326 ia64_save_extra (struct task_struct *task)
327 {
328 #ifdef CONFIG_PERFMON
329 unsigned long info;
330 #endif
332 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
333 ia64_save_debug_regs(&task->thread.dbr[0]);
335 #ifdef CONFIG_PERFMON
336 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
337 pfm_save_regs(task);
339 info = __get_cpu_var(pfm_syst_info);
340 if (info & PFM_CPUINFO_SYST_WIDE)
341 pfm_syst_wide_update_task(task, info, 0);
342 #endif
344 #ifdef CONFIG_IA32_SUPPORT
345 if (IS_IA32_PROCESS(ia64_task_regs(task)))
346 ia32_save_state(task);
347 #endif
348 }
350 void
351 ia64_load_extra (struct task_struct *task)
352 {
353 #ifdef CONFIG_PERFMON
354 unsigned long info;
355 #endif
357 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
358 ia64_load_debug_regs(&task->thread.dbr[0]);
360 #ifdef CONFIG_PERFMON
361 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
362 pfm_load_regs(task);
364 info = __get_cpu_var(pfm_syst_info);
365 if (info & PFM_CPUINFO_SYST_WIDE)
366 pfm_syst_wide_update_task(task, info, 1);
367 #endif
369 #ifdef CONFIG_IA32_SUPPORT
370 if (IS_IA32_PROCESS(ia64_task_regs(task)))
371 ia32_load_state(task);
372 #endif
373 }
375 /*
376 * Copy the state of an ia-64 thread.
377 *
378 * We get here through the following call chain:
379 *
380 * from user-level: from kernel:
381 *
382 * <clone syscall> <some kernel call frames>
383 * sys_clone :
384 * do_fork do_fork
385 * copy_thread copy_thread
386 *
387 * This means that the stack layout is as follows:
388 *
389 * +---------------------+ (highest addr)
390 * | struct pt_regs |
391 * +---------------------+
392 * | struct switch_stack |
393 * +---------------------+
394 * | |
395 * | memory stack |
396 * | | <-- sp (lowest addr)
397 * +---------------------+
398 *
399 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
400 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
401 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
402 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
403 * the stack is page aligned and the page size is at least 4KB, this is always the case,
404 * so there is nothing to worry about.
405 */
406 int
407 copy_thread (int nr, unsigned long clone_flags,
408 unsigned long user_stack_base, unsigned long user_stack_size,
409 struct task_struct *p, struct pt_regs *regs)
410 {
411 extern char ia64_ret_from_clone, ia32_ret_from_clone;
412 struct switch_stack *child_stack, *stack;
413 unsigned long rbs, child_rbs, rbs_size;
414 struct pt_regs *child_ptregs;
415 int retval = 0;
417 #ifdef CONFIG_SMP
418 /*
419 * For SMP idle threads, fork_by_hand() calls do_fork with
420 * NULL regs.
421 */
422 if (!regs)
423 return 0;
424 #endif
426 stack = ((struct switch_stack *) regs) - 1;
428 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
429 child_stack = (struct switch_stack *) child_ptregs - 1;
431 /* copy parent's switch_stack & pt_regs to child: */
432 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
434 rbs = (unsigned long) current + IA64_RBS_OFFSET;
435 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
436 rbs_size = stack->ar_bspstore - rbs;
438 /* copy the parent's register backing store to the child: */
439 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
441 if (likely(user_mode(child_ptregs))) {
442 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
443 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
444 if (user_stack_base) {
445 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
446 child_ptregs->ar_bspstore = user_stack_base;
447 child_ptregs->ar_rnat = 0;
448 child_ptregs->loadrs = 0;
449 }
450 } else {
451 /*
452 * Note: we simply preserve the relative position of
453 * the stack pointer here. There is no need to
454 * allocate a scratch area here, since that will have
455 * been taken care of by the caller of sys_clone()
456 * already.
457 */
458 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
459 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
460 }
461 child_stack->ar_bspstore = child_rbs + rbs_size;
462 if (IS_IA32_PROCESS(regs))
463 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
464 else
465 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
467 /* copy parts of thread_struct: */
468 p->thread.ksp = (unsigned long) child_stack - 16;
470 /* stop some PSR bits from being inherited.
471 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
472 * therefore we must specify them explicitly here and not include them in
473 * IA64_PSR_BITS_TO_CLEAR.
474 */
475 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
476 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
478 /*
479 * NOTE: The calling convention considers all floating point
480 * registers in the high partition (fph) to be scratch. Since
481 * the only way to get to this point is through a system call,
482 * we know that the values in fph are all dead. Hence, there
483 * is no need to inherit the fph state from the parent to the
484 * child and all we have to do is to make sure that
485 * IA64_THREAD_FPH_VALID is cleared in the child.
486 *
487 * XXX We could push this optimization a bit further by
488 * clearing IA64_THREAD_FPH_VALID on ANY system call.
489 * However, it's not clear this is worth doing. Also, it
490 * would be a slight deviation from the normal Linux system
491 * call behavior where scratch registers are preserved across
492 * system calls (unless used by the system call itself).
493 */
494 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
495 | IA64_THREAD_PM_VALID)
496 # define THREAD_FLAGS_TO_SET 0
497 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
498 | THREAD_FLAGS_TO_SET);
499 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
500 #ifdef CONFIG_IA32_SUPPORT
501 /*
502 * If we're cloning an IA32 task then save the IA32 extra
503 * state from the current task to the new task
504 */
505 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
506 ia32_save_state(p);
507 if (clone_flags & CLONE_SETTLS)
508 retval = ia32_clone_tls(p, child_ptregs);
510 /* Copy partially mapped page list */
511 if (!retval)
512 retval = ia32_copy_partial_page_list(p, clone_flags);
513 }
514 #endif
516 #ifdef CONFIG_PERFMON
517 if (current->thread.pfm_context)
518 pfm_inherit(p, child_ptregs);
519 #endif
520 return retval;
521 }
523 static void
524 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
525 {
526 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
527 elf_greg_t *dst = arg;
528 struct pt_regs *pt;
529 char nat;
530 int i;
532 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
534 if (unw_unwind_to_user(info) < 0)
535 return;
537 unw_get_sp(info, &sp);
538 pt = (struct pt_regs *) (sp + 16);
540 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
542 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
543 return;
545 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
546 &ar_rnat);
548 /*
549 * coredump format:
550 * r0-r31
551 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
552 * predicate registers (p0-p63)
553 * b0-b7
554 * ip cfm user-mask
555 * ar.rsc ar.bsp ar.bspstore ar.rnat
556 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
557 */
559 /* r0 is zero */
560 for (i = 1, mask = (1UL << i); i < 32; ++i) {
561 unw_get_gr(info, i, &dst[i], &nat);
562 if (nat)
563 nat_bits |= mask;
564 mask <<= 1;
565 }
566 dst[32] = nat_bits;
567 unw_get_pr(info, &dst[33]);
569 for (i = 0; i < 8; ++i)
570 unw_get_br(info, i, &dst[34 + i]);
572 unw_get_rp(info, &ip);
573 dst[42] = ip + ia64_psr(pt)->ri;
574 dst[43] = cfm;
575 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
577 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
578 /*
579 * For bsp and bspstore, unw_get_ar() would return the kernel
580 * addresses, but we need the user-level addresses instead:
581 */
582 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
583 dst[47] = pt->ar_bspstore;
584 dst[48] = ar_rnat;
585 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
586 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
587 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
588 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
589 unw_get_ar(info, UNW_AR_LC, &dst[53]);
590 unw_get_ar(info, UNW_AR_EC, &dst[54]);
591 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
592 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
593 }
595 void
596 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
597 {
598 elf_fpreg_t *dst = arg;
599 int i;
601 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
603 if (unw_unwind_to_user(info) < 0)
604 return;
606 /* f0 is 0.0, f1 is 1.0 */
608 for (i = 2; i < 32; ++i)
609 unw_get_fr(info, i, dst + i);
611 ia64_flush_fph(task);
612 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
613 memcpy(dst + 32, task->thread.fph, 96*16);
614 }
616 void
617 do_copy_regs (struct unw_frame_info *info, void *arg)
618 {
619 do_copy_task_regs(current, info, arg);
620 }
622 void
623 do_dump_fpu (struct unw_frame_info *info, void *arg)
624 {
625 do_dump_task_fpu(current, info, arg);
626 }
628 int
629 dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
630 {
631 struct unw_frame_info tcore_info;
633 if (current == task) {
634 unw_init_running(do_copy_regs, regs);
635 } else {
636 memset(&tcore_info, 0, sizeof(tcore_info));
637 unw_init_from_blocked_task(&tcore_info, task);
638 do_copy_task_regs(task, &tcore_info, regs);
639 }
640 return 1;
641 }
643 void
644 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
645 {
646 unw_init_running(do_copy_regs, dst);
647 }
649 int
650 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
651 {
652 struct unw_frame_info tcore_info;
654 if (current == task) {
655 unw_init_running(do_dump_fpu, dst);
656 } else {
657 memset(&tcore_info, 0, sizeof(tcore_info));
658 unw_init_from_blocked_task(&tcore_info, task);
659 do_dump_task_fpu(task, &tcore_info, dst);
660 }
661 return 1;
662 }
664 int
665 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
666 {
667 unw_init_running(do_dump_fpu, dst);
668 return 1; /* f0-f31 are always valid so we always return 1 */
669 }
671 long
672 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
673 struct pt_regs *regs)
674 {
675 char *fname;
676 int error;
678 fname = getname(filename);
679 error = PTR_ERR(fname);
680 if (IS_ERR(fname))
681 goto out;
682 error = do_execve(fname, argv, envp, regs);
683 putname(fname);
684 out:
685 return error;
686 }
688 pid_t
689 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
690 {
691 extern void start_kernel_thread (void);
692 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
693 struct {
694 struct switch_stack sw;
695 struct pt_regs pt;
696 } regs;
698 memset(&regs, 0, sizeof(regs));
699 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
700 regs.pt.r1 = helper_fptr[1]; /* set GP */
701 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
702 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
703 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
704 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
705 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
706 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
707 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
708 regs.sw.pr = (1 << PRED_KERNEL_STACK);
709 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
710 }
711 EXPORT_SYMBOL(kernel_thread);
713 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
714 int
715 kernel_thread_helper (int (*fn)(void *), void *arg)
716 {
717 #ifdef CONFIG_IA32_SUPPORT
718 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
719 /* A kernel thread is always a 64-bit process. */
720 current->thread.map_base = DEFAULT_MAP_BASE;
721 current->thread.task_size = DEFAULT_TASK_SIZE;
722 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
723 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
724 }
725 #endif
726 return (*fn)(arg);
727 }
729 /*
730 * Flush thread state. This is called when a thread does an execve().
731 */
732 void
733 flush_thread (void)
734 {
735 /*
736 * Remove function-return probe instances associated with this task
737 * and put them back on the free list. Do not insert an exit probe for
738 * this function, it will be disabled by kprobe_flush_task if you do.
739 */
740 kprobe_flush_task(current);
742 /* drop floating-point and debug-register state if it exists: */
743 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
744 ia64_drop_fpu(current);
745 if (IS_IA32_PROCESS(ia64_task_regs(current)))
746 ia32_drop_partial_page_list(current);
747 }
749 /*
750 * Clean up state associated with current thread. This is called when
751 * the thread calls exit().
752 */
753 void
754 exit_thread (void)
755 {
757 /*
758 * Remove function-return probe instances associated with this task
759 * and put them back on the free list. Do not insert an exit probe for
760 * this function, it will be disabled by kprobe_flush_task if you do.
761 */
762 kprobe_flush_task(current);
764 ia64_drop_fpu(current);
765 #ifdef CONFIG_PERFMON
766 /* if needed, stop monitoring and flush state to perfmon context */
767 if (current->thread.pfm_context)
768 pfm_exit_thread(current);
770 /* free debug register resources */
771 if (current->thread.flags & IA64_THREAD_DBG_VALID)
772 pfm_release_debug_registers(current);
773 #endif
774 if (IS_IA32_PROCESS(ia64_task_regs(current)))
775 ia32_drop_partial_page_list(current);
776 }
778 unsigned long
779 get_wchan (struct task_struct *p)
780 {
781 struct unw_frame_info info;
782 unsigned long ip;
783 int count = 0;
785 /*
786 * Note: p may not be a blocked task (it could be current or
787 * another process running on some other CPU. Rather than
788 * trying to determine if p is really blocked, we just assume
789 * it's blocked and rely on the unwind routines to fail
790 * gracefully if the process wasn't really blocked after all.
791 * --davidm 99/12/15
792 */
793 unw_init_from_blocked_task(&info, p);
794 do {
795 if (unw_unwind(&info) < 0)
796 return 0;
797 unw_get_ip(&info, &ip);
798 if (!in_sched_functions(ip))
799 return ip;
800 } while (count++ < 16);
801 return 0;
802 }
804 void
805 cpu_halt (void)
806 {
807 pal_power_mgmt_info_u_t power_info[8];
808 unsigned long min_power;
809 int i, min_power_state;
811 if (ia64_pal_halt_info(power_info) != 0)
812 return;
814 min_power_state = 0;
815 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
816 for (i = 1; i < 8; ++i)
817 if (power_info[i].pal_power_mgmt_info_s.im
818 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
819 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
820 min_power_state = i;
821 }
823 while (1)
824 ia64_pal_halt(min_power_state);
825 }
827 void
828 machine_restart (char *restart_cmd)
829 {
830 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
831 }
833 void
834 machine_halt (void)
835 {
836 cpu_halt();
837 }
839 void
840 machine_power_off (void)
841 {
842 if (pm_power_off)
843 pm_power_off();
844 machine_halt();
845 }
846 #endif // !XEN