ia64/linux-2.6.18-xen.hg

view drivers/ieee1394/ohci1394.c @ 893:f994bfe9b93b

linux/blktap2: reduce TLB flush scope

c/s 885 added very coarse TLB flushing. Since these flushes always
follow single page updates, single page flushes (when available) are
sufficient.

Signed-off-by: Jan Beulich <jbeulich@novell.com>
author Keir Fraser <keir.fraser@citrix.com>
date Thu Jun 04 10:32:57 2009 +0100 (2009-06-04)
parents 3e8752eb6d9c
children
line source
1 /*
2 * ohci1394.c - driver for OHCI 1394 boards
3 * Copyright (C)1999,2000 Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>
4 * Gord Peters <GordPeters@smarttech.com>
5 * 2001 Ben Collins <bcollins@debian.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software Foundation,
19 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
22 /*
23 * Things known to be working:
24 * . Async Request Transmit
25 * . Async Response Receive
26 * . Async Request Receive
27 * . Async Response Transmit
28 * . Iso Receive
29 * . DMA mmap for iso receive
30 * . Config ROM generation
31 *
32 * Things implemented, but still in test phase:
33 * . Iso Transmit
34 * . Async Stream Packets Transmit (Receive done via Iso interface)
35 *
36 * Things not implemented:
37 * . DMA error recovery
38 *
39 * Known bugs:
40 * . devctl BUS_RESET arg confusion (reset type or root holdoff?)
41 * added LONG_RESET_ROOT and SHORT_RESET_ROOT for root holdoff --kk
42 */
44 /*
45 * Acknowledgments:
46 *
47 * Adam J Richter <adam@yggdrasil.com>
48 * . Use of pci_class to find device
49 *
50 * Emilie Chung <emilie.chung@axis.com>
51 * . Tip on Async Request Filter
52 *
53 * Pascal Drolet <pascal.drolet@informission.ca>
54 * . Various tips for optimization and functionnalities
55 *
56 * Robert Ficklin <rficklin@westengineering.com>
57 * . Loop in irq_handler
58 *
59 * James Goodwin <jamesg@Filanet.com>
60 * . Various tips on initialization, self-id reception, etc.
61 *
62 * Albrecht Dress <ad@mpifr-bonn.mpg.de>
63 * . Apple PowerBook detection
64 *
65 * Daniel Kobras <daniel.kobras@student.uni-tuebingen.de>
66 * . Reset the board properly before leaving + misc cleanups
67 *
68 * Leon van Stuivenberg <leonvs@iae.nl>
69 * . Bug fixes
70 *
71 * Ben Collins <bcollins@debian.org>
72 * . Working big-endian support
73 * . Updated to 2.4.x module scheme (PCI aswell)
74 * . Config ROM generation
75 *
76 * Manfred Weihs <weihs@ict.tuwien.ac.at>
77 * . Reworked code for initiating bus resets
78 * (long, short, with or without hold-off)
79 *
80 * Nandu Santhi <contactnandu@users.sourceforge.net>
81 * . Added support for nVidia nForce2 onboard Firewire chipset
82 *
83 */
85 #include <linux/kernel.h>
86 #include <linux/list.h>
87 #include <linux/slab.h>
88 #include <linux/interrupt.h>
89 #include <linux/wait.h>
90 #include <linux/errno.h>
91 #include <linux/module.h>
92 #include <linux/moduleparam.h>
93 #include <linux/pci.h>
94 #include <linux/fs.h>
95 #include <linux/poll.h>
96 #include <asm/byteorder.h>
97 #include <asm/atomic.h>
98 #include <asm/uaccess.h>
99 #include <linux/delay.h>
100 #include <linux/spinlock.h>
102 #include <asm/pgtable.h>
103 #include <asm/page.h>
104 #include <asm/irq.h>
105 #include <linux/sched.h>
106 #include <linux/types.h>
107 #include <linux/vmalloc.h>
108 #include <linux/init.h>
110 #ifdef CONFIG_PPC_PMAC
111 #include <asm/machdep.h>
112 #include <asm/pmac_feature.h>
113 #include <asm/prom.h>
114 #include <asm/pci-bridge.h>
115 #endif
117 #include "csr1212.h"
118 #include "ieee1394.h"
119 #include "ieee1394_types.h"
120 #include "hosts.h"
121 #include "dma.h"
122 #include "iso.h"
123 #include "ieee1394_core.h"
124 #include "highlevel.h"
125 #include "ohci1394.h"
127 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
128 #define OHCI1394_DEBUG
129 #endif
131 #ifdef DBGMSG
132 #undef DBGMSG
133 #endif
135 #ifdef OHCI1394_DEBUG
136 #define DBGMSG(fmt, args...) \
137 printk(KERN_INFO "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
138 #else
139 #define DBGMSG(fmt, args...)
140 #endif
142 #ifdef CONFIG_IEEE1394_OHCI_DMA_DEBUG
143 #define OHCI_DMA_ALLOC(fmt, args...) \
144 HPSB_ERR("%s(%s)alloc(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
145 ++global_outstanding_dmas, ## args)
146 #define OHCI_DMA_FREE(fmt, args...) \
147 HPSB_ERR("%s(%s)free(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
148 --global_outstanding_dmas, ## args)
149 static int global_outstanding_dmas = 0;
150 #else
151 #define OHCI_DMA_ALLOC(fmt, args...)
152 #define OHCI_DMA_FREE(fmt, args...)
153 #endif
155 /* print general (card independent) information */
156 #define PRINT_G(level, fmt, args...) \
157 printk(level "%s: " fmt "\n" , OHCI1394_DRIVER_NAME , ## args)
159 /* print card specific information */
160 #define PRINT(level, fmt, args...) \
161 printk(level "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
163 /* Module Parameters */
164 static int phys_dma = 1;
165 module_param(phys_dma, int, 0444);
166 MODULE_PARM_DESC(phys_dma, "Enable physical dma (default = 1).");
168 static void dma_trm_tasklet(unsigned long data);
169 static void dma_trm_reset(struct dma_trm_ctx *d);
171 static int alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
172 enum context_type type, int ctx, int num_desc,
173 int buf_size, int split_buf_size, int context_base);
174 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d);
175 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d);
177 static int alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
178 enum context_type type, int ctx, int num_desc,
179 int context_base);
181 static void ohci1394_pci_remove(struct pci_dev *pdev);
183 #ifndef __LITTLE_ENDIAN
184 static unsigned hdr_sizes[] =
185 {
186 3, /* TCODE_WRITEQ */
187 4, /* TCODE_WRITEB */
188 3, /* TCODE_WRITE_RESPONSE */
189 0, /* ??? */
190 3, /* TCODE_READQ */
191 4, /* TCODE_READB */
192 3, /* TCODE_READQ_RESPONSE */
193 4, /* TCODE_READB_RESPONSE */
194 1, /* TCODE_CYCLE_START (???) */
195 4, /* TCODE_LOCK_REQUEST */
196 2, /* TCODE_ISO_DATA */
197 4, /* TCODE_LOCK_RESPONSE */
198 };
200 /* Swap headers */
201 static inline void packet_swab(quadlet_t *data, int tcode)
202 {
203 size_t size = hdr_sizes[tcode];
205 if (tcode > TCODE_LOCK_RESPONSE || hdr_sizes[tcode] == 0)
206 return;
208 while (size--)
209 data[size] = swab32(data[size]);
210 }
211 #else
212 /* Don't waste cycles on same sex byte swaps */
213 #define packet_swab(w,x)
214 #endif /* !LITTLE_ENDIAN */
216 /***********************************
217 * IEEE-1394 functionality section *
218 ***********************************/
220 static u8 get_phy_reg(struct ti_ohci *ohci, u8 addr)
221 {
222 int i;
223 unsigned long flags;
224 quadlet_t r;
226 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
228 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | 0x00008000);
230 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
231 if (reg_read(ohci, OHCI1394_PhyControl) & 0x80000000)
232 break;
234 mdelay(1);
235 }
237 r = reg_read(ohci, OHCI1394_PhyControl);
239 if (i >= OHCI_LOOP_COUNT)
240 PRINT (KERN_ERR, "Get PHY Reg timeout [0x%08x/0x%08x/%d]",
241 r, r & 0x80000000, i);
243 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
245 return (r & 0x00ff0000) >> 16;
246 }
248 static void set_phy_reg(struct ti_ohci *ohci, u8 addr, u8 data)
249 {
250 int i;
251 unsigned long flags;
252 u32 r = 0;
254 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
256 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | data | 0x00004000);
258 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
259 r = reg_read(ohci, OHCI1394_PhyControl);
260 if (!(r & 0x00004000))
261 break;
263 mdelay(1);
264 }
266 if (i == OHCI_LOOP_COUNT)
267 PRINT (KERN_ERR, "Set PHY Reg timeout [0x%08x/0x%08x/%d]",
268 r, r & 0x00004000, i);
270 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
272 return;
273 }
275 /* Or's our value into the current value */
276 static void set_phy_reg_mask(struct ti_ohci *ohci, u8 addr, u8 data)
277 {
278 u8 old;
280 old = get_phy_reg (ohci, addr);
281 old |= data;
282 set_phy_reg (ohci, addr, old);
284 return;
285 }
287 static void handle_selfid(struct ti_ohci *ohci, struct hpsb_host *host,
288 int phyid, int isroot)
289 {
290 quadlet_t *q = ohci->selfid_buf_cpu;
291 quadlet_t self_id_count=reg_read(ohci, OHCI1394_SelfIDCount);
292 size_t size;
293 quadlet_t q0, q1;
295 /* Check status of self-id reception */
297 if (ohci->selfid_swap)
298 q0 = le32_to_cpu(q[0]);
299 else
300 q0 = q[0];
302 if ((self_id_count & 0x80000000) ||
303 ((self_id_count & 0x00FF0000) != (q0 & 0x00FF0000))) {
304 PRINT(KERN_ERR,
305 "Error in reception of SelfID packets [0x%08x/0x%08x] (count: %d)",
306 self_id_count, q0, ohci->self_id_errors);
308 /* Tip by James Goodwin <jamesg@Filanet.com>:
309 * We had an error, generate another bus reset in response. */
310 if (ohci->self_id_errors<OHCI1394_MAX_SELF_ID_ERRORS) {
311 set_phy_reg_mask (ohci, 1, 0x40);
312 ohci->self_id_errors++;
313 } else {
314 PRINT(KERN_ERR,
315 "Too many errors on SelfID error reception, giving up!");
316 }
317 return;
318 }
320 /* SelfID Ok, reset error counter. */
321 ohci->self_id_errors = 0;
323 size = ((self_id_count & 0x00001FFC) >> 2) - 1;
324 q++;
326 while (size > 0) {
327 if (ohci->selfid_swap) {
328 q0 = le32_to_cpu(q[0]);
329 q1 = le32_to_cpu(q[1]);
330 } else {
331 q0 = q[0];
332 q1 = q[1];
333 }
335 if (q0 == ~q1) {
336 DBGMSG ("SelfID packet 0x%x received", q0);
337 hpsb_selfid_received(host, cpu_to_be32(q0));
338 if (((q0 & 0x3f000000) >> 24) == phyid)
339 DBGMSG ("SelfID for this node is 0x%08x", q0);
340 } else {
341 PRINT(KERN_ERR,
342 "SelfID is inconsistent [0x%08x/0x%08x]", q0, q1);
343 }
344 q += 2;
345 size -= 2;
346 }
348 DBGMSG("SelfID complete");
350 return;
351 }
353 static void ohci_soft_reset(struct ti_ohci *ohci) {
354 int i;
356 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
358 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
359 if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_softReset))
360 break;
361 mdelay(1);
362 }
363 DBGMSG ("Soft reset finished");
364 }
367 /* Generate the dma receive prgs and start the context */
368 static void initialize_dma_rcv_ctx(struct dma_rcv_ctx *d, int generate_irq)
369 {
370 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
371 int i;
373 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
375 for (i=0; i<d->num_desc; i++) {
376 u32 c;
378 c = DMA_CTL_INPUT_MORE | DMA_CTL_UPDATE | DMA_CTL_BRANCH;
379 if (generate_irq)
380 c |= DMA_CTL_IRQ;
382 d->prg_cpu[i]->control = cpu_to_le32(c | d->buf_size);
384 /* End of descriptor list? */
385 if (i + 1 < d->num_desc) {
386 d->prg_cpu[i]->branchAddress =
387 cpu_to_le32((d->prg_bus[i+1] & 0xfffffff0) | 0x1);
388 } else {
389 d->prg_cpu[i]->branchAddress =
390 cpu_to_le32((d->prg_bus[0] & 0xfffffff0));
391 }
393 d->prg_cpu[i]->address = cpu_to_le32(d->buf_bus[i]);
394 d->prg_cpu[i]->status = cpu_to_le32(d->buf_size);
395 }
397 d->buf_ind = 0;
398 d->buf_offset = 0;
400 if (d->type == DMA_CTX_ISO) {
401 /* Clear contextControl */
402 reg_write(ohci, d->ctrlClear, 0xffffffff);
404 /* Set bufferFill, isochHeader, multichannel for IR context */
405 reg_write(ohci, d->ctrlSet, 0xd0000000);
407 /* Set the context match register to match on all tags */
408 reg_write(ohci, d->ctxtMatch, 0xf0000000);
410 /* Clear the multi channel mask high and low registers */
411 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, 0xffffffff);
412 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, 0xffffffff);
414 /* Set up isoRecvIntMask to generate interrupts */
415 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << d->ctx);
416 }
418 /* Tell the controller where the first AR program is */
419 reg_write(ohci, d->cmdPtr, d->prg_bus[0] | 0x1);
421 /* Run context */
422 reg_write(ohci, d->ctrlSet, 0x00008000);
424 DBGMSG("Receive DMA ctx=%d initialized", d->ctx);
425 }
427 /* Initialize the dma transmit context */
428 static void initialize_dma_trm_ctx(struct dma_trm_ctx *d)
429 {
430 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
432 /* Stop the context */
433 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
435 d->prg_ind = 0;
436 d->sent_ind = 0;
437 d->free_prgs = d->num_desc;
438 d->branchAddrPtr = NULL;
439 INIT_LIST_HEAD(&d->fifo_list);
440 INIT_LIST_HEAD(&d->pending_list);
442 if (d->type == DMA_CTX_ISO) {
443 /* enable interrupts */
444 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << d->ctx);
445 }
447 DBGMSG("Transmit DMA ctx=%d initialized", d->ctx);
448 }
450 /* Count the number of available iso contexts */
451 static int get_nb_iso_ctx(struct ti_ohci *ohci, int reg)
452 {
453 int i,ctx=0;
454 u32 tmp;
456 reg_write(ohci, reg, 0xffffffff);
457 tmp = reg_read(ohci, reg);
459 DBGMSG("Iso contexts reg: %08x implemented: %08x", reg, tmp);
461 /* Count the number of contexts */
462 for (i=0; i<32; i++) {
463 if (tmp & 1) ctx++;
464 tmp >>= 1;
465 }
466 return ctx;
467 }
469 /* Global initialization */
470 static void ohci_initialize(struct ti_ohci *ohci)
471 {
472 char irq_buf[16];
473 quadlet_t buf;
474 int num_ports, i;
476 spin_lock_init(&ohci->phy_reg_lock);
478 /* Put some defaults to these undefined bus options */
479 buf = reg_read(ohci, OHCI1394_BusOptions);
480 buf |= 0x60000000; /* Enable CMC and ISC */
481 if (hpsb_disable_irm)
482 buf &= ~0x80000000;
483 else
484 buf |= 0x80000000; /* Enable IRMC */
485 buf &= ~0x00ff0000; /* XXX: Set cyc_clk_acc to zero for now */
486 buf &= ~0x18000000; /* Disable PMC and BMC */
487 reg_write(ohci, OHCI1394_BusOptions, buf);
489 /* Set the bus number */
490 reg_write(ohci, OHCI1394_NodeID, 0x0000ffc0);
492 /* Enable posted writes */
493 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_postedWriteEnable);
495 /* Clear link control register */
496 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
498 /* Enable cycle timer and cycle master and set the IRM
499 * contender bit in our self ID packets if appropriate. */
500 reg_write(ohci, OHCI1394_LinkControlSet,
501 OHCI1394_LinkControl_CycleTimerEnable |
502 OHCI1394_LinkControl_CycleMaster);
503 i = get_phy_reg(ohci, 4) | PHY_04_LCTRL;
504 if (hpsb_disable_irm)
505 i &= ~PHY_04_CONTENDER;
506 else
507 i |= PHY_04_CONTENDER;
508 set_phy_reg(ohci, 4, i);
510 /* Set up self-id dma buffer */
511 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->selfid_buf_bus);
513 /* enable self-id and phys */
514 reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_RcvSelfID |
515 OHCI1394_LinkControl_RcvPhyPkt);
517 /* Set the Config ROM mapping register */
518 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->csr_config_rom_bus);
520 /* Now get our max packet size */
521 ohci->max_packet_size =
522 1<<(((reg_read(ohci, OHCI1394_BusOptions)>>12)&0xf)+1);
524 /* Don't accept phy packets into AR request context */
525 reg_write(ohci, OHCI1394_LinkControlClear, 0x00000400);
527 /* Clear the interrupt mask */
528 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
529 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
531 /* Clear the interrupt mask */
532 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
533 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
535 /* Initialize AR dma */
536 initialize_dma_rcv_ctx(&ohci->ar_req_context, 0);
537 initialize_dma_rcv_ctx(&ohci->ar_resp_context, 0);
539 /* Initialize AT dma */
540 initialize_dma_trm_ctx(&ohci->at_req_context);
541 initialize_dma_trm_ctx(&ohci->at_resp_context);
543 /* Initialize IR Legacy DMA channel mask */
544 ohci->ir_legacy_channels = 0;
546 /* Accept AR requests from all nodes */
547 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
549 /* Set the address range of the physical response unit.
550 * Most controllers do not implement it as a writable register though.
551 * They will keep a hardwired offset of 0x00010000 and show 0x0 as
552 * register content.
553 * To actually enable physical responses is the job of our interrupt
554 * handler which programs the physical request filter. */
555 reg_write(ohci, OHCI1394_PhyUpperBound,
556 OHCI1394_PHYS_UPPER_BOUND_PROGRAMMED >> 16);
558 DBGMSG("physUpperBoundOffset=%08x",
559 reg_read(ohci, OHCI1394_PhyUpperBound));
561 /* Specify AT retries */
562 reg_write(ohci, OHCI1394_ATRetries,
563 OHCI1394_MAX_AT_REQ_RETRIES |
564 (OHCI1394_MAX_AT_RESP_RETRIES<<4) |
565 (OHCI1394_MAX_PHYS_RESP_RETRIES<<8));
567 /* We don't want hardware swapping */
568 reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_noByteSwap);
570 /* Enable interrupts */
571 reg_write(ohci, OHCI1394_IntMaskSet,
572 OHCI1394_unrecoverableError |
573 OHCI1394_masterIntEnable |
574 OHCI1394_busReset |
575 OHCI1394_selfIDComplete |
576 OHCI1394_RSPkt |
577 OHCI1394_RQPkt |
578 OHCI1394_respTxComplete |
579 OHCI1394_reqTxComplete |
580 OHCI1394_isochRx |
581 OHCI1394_isochTx |
582 OHCI1394_postedWriteErr |
583 OHCI1394_cycleTooLong |
584 OHCI1394_cycleInconsistent);
586 /* Enable link */
587 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_linkEnable);
589 buf = reg_read(ohci, OHCI1394_Version);
590 sprintf (irq_buf, "%d", ohci->dev->irq);
591 PRINT(KERN_INFO, "OHCI-1394 %d.%d (PCI): IRQ=[%s] "
592 "MMIO=[%llx-%llx] Max Packet=[%d] IR/IT contexts=[%d/%d]",
593 ((((buf) >> 16) & 0xf) + (((buf) >> 20) & 0xf) * 10),
594 ((((buf) >> 4) & 0xf) + ((buf) & 0xf) * 10), irq_buf,
595 (unsigned long long)pci_resource_start(ohci->dev, 0),
596 (unsigned long long)pci_resource_start(ohci->dev, 0) + OHCI1394_REGISTER_SIZE - 1,
597 ohci->max_packet_size,
598 ohci->nb_iso_rcv_ctx, ohci->nb_iso_xmit_ctx);
600 /* Check all of our ports to make sure that if anything is
601 * connected, we enable that port. */
602 num_ports = get_phy_reg(ohci, 2) & 0xf;
603 for (i = 0; i < num_ports; i++) {
604 unsigned int status;
606 set_phy_reg(ohci, 7, i);
607 status = get_phy_reg(ohci, 8);
609 if (status & 0x20)
610 set_phy_reg(ohci, 8, status & ~1);
611 }
613 /* Serial EEPROM Sanity check. */
614 if ((ohci->max_packet_size < 512) ||
615 (ohci->max_packet_size > 4096)) {
616 /* Serial EEPROM contents are suspect, set a sane max packet
617 * size and print the raw contents for bug reports if verbose
618 * debug is enabled. */
619 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
620 int i;
621 #endif
623 PRINT(KERN_DEBUG, "Serial EEPROM has suspicious values, "
624 "attempting to setting max_packet_size to 512 bytes");
625 reg_write(ohci, OHCI1394_BusOptions,
626 (reg_read(ohci, OHCI1394_BusOptions) & 0xf007) | 0x8002);
627 ohci->max_packet_size = 512;
628 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
629 PRINT(KERN_DEBUG, " EEPROM Present: %d",
630 (reg_read(ohci, OHCI1394_Version) >> 24) & 0x1);
631 reg_write(ohci, OHCI1394_GUID_ROM, 0x80000000);
633 for (i = 0;
634 ((i < 1000) &&
635 (reg_read(ohci, OHCI1394_GUID_ROM) & 0x80000000)); i++)
636 udelay(10);
638 for (i = 0; i < 0x20; i++) {
639 reg_write(ohci, OHCI1394_GUID_ROM, 0x02000000);
640 PRINT(KERN_DEBUG, " EEPROM %02x: %02x", i,
641 (reg_read(ohci, OHCI1394_GUID_ROM) >> 16) & 0xff);
642 }
643 #endif
644 }
645 }
647 /*
648 * Insert a packet in the DMA fifo and generate the DMA prg
649 * FIXME: rewrite the program in order to accept packets crossing
650 * page boundaries.
651 * check also that a single dma descriptor doesn't cross a
652 * page boundary.
653 */
654 static void insert_packet(struct ti_ohci *ohci,
655 struct dma_trm_ctx *d, struct hpsb_packet *packet)
656 {
657 u32 cycleTimer;
658 int idx = d->prg_ind;
660 DBGMSG("Inserting packet for node " NODE_BUS_FMT
661 ", tlabel=%d, tcode=0x%x, speed=%d",
662 NODE_BUS_ARGS(ohci->host, packet->node_id), packet->tlabel,
663 packet->tcode, packet->speed_code);
665 d->prg_cpu[idx]->begin.address = 0;
666 d->prg_cpu[idx]->begin.branchAddress = 0;
668 if (d->type == DMA_CTX_ASYNC_RESP) {
669 /*
670 * For response packets, we need to put a timeout value in
671 * the 16 lower bits of the status... let's try 1 sec timeout
672 */
673 cycleTimer = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
674 d->prg_cpu[idx]->begin.status = cpu_to_le32(
675 (((((cycleTimer>>25)&0x7)+1)&0x7)<<13) |
676 ((cycleTimer&0x01fff000)>>12));
678 DBGMSG("cycleTimer: %08x timeStamp: %08x",
679 cycleTimer, d->prg_cpu[idx]->begin.status);
680 } else
681 d->prg_cpu[idx]->begin.status = 0;
683 if ( (packet->type == hpsb_async) || (packet->type == hpsb_raw) ) {
685 if (packet->type == hpsb_raw) {
686 d->prg_cpu[idx]->data[0] = cpu_to_le32(OHCI1394_TCODE_PHY<<4);
687 d->prg_cpu[idx]->data[1] = cpu_to_le32(packet->header[0]);
688 d->prg_cpu[idx]->data[2] = cpu_to_le32(packet->header[1]);
689 } else {
690 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
691 (packet->header[0] & 0xFFFF);
693 if (packet->tcode == TCODE_ISO_DATA) {
694 /* Sending an async stream packet */
695 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
696 } else {
697 /* Sending a normal async request or response */
698 d->prg_cpu[idx]->data[1] =
699 (packet->header[1] & 0xFFFF) |
700 (packet->header[0] & 0xFFFF0000);
701 d->prg_cpu[idx]->data[2] = packet->header[2];
702 d->prg_cpu[idx]->data[3] = packet->header[3];
703 }
704 packet_swab(d->prg_cpu[idx]->data, packet->tcode);
705 }
707 if (packet->data_size) { /* block transmit */
708 if (packet->tcode == TCODE_STREAM_DATA){
709 d->prg_cpu[idx]->begin.control =
710 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
711 DMA_CTL_IMMEDIATE | 0x8);
712 } else {
713 d->prg_cpu[idx]->begin.control =
714 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
715 DMA_CTL_IMMEDIATE | 0x10);
716 }
717 d->prg_cpu[idx]->end.control =
718 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
719 DMA_CTL_IRQ |
720 DMA_CTL_BRANCH |
721 packet->data_size);
722 /*
723 * Check that the packet data buffer
724 * does not cross a page boundary.
725 *
726 * XXX Fix this some day. eth1394 seems to trigger
727 * it, but ignoring it doesn't seem to cause a
728 * problem.
729 */
730 #if 0
731 if (cross_bound((unsigned long)packet->data,
732 packet->data_size)>0) {
733 /* FIXME: do something about it */
734 PRINT(KERN_ERR,
735 "%s: packet data addr: %p size %Zd bytes "
736 "cross page boundary", __FUNCTION__,
737 packet->data, packet->data_size);
738 }
739 #endif
740 d->prg_cpu[idx]->end.address = cpu_to_le32(
741 pci_map_single(ohci->dev, packet->data,
742 packet->data_size,
743 PCI_DMA_TODEVICE));
744 OHCI_DMA_ALLOC("single, block transmit packet");
746 d->prg_cpu[idx]->end.branchAddress = 0;
747 d->prg_cpu[idx]->end.status = 0;
748 if (d->branchAddrPtr)
749 *(d->branchAddrPtr) =
750 cpu_to_le32(d->prg_bus[idx] | 0x3);
751 d->branchAddrPtr =
752 &(d->prg_cpu[idx]->end.branchAddress);
753 } else { /* quadlet transmit */
754 if (packet->type == hpsb_raw)
755 d->prg_cpu[idx]->begin.control =
756 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
757 DMA_CTL_IMMEDIATE |
758 DMA_CTL_IRQ |
759 DMA_CTL_BRANCH |
760 (packet->header_size + 4));
761 else
762 d->prg_cpu[idx]->begin.control =
763 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
764 DMA_CTL_IMMEDIATE |
765 DMA_CTL_IRQ |
766 DMA_CTL_BRANCH |
767 packet->header_size);
769 if (d->branchAddrPtr)
770 *(d->branchAddrPtr) =
771 cpu_to_le32(d->prg_bus[idx] | 0x2);
772 d->branchAddrPtr =
773 &(d->prg_cpu[idx]->begin.branchAddress);
774 }
776 } else { /* iso packet */
777 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
778 (packet->header[0] & 0xFFFF);
779 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
780 packet_swab(d->prg_cpu[idx]->data, packet->tcode);
782 d->prg_cpu[idx]->begin.control =
783 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
784 DMA_CTL_IMMEDIATE | 0x8);
785 d->prg_cpu[idx]->end.control =
786 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
787 DMA_CTL_UPDATE |
788 DMA_CTL_IRQ |
789 DMA_CTL_BRANCH |
790 packet->data_size);
791 d->prg_cpu[idx]->end.address = cpu_to_le32(
792 pci_map_single(ohci->dev, packet->data,
793 packet->data_size, PCI_DMA_TODEVICE));
794 OHCI_DMA_ALLOC("single, iso transmit packet");
796 d->prg_cpu[idx]->end.branchAddress = 0;
797 d->prg_cpu[idx]->end.status = 0;
798 DBGMSG("Iso xmit context info: header[%08x %08x]\n"
799 " begin=%08x %08x %08x %08x\n"
800 " %08x %08x %08x %08x\n"
801 " end =%08x %08x %08x %08x",
802 d->prg_cpu[idx]->data[0], d->prg_cpu[idx]->data[1],
803 d->prg_cpu[idx]->begin.control,
804 d->prg_cpu[idx]->begin.address,
805 d->prg_cpu[idx]->begin.branchAddress,
806 d->prg_cpu[idx]->begin.status,
807 d->prg_cpu[idx]->data[0],
808 d->prg_cpu[idx]->data[1],
809 d->prg_cpu[idx]->data[2],
810 d->prg_cpu[idx]->data[3],
811 d->prg_cpu[idx]->end.control,
812 d->prg_cpu[idx]->end.address,
813 d->prg_cpu[idx]->end.branchAddress,
814 d->prg_cpu[idx]->end.status);
815 if (d->branchAddrPtr)
816 *(d->branchAddrPtr) = cpu_to_le32(d->prg_bus[idx] | 0x3);
817 d->branchAddrPtr = &(d->prg_cpu[idx]->end.branchAddress);
818 }
819 d->free_prgs--;
821 /* queue the packet in the appropriate context queue */
822 list_add_tail(&packet->driver_list, &d->fifo_list);
823 d->prg_ind = (d->prg_ind + 1) % d->num_desc;
824 }
826 /*
827 * This function fills the FIFO with the (eventual) pending packets
828 * and runs or wakes up the DMA prg if necessary.
829 *
830 * The function MUST be called with the d->lock held.
831 */
832 static void dma_trm_flush(struct ti_ohci *ohci, struct dma_trm_ctx *d)
833 {
834 struct hpsb_packet *packet, *ptmp;
835 int idx = d->prg_ind;
836 int z = 0;
838 /* insert the packets into the dma fifo */
839 list_for_each_entry_safe(packet, ptmp, &d->pending_list, driver_list) {
840 if (!d->free_prgs)
841 break;
843 /* For the first packet only */
844 if (!z)
845 z = (packet->data_size) ? 3 : 2;
847 /* Insert the packet */
848 list_del_init(&packet->driver_list);
849 insert_packet(ohci, d, packet);
850 }
852 /* Nothing must have been done, either no free_prgs or no packets */
853 if (z == 0)
854 return;
856 /* Is the context running ? (should be unless it is
857 the first packet to be sent in this context) */
858 if (!(reg_read(ohci, d->ctrlSet) & 0x8000)) {
859 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
861 DBGMSG("Starting transmit DMA ctx=%d",d->ctx);
862 reg_write(ohci, d->cmdPtr, d->prg_bus[idx] | z);
864 /* Check that the node id is valid, and not 63 */
865 if (!(nodeId & 0x80000000) || (nodeId & 0x3f) == 63)
866 PRINT(KERN_ERR, "Running dma failed because Node ID is not valid");
867 else
868 reg_write(ohci, d->ctrlSet, 0x8000);
869 } else {
870 /* Wake up the dma context if necessary */
871 if (!(reg_read(ohci, d->ctrlSet) & 0x400))
872 DBGMSG("Waking transmit DMA ctx=%d",d->ctx);
874 /* do this always, to avoid race condition */
875 reg_write(ohci, d->ctrlSet, 0x1000);
876 }
878 return;
879 }
881 /* Transmission of an async or iso packet */
882 static int ohci_transmit(struct hpsb_host *host, struct hpsb_packet *packet)
883 {
884 struct ti_ohci *ohci = host->hostdata;
885 struct dma_trm_ctx *d;
886 unsigned long flags;
888 if (packet->data_size > ohci->max_packet_size) {
889 PRINT(KERN_ERR,
890 "Transmit packet size %Zd is too big",
891 packet->data_size);
892 return -EOVERFLOW;
893 }
895 /* Decide whether we have an iso, a request, or a response packet */
896 if (packet->type == hpsb_raw)
897 d = &ohci->at_req_context;
898 else if ((packet->tcode == TCODE_ISO_DATA) && (packet->type == hpsb_iso)) {
899 /* The legacy IT DMA context is initialized on first
900 * use. However, the alloc cannot be run from
901 * interrupt context, so we bail out if that is the
902 * case. I don't see anyone sending ISO packets from
903 * interrupt context anyway... */
905 if (ohci->it_legacy_context.ohci == NULL) {
906 if (in_interrupt()) {
907 PRINT(KERN_ERR,
908 "legacy IT context cannot be initialized during interrupt");
909 return -EINVAL;
910 }
912 if (alloc_dma_trm_ctx(ohci, &ohci->it_legacy_context,
913 DMA_CTX_ISO, 0, IT_NUM_DESC,
914 OHCI1394_IsoXmitContextBase) < 0) {
915 PRINT(KERN_ERR,
916 "error initializing legacy IT context");
917 return -ENOMEM;
918 }
920 initialize_dma_trm_ctx(&ohci->it_legacy_context);
921 }
923 d = &ohci->it_legacy_context;
924 } else if ((packet->tcode & 0x02) && (packet->tcode != TCODE_ISO_DATA))
925 d = &ohci->at_resp_context;
926 else
927 d = &ohci->at_req_context;
929 spin_lock_irqsave(&d->lock,flags);
931 list_add_tail(&packet->driver_list, &d->pending_list);
933 dma_trm_flush(ohci, d);
935 spin_unlock_irqrestore(&d->lock,flags);
937 return 0;
938 }
940 static int ohci_devctl(struct hpsb_host *host, enum devctl_cmd cmd, int arg)
941 {
942 struct ti_ohci *ohci = host->hostdata;
943 int retval = 0;
944 unsigned long flags;
945 int phy_reg;
947 switch (cmd) {
948 case RESET_BUS:
949 switch (arg) {
950 case SHORT_RESET:
951 phy_reg = get_phy_reg(ohci, 5);
952 phy_reg |= 0x40;
953 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
954 break;
955 case LONG_RESET:
956 phy_reg = get_phy_reg(ohci, 1);
957 phy_reg |= 0x40;
958 set_phy_reg(ohci, 1, phy_reg); /* set IBR */
959 break;
960 case SHORT_RESET_NO_FORCE_ROOT:
961 phy_reg = get_phy_reg(ohci, 1);
962 if (phy_reg & 0x80) {
963 phy_reg &= ~0x80;
964 set_phy_reg(ohci, 1, phy_reg); /* clear RHB */
965 }
967 phy_reg = get_phy_reg(ohci, 5);
968 phy_reg |= 0x40;
969 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
970 break;
971 case LONG_RESET_NO_FORCE_ROOT:
972 phy_reg = get_phy_reg(ohci, 1);
973 phy_reg &= ~0x80;
974 phy_reg |= 0x40;
975 set_phy_reg(ohci, 1, phy_reg); /* clear RHB, set IBR */
976 break;
977 case SHORT_RESET_FORCE_ROOT:
978 phy_reg = get_phy_reg(ohci, 1);
979 if (!(phy_reg & 0x80)) {
980 phy_reg |= 0x80;
981 set_phy_reg(ohci, 1, phy_reg); /* set RHB */
982 }
984 phy_reg = get_phy_reg(ohci, 5);
985 phy_reg |= 0x40;
986 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
987 break;
988 case LONG_RESET_FORCE_ROOT:
989 phy_reg = get_phy_reg(ohci, 1);
990 phy_reg |= 0xc0;
991 set_phy_reg(ohci, 1, phy_reg); /* set RHB and IBR */
992 break;
993 default:
994 retval = -1;
995 }
996 break;
998 case GET_CYCLE_COUNTER:
999 retval = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1000 break;
1002 case SET_CYCLE_COUNTER:
1003 reg_write(ohci, OHCI1394_IsochronousCycleTimer, arg);
1004 break;
1006 case SET_BUS_ID:
1007 PRINT(KERN_ERR, "devctl command SET_BUS_ID err");
1008 break;
1010 case ACT_CYCLE_MASTER:
1011 if (arg) {
1012 /* check if we are root and other nodes are present */
1013 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
1014 if ((nodeId & (1<<30)) && (nodeId & 0x3f)) {
1015 /*
1016 * enable cycleTimer, cycleMaster
1017 */
1018 DBGMSG("Cycle master enabled");
1019 reg_write(ohci, OHCI1394_LinkControlSet,
1020 OHCI1394_LinkControl_CycleTimerEnable |
1021 OHCI1394_LinkControl_CycleMaster);
1023 } else {
1024 /* disable cycleTimer, cycleMaster, cycleSource */
1025 reg_write(ohci, OHCI1394_LinkControlClear,
1026 OHCI1394_LinkControl_CycleTimerEnable |
1027 OHCI1394_LinkControl_CycleMaster |
1028 OHCI1394_LinkControl_CycleSource);
1030 break;
1032 case CANCEL_REQUESTS:
1033 DBGMSG("Cancel request received");
1034 dma_trm_reset(&ohci->at_req_context);
1035 dma_trm_reset(&ohci->at_resp_context);
1036 break;
1038 case ISO_LISTEN_CHANNEL:
1040 u64 mask;
1041 struct dma_rcv_ctx *d = &ohci->ir_legacy_context;
1042 int ir_legacy_active;
1044 if (arg<0 || arg>63) {
1045 PRINT(KERN_ERR,
1046 "%s: IS0 listen channel %d is out of range",
1047 __FUNCTION__, arg);
1048 return -EFAULT;
1051 mask = (u64)0x1<<arg;
1053 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1055 if (ohci->ISO_channel_usage & mask) {
1056 PRINT(KERN_ERR,
1057 "%s: IS0 listen channel %d is already used",
1058 __FUNCTION__, arg);
1059 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1060 return -EFAULT;
1063 ir_legacy_active = ohci->ir_legacy_channels;
1065 ohci->ISO_channel_usage |= mask;
1066 ohci->ir_legacy_channels |= mask;
1068 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1070 if (!ir_legacy_active) {
1071 if (ohci1394_register_iso_tasklet(ohci,
1072 &ohci->ir_legacy_tasklet) < 0) {
1073 PRINT(KERN_ERR, "No IR DMA context available");
1074 return -EBUSY;
1077 /* the IR context can be assigned to any DMA context
1078 * by ohci1394_register_iso_tasklet */
1079 d->ctx = ohci->ir_legacy_tasklet.context;
1080 d->ctrlSet = OHCI1394_IsoRcvContextControlSet +
1081 32*d->ctx;
1082 d->ctrlClear = OHCI1394_IsoRcvContextControlClear +
1083 32*d->ctx;
1084 d->cmdPtr = OHCI1394_IsoRcvCommandPtr + 32*d->ctx;
1085 d->ctxtMatch = OHCI1394_IsoRcvContextMatch + 32*d->ctx;
1087 initialize_dma_rcv_ctx(&ohci->ir_legacy_context, 1);
1089 if (printk_ratelimit())
1090 DBGMSG("IR legacy activated");
1093 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1095 if (arg>31)
1096 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet,
1097 1<<(arg-32));
1098 else
1099 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet,
1100 1<<arg);
1102 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1103 DBGMSG("Listening enabled on channel %d", arg);
1104 break;
1106 case ISO_UNLISTEN_CHANNEL:
1108 u64 mask;
1110 if (arg<0 || arg>63) {
1111 PRINT(KERN_ERR,
1112 "%s: IS0 unlisten channel %d is out of range",
1113 __FUNCTION__, arg);
1114 return -EFAULT;
1117 mask = (u64)0x1<<arg;
1119 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1121 if (!(ohci->ISO_channel_usage & mask)) {
1122 PRINT(KERN_ERR,
1123 "%s: IS0 unlisten channel %d is not used",
1124 __FUNCTION__, arg);
1125 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1126 return -EFAULT;
1129 ohci->ISO_channel_usage &= ~mask;
1130 ohci->ir_legacy_channels &= ~mask;
1132 if (arg>31)
1133 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear,
1134 1<<(arg-32));
1135 else
1136 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear,
1137 1<<arg);
1139 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1140 DBGMSG("Listening disabled on channel %d", arg);
1142 if (ohci->ir_legacy_channels == 0) {
1143 stop_dma_rcv_ctx(&ohci->ir_legacy_context);
1144 DBGMSG("ISO legacy receive context stopped");
1147 break;
1149 default:
1150 PRINT_G(KERN_ERR, "ohci_devctl cmd %d not implemented yet",
1151 cmd);
1152 break;
1154 return retval;
1157 /***********************************
1158 * rawiso ISO reception *
1159 ***********************************/
1161 /*
1162 We use either buffer-fill or packet-per-buffer DMA mode. The DMA
1163 buffer is split into "blocks" (regions described by one DMA
1164 descriptor). Each block must be one page or less in size, and
1165 must not cross a page boundary.
1167 There is one little wrinkle with buffer-fill mode: a packet that
1168 starts in the final block may wrap around into the first block. But
1169 the user API expects all packets to be contiguous. Our solution is
1170 to keep the very last page of the DMA buffer in reserve - if a
1171 packet spans the gap, we copy its tail into this page.
1172 */
1174 struct ohci_iso_recv {
1175 struct ti_ohci *ohci;
1177 struct ohci1394_iso_tasklet task;
1178 int task_active;
1180 enum { BUFFER_FILL_MODE = 0,
1181 PACKET_PER_BUFFER_MODE = 1 } dma_mode;
1183 /* memory and PCI mapping for the DMA descriptors */
1184 struct dma_prog_region prog;
1185 struct dma_cmd *block; /* = (struct dma_cmd*) prog.virt */
1187 /* how many DMA blocks fit in the buffer */
1188 unsigned int nblocks;
1190 /* stride of DMA blocks */
1191 unsigned int buf_stride;
1193 /* number of blocks to batch between interrupts */
1194 int block_irq_interval;
1196 /* block that DMA will finish next */
1197 int block_dma;
1199 /* (buffer-fill only) block that the reader will release next */
1200 int block_reader;
1202 /* (buffer-fill only) bytes of buffer the reader has released,
1203 less than one block */
1204 int released_bytes;
1206 /* (buffer-fill only) buffer offset at which the next packet will appear */
1207 int dma_offset;
1209 /* OHCI DMA context control registers */
1210 u32 ContextControlSet;
1211 u32 ContextControlClear;
1212 u32 CommandPtr;
1213 u32 ContextMatch;
1214 };
1216 static void ohci_iso_recv_task(unsigned long data);
1217 static void ohci_iso_recv_stop(struct hpsb_iso *iso);
1218 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso);
1219 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync);
1220 static void ohci_iso_recv_program(struct hpsb_iso *iso);
1222 static int ohci_iso_recv_init(struct hpsb_iso *iso)
1224 struct ti_ohci *ohci = iso->host->hostdata;
1225 struct ohci_iso_recv *recv;
1226 int ctx;
1227 int ret = -ENOMEM;
1229 recv = kmalloc(sizeof(*recv), SLAB_KERNEL);
1230 if (!recv)
1231 return -ENOMEM;
1233 iso->hostdata = recv;
1234 recv->ohci = ohci;
1235 recv->task_active = 0;
1236 dma_prog_region_init(&recv->prog);
1237 recv->block = NULL;
1239 /* use buffer-fill mode, unless irq_interval is 1
1240 (note: multichannel requires buffer-fill) */
1242 if (((iso->irq_interval == 1 && iso->dma_mode == HPSB_ISO_DMA_OLD_ABI) ||
1243 iso->dma_mode == HPSB_ISO_DMA_PACKET_PER_BUFFER) && iso->channel != -1) {
1244 recv->dma_mode = PACKET_PER_BUFFER_MODE;
1245 } else {
1246 recv->dma_mode = BUFFER_FILL_MODE;
1249 /* set nblocks, buf_stride, block_irq_interval */
1251 if (recv->dma_mode == BUFFER_FILL_MODE) {
1252 recv->buf_stride = PAGE_SIZE;
1254 /* one block per page of data in the DMA buffer, minus the final guard page */
1255 recv->nblocks = iso->buf_size/PAGE_SIZE - 1;
1256 if (recv->nblocks < 3) {
1257 DBGMSG("ohci_iso_recv_init: DMA buffer too small");
1258 goto err;
1261 /* iso->irq_interval is in packets - translate that to blocks */
1262 if (iso->irq_interval == 1)
1263 recv->block_irq_interval = 1;
1264 else
1265 recv->block_irq_interval = iso->irq_interval *
1266 ((recv->nblocks+1)/iso->buf_packets);
1267 if (recv->block_irq_interval*4 > recv->nblocks)
1268 recv->block_irq_interval = recv->nblocks/4;
1269 if (recv->block_irq_interval < 1)
1270 recv->block_irq_interval = 1;
1272 } else {
1273 int max_packet_size;
1275 recv->nblocks = iso->buf_packets;
1276 recv->block_irq_interval = iso->irq_interval;
1277 if (recv->block_irq_interval * 4 > iso->buf_packets)
1278 recv->block_irq_interval = iso->buf_packets / 4;
1279 if (recv->block_irq_interval < 1)
1280 recv->block_irq_interval = 1;
1282 /* choose a buffer stride */
1283 /* must be a power of 2, and <= PAGE_SIZE */
1285 max_packet_size = iso->buf_size / iso->buf_packets;
1287 for (recv->buf_stride = 8; recv->buf_stride < max_packet_size;
1288 recv->buf_stride *= 2);
1290 if (recv->buf_stride*iso->buf_packets > iso->buf_size ||
1291 recv->buf_stride > PAGE_SIZE) {
1292 /* this shouldn't happen, but anyway... */
1293 DBGMSG("ohci_iso_recv_init: problem choosing a buffer stride");
1294 goto err;
1298 recv->block_reader = 0;
1299 recv->released_bytes = 0;
1300 recv->block_dma = 0;
1301 recv->dma_offset = 0;
1303 /* size of DMA program = one descriptor per block */
1304 if (dma_prog_region_alloc(&recv->prog,
1305 sizeof(struct dma_cmd) * recv->nblocks,
1306 recv->ohci->dev))
1307 goto err;
1309 recv->block = (struct dma_cmd*) recv->prog.kvirt;
1311 ohci1394_init_iso_tasklet(&recv->task,
1312 iso->channel == -1 ? OHCI_ISO_MULTICHANNEL_RECEIVE :
1313 OHCI_ISO_RECEIVE,
1314 ohci_iso_recv_task, (unsigned long) iso);
1316 if (ohci1394_register_iso_tasklet(recv->ohci, &recv->task) < 0) {
1317 ret = -EBUSY;
1318 goto err;
1321 recv->task_active = 1;
1323 /* recv context registers are spaced 32 bytes apart */
1324 ctx = recv->task.context;
1325 recv->ContextControlSet = OHCI1394_IsoRcvContextControlSet + 32 * ctx;
1326 recv->ContextControlClear = OHCI1394_IsoRcvContextControlClear + 32 * ctx;
1327 recv->CommandPtr = OHCI1394_IsoRcvCommandPtr + 32 * ctx;
1328 recv->ContextMatch = OHCI1394_IsoRcvContextMatch + 32 * ctx;
1330 if (iso->channel == -1) {
1331 /* clear multi-channel selection mask */
1332 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, 0xFFFFFFFF);
1333 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, 0xFFFFFFFF);
1336 /* write the DMA program */
1337 ohci_iso_recv_program(iso);
1339 DBGMSG("ohci_iso_recv_init: %s mode, DMA buffer is %lu pages"
1340 " (%u bytes), using %u blocks, buf_stride %u, block_irq_interval %d",
1341 recv->dma_mode == BUFFER_FILL_MODE ?
1342 "buffer-fill" : "packet-per-buffer",
1343 iso->buf_size/PAGE_SIZE, iso->buf_size,
1344 recv->nblocks, recv->buf_stride, recv->block_irq_interval);
1346 return 0;
1348 err:
1349 ohci_iso_recv_shutdown(iso);
1350 return ret;
1353 static void ohci_iso_recv_stop(struct hpsb_iso *iso)
1355 struct ohci_iso_recv *recv = iso->hostdata;
1357 /* disable interrupts */
1358 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << recv->task.context);
1360 /* halt DMA */
1361 ohci1394_stop_context(recv->ohci, recv->ContextControlClear, NULL);
1364 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso)
1366 struct ohci_iso_recv *recv = iso->hostdata;
1368 if (recv->task_active) {
1369 ohci_iso_recv_stop(iso);
1370 ohci1394_unregister_iso_tasklet(recv->ohci, &recv->task);
1371 recv->task_active = 0;
1374 dma_prog_region_free(&recv->prog);
1375 kfree(recv);
1376 iso->hostdata = NULL;
1379 /* set up a "gapped" ring buffer DMA program */
1380 static void ohci_iso_recv_program(struct hpsb_iso *iso)
1382 struct ohci_iso_recv *recv = iso->hostdata;
1383 int blk;
1385 /* address of 'branch' field in previous DMA descriptor */
1386 u32 *prev_branch = NULL;
1388 for (blk = 0; blk < recv->nblocks; blk++) {
1389 u32 control;
1391 /* the DMA descriptor */
1392 struct dma_cmd *cmd = &recv->block[blk];
1394 /* offset of the DMA descriptor relative to the DMA prog buffer */
1395 unsigned long prog_offset = blk * sizeof(struct dma_cmd);
1397 /* offset of this packet's data within the DMA buffer */
1398 unsigned long buf_offset = blk * recv->buf_stride;
1400 if (recv->dma_mode == BUFFER_FILL_MODE) {
1401 control = 2 << 28; /* INPUT_MORE */
1402 } else {
1403 control = 3 << 28; /* INPUT_LAST */
1406 control |= 8 << 24; /* s = 1, update xferStatus and resCount */
1408 /* interrupt on last block, and at intervals */
1409 if (blk == recv->nblocks-1 || (blk % recv->block_irq_interval) == 0) {
1410 control |= 3 << 20; /* want interrupt */
1413 control |= 3 << 18; /* enable branch to address */
1414 control |= recv->buf_stride;
1416 cmd->control = cpu_to_le32(control);
1417 cmd->address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, buf_offset));
1418 cmd->branchAddress = 0; /* filled in on next loop */
1419 cmd->status = cpu_to_le32(recv->buf_stride);
1421 /* link the previous descriptor to this one */
1422 if (prev_branch) {
1423 *prev_branch = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog, prog_offset) | 1);
1426 prev_branch = &cmd->branchAddress;
1429 /* the final descriptor's branch address and Z should be left at 0 */
1432 /* listen or unlisten to a specific channel (multi-channel mode only) */
1433 static void ohci_iso_recv_change_channel(struct hpsb_iso *iso, unsigned char channel, int listen)
1435 struct ohci_iso_recv *recv = iso->hostdata;
1436 int reg, i;
1438 if (channel < 32) {
1439 reg = listen ? OHCI1394_IRMultiChanMaskLoSet : OHCI1394_IRMultiChanMaskLoClear;
1440 i = channel;
1441 } else {
1442 reg = listen ? OHCI1394_IRMultiChanMaskHiSet : OHCI1394_IRMultiChanMaskHiClear;
1443 i = channel - 32;
1446 reg_write(recv->ohci, reg, (1 << i));
1448 /* issue a dummy read to force all PCI writes to be posted immediately */
1449 mb();
1450 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1453 static void ohci_iso_recv_set_channel_mask(struct hpsb_iso *iso, u64 mask)
1455 struct ohci_iso_recv *recv = iso->hostdata;
1456 int i;
1458 for (i = 0; i < 64; i++) {
1459 if (mask & (1ULL << i)) {
1460 if (i < 32)
1461 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoSet, (1 << i));
1462 else
1463 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiSet, (1 << (i-32)));
1464 } else {
1465 if (i < 32)
1466 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, (1 << i));
1467 else
1468 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, (1 << (i-32)));
1472 /* issue a dummy read to force all PCI writes to be posted immediately */
1473 mb();
1474 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1477 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync)
1479 struct ohci_iso_recv *recv = iso->hostdata;
1480 struct ti_ohci *ohci = recv->ohci;
1481 u32 command, contextMatch;
1483 reg_write(recv->ohci, recv->ContextControlClear, 0xFFFFFFFF);
1484 wmb();
1486 /* always keep ISO headers */
1487 command = (1 << 30);
1489 if (recv->dma_mode == BUFFER_FILL_MODE)
1490 command |= (1 << 31);
1492 reg_write(recv->ohci, recv->ContextControlSet, command);
1494 /* match on specified tags */
1495 contextMatch = tag_mask << 28;
1497 if (iso->channel == -1) {
1498 /* enable multichannel reception */
1499 reg_write(recv->ohci, recv->ContextControlSet, (1 << 28));
1500 } else {
1501 /* listen on channel */
1502 contextMatch |= iso->channel;
1505 if (cycle != -1) {
1506 u32 seconds;
1508 /* enable cycleMatch */
1509 reg_write(recv->ohci, recv->ContextControlSet, (1 << 29));
1511 /* set starting cycle */
1512 cycle &= 0x1FFF;
1514 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
1515 just snarf them from the current time */
1516 seconds = reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
1518 /* advance one second to give some extra time for DMA to start */
1519 seconds += 1;
1521 cycle |= (seconds & 3) << 13;
1523 contextMatch |= cycle << 12;
1526 if (sync != -1) {
1527 /* set sync flag on first DMA descriptor */
1528 struct dma_cmd *cmd = &recv->block[recv->block_dma];
1529 cmd->control |= cpu_to_le32(DMA_CTL_WAIT);
1531 /* match sync field */
1532 contextMatch |= (sync&0xf)<<8;
1535 reg_write(recv->ohci, recv->ContextMatch, contextMatch);
1537 /* address of first descriptor block */
1538 command = dma_prog_region_offset_to_bus(&recv->prog,
1539 recv->block_dma * sizeof(struct dma_cmd));
1540 command |= 1; /* Z=1 */
1542 reg_write(recv->ohci, recv->CommandPtr, command);
1544 /* enable interrupts */
1545 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskSet, 1 << recv->task.context);
1547 wmb();
1549 /* run */
1550 reg_write(recv->ohci, recv->ContextControlSet, 0x8000);
1552 /* issue a dummy read of the cycle timer register to force
1553 all PCI writes to be posted immediately */
1554 mb();
1555 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1557 /* check RUN */
1558 if (!(reg_read(recv->ohci, recv->ContextControlSet) & 0x8000)) {
1559 PRINT(KERN_ERR,
1560 "Error starting IR DMA (ContextControl 0x%08x)\n",
1561 reg_read(recv->ohci, recv->ContextControlSet));
1562 return -1;
1565 return 0;
1568 static void ohci_iso_recv_release_block(struct ohci_iso_recv *recv, int block)
1570 /* re-use the DMA descriptor for the block */
1571 /* by linking the previous descriptor to it */
1573 int next_i = block;
1574 int prev_i = (next_i == 0) ? (recv->nblocks - 1) : (next_i - 1);
1576 struct dma_cmd *next = &recv->block[next_i];
1577 struct dma_cmd *prev = &recv->block[prev_i];
1579 /* ignore out-of-range requests */
1580 if ((block < 0) || (block > recv->nblocks))
1581 return;
1583 /* 'next' becomes the new end of the DMA chain,
1584 so disable branch and enable interrupt */
1585 next->branchAddress = 0;
1586 next->control |= cpu_to_le32(3 << 20);
1587 next->status = cpu_to_le32(recv->buf_stride);
1589 /* link prev to next */
1590 prev->branchAddress = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog,
1591 sizeof(struct dma_cmd) * next_i)
1592 | 1); /* Z=1 */
1594 /* disable interrupt on previous DMA descriptor, except at intervals */
1595 if ((prev_i % recv->block_irq_interval) == 0) {
1596 prev->control |= cpu_to_le32(3 << 20); /* enable interrupt */
1597 } else {
1598 prev->control &= cpu_to_le32(~(3<<20)); /* disable interrupt */
1600 wmb();
1602 /* wake up DMA in case it fell asleep */
1603 reg_write(recv->ohci, recv->ContextControlSet, (1 << 12));
1606 static void ohci_iso_recv_bufferfill_release(struct ohci_iso_recv *recv,
1607 struct hpsb_iso_packet_info *info)
1609 /* release the memory where the packet was */
1610 recv->released_bytes += info->total_len;
1612 /* have we released enough memory for one block? */
1613 while (recv->released_bytes > recv->buf_stride) {
1614 ohci_iso_recv_release_block(recv, recv->block_reader);
1615 recv->block_reader = (recv->block_reader + 1) % recv->nblocks;
1616 recv->released_bytes -= recv->buf_stride;
1620 static inline void ohci_iso_recv_release(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
1622 struct ohci_iso_recv *recv = iso->hostdata;
1623 if (recv->dma_mode == BUFFER_FILL_MODE) {
1624 ohci_iso_recv_bufferfill_release(recv, info);
1625 } else {
1626 ohci_iso_recv_release_block(recv, info - iso->infos);
1630 /* parse all packets from blocks that have been fully received */
1631 static void ohci_iso_recv_bufferfill_parse(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1633 int wake = 0;
1634 int runaway = 0;
1635 struct ti_ohci *ohci = recv->ohci;
1637 while (1) {
1638 /* we expect the next parsable packet to begin at recv->dma_offset */
1639 /* note: packet layout is as shown in section 10.6.1.1 of the OHCI spec */
1641 unsigned int offset;
1642 unsigned short len, cycle, total_len;
1643 unsigned char channel, tag, sy;
1645 unsigned char *p = iso->data_buf.kvirt;
1647 unsigned int this_block = recv->dma_offset/recv->buf_stride;
1649 /* don't loop indefinitely */
1650 if (runaway++ > 100000) {
1651 atomic_inc(&iso->overflows);
1652 PRINT(KERN_ERR,
1653 "IR DMA error - Runaway during buffer parsing!\n");
1654 break;
1657 /* stop parsing once we arrive at block_dma (i.e. don't get ahead of DMA) */
1658 if (this_block == recv->block_dma)
1659 break;
1661 wake = 1;
1663 /* parse data length, tag, channel, and sy */
1665 /* note: we keep our own local copies of 'len' and 'offset'
1666 so the user can't mess with them by poking in the mmap area */
1668 len = p[recv->dma_offset+2] | (p[recv->dma_offset+3] << 8);
1670 if (len > 4096) {
1671 PRINT(KERN_ERR,
1672 "IR DMA error - bogus 'len' value %u\n", len);
1675 channel = p[recv->dma_offset+1] & 0x3F;
1676 tag = p[recv->dma_offset+1] >> 6;
1677 sy = p[recv->dma_offset+0] & 0xF;
1679 /* advance to data payload */
1680 recv->dma_offset += 4;
1682 /* check for wrap-around */
1683 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1684 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1687 /* dma_offset now points to the first byte of the data payload */
1688 offset = recv->dma_offset;
1690 /* advance to xferStatus/timeStamp */
1691 recv->dma_offset += len;
1693 total_len = len + 8; /* 8 bytes header+trailer in OHCI packet */
1694 /* payload is padded to 4 bytes */
1695 if (len % 4) {
1696 recv->dma_offset += 4 - (len%4);
1697 total_len += 4 - (len%4);
1700 /* check for wrap-around */
1701 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1702 /* uh oh, the packet data wraps from the last
1703 to the first DMA block - make the packet
1704 contiguous by copying its "tail" into the
1705 guard page */
1707 int guard_off = recv->buf_stride*recv->nblocks;
1708 int tail_len = len - (guard_off - offset);
1710 if (tail_len > 0 && tail_len < recv->buf_stride) {
1711 memcpy(iso->data_buf.kvirt + guard_off,
1712 iso->data_buf.kvirt,
1713 tail_len);
1716 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1719 /* parse timestamp */
1720 cycle = p[recv->dma_offset+0] | (p[recv->dma_offset+1]<<8);
1721 cycle &= 0x1FFF;
1723 /* advance to next packet */
1724 recv->dma_offset += 4;
1726 /* check for wrap-around */
1727 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1728 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1731 hpsb_iso_packet_received(iso, offset, len, total_len, cycle, channel, tag, sy);
1734 if (wake)
1735 hpsb_iso_wake(iso);
1738 static void ohci_iso_recv_bufferfill_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1740 int loop;
1741 struct ti_ohci *ohci = recv->ohci;
1743 /* loop over all blocks */
1744 for (loop = 0; loop < recv->nblocks; loop++) {
1746 /* check block_dma to see if it's done */
1747 struct dma_cmd *im = &recv->block[recv->block_dma];
1749 /* check the DMA descriptor for new writes to xferStatus */
1750 u16 xferstatus = le32_to_cpu(im->status) >> 16;
1752 /* rescount is the number of bytes *remaining to be written* in the block */
1753 u16 rescount = le32_to_cpu(im->status) & 0xFFFF;
1755 unsigned char event = xferstatus & 0x1F;
1757 if (!event) {
1758 /* nothing has happened to this block yet */
1759 break;
1762 if (event != 0x11) {
1763 atomic_inc(&iso->overflows);
1764 PRINT(KERN_ERR,
1765 "IR DMA error - OHCI error code 0x%02x\n", event);
1768 if (rescount != 0) {
1769 /* the card is still writing to this block;
1770 we can't touch it until it's done */
1771 break;
1774 /* OK, the block is finished... */
1776 /* sync our view of the block */
1777 dma_region_sync_for_cpu(&iso->data_buf, recv->block_dma*recv->buf_stride, recv->buf_stride);
1779 /* reset the DMA descriptor */
1780 im->status = recv->buf_stride;
1782 /* advance block_dma */
1783 recv->block_dma = (recv->block_dma + 1) % recv->nblocks;
1785 if ((recv->block_dma+1) % recv->nblocks == recv->block_reader) {
1786 atomic_inc(&iso->overflows);
1787 DBGMSG("ISO reception overflow - "
1788 "ran out of DMA blocks");
1792 /* parse any packets that have arrived */
1793 ohci_iso_recv_bufferfill_parse(iso, recv);
1796 static void ohci_iso_recv_packetperbuf_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1798 int count;
1799 int wake = 0;
1800 struct ti_ohci *ohci = recv->ohci;
1802 /* loop over the entire buffer */
1803 for (count = 0; count < recv->nblocks; count++) {
1804 u32 packet_len = 0;
1806 /* pointer to the DMA descriptor */
1807 struct dma_cmd *il = ((struct dma_cmd*) recv->prog.kvirt) + iso->pkt_dma;
1809 /* check the DMA descriptor for new writes to xferStatus */
1810 u16 xferstatus = le32_to_cpu(il->status) >> 16;
1811 u16 rescount = le32_to_cpu(il->status) & 0xFFFF;
1813 unsigned char event = xferstatus & 0x1F;
1815 if (!event) {
1816 /* this packet hasn't come in yet; we are done for now */
1817 goto out;
1820 if (event == 0x11) {
1821 /* packet received successfully! */
1823 /* rescount is the number of bytes *remaining* in the packet buffer,
1824 after the packet was written */
1825 packet_len = recv->buf_stride - rescount;
1827 } else if (event == 0x02) {
1828 PRINT(KERN_ERR, "IR DMA error - packet too long for buffer\n");
1829 } else if (event) {
1830 PRINT(KERN_ERR, "IR DMA error - OHCI error code 0x%02x\n", event);
1833 /* sync our view of the buffer */
1834 dma_region_sync_for_cpu(&iso->data_buf, iso->pkt_dma * recv->buf_stride, recv->buf_stride);
1836 /* record the per-packet info */
1838 /* iso header is 8 bytes ahead of the data payload */
1839 unsigned char *hdr;
1841 unsigned int offset;
1842 unsigned short cycle;
1843 unsigned char channel, tag, sy;
1845 offset = iso->pkt_dma * recv->buf_stride;
1846 hdr = iso->data_buf.kvirt + offset;
1848 /* skip iso header */
1849 offset += 8;
1850 packet_len -= 8;
1852 cycle = (hdr[0] | (hdr[1] << 8)) & 0x1FFF;
1853 channel = hdr[5] & 0x3F;
1854 tag = hdr[5] >> 6;
1855 sy = hdr[4] & 0xF;
1857 hpsb_iso_packet_received(iso, offset, packet_len,
1858 recv->buf_stride, cycle, channel, tag, sy);
1861 /* reset the DMA descriptor */
1862 il->status = recv->buf_stride;
1864 wake = 1;
1865 recv->block_dma = iso->pkt_dma;
1868 out:
1869 if (wake)
1870 hpsb_iso_wake(iso);
1873 static void ohci_iso_recv_task(unsigned long data)
1875 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1876 struct ohci_iso_recv *recv = iso->hostdata;
1878 if (recv->dma_mode == BUFFER_FILL_MODE)
1879 ohci_iso_recv_bufferfill_task(iso, recv);
1880 else
1881 ohci_iso_recv_packetperbuf_task(iso, recv);
1884 /***********************************
1885 * rawiso ISO transmission *
1886 ***********************************/
1888 struct ohci_iso_xmit {
1889 struct ti_ohci *ohci;
1890 struct dma_prog_region prog;
1891 struct ohci1394_iso_tasklet task;
1892 int task_active;
1894 u32 ContextControlSet;
1895 u32 ContextControlClear;
1896 u32 CommandPtr;
1897 };
1899 /* transmission DMA program:
1900 one OUTPUT_MORE_IMMEDIATE for the IT header
1901 one OUTPUT_LAST for the buffer data */
1903 struct iso_xmit_cmd {
1904 struct dma_cmd output_more_immediate;
1905 u8 iso_hdr[8];
1906 u32 unused[2];
1907 struct dma_cmd output_last;
1908 };
1910 static int ohci_iso_xmit_init(struct hpsb_iso *iso);
1911 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle);
1912 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso);
1913 static void ohci_iso_xmit_task(unsigned long data);
1915 static int ohci_iso_xmit_init(struct hpsb_iso *iso)
1917 struct ohci_iso_xmit *xmit;
1918 unsigned int prog_size;
1919 int ctx;
1920 int ret = -ENOMEM;
1922 xmit = kmalloc(sizeof(*xmit), SLAB_KERNEL);
1923 if (!xmit)
1924 return -ENOMEM;
1926 iso->hostdata = xmit;
1927 xmit->ohci = iso->host->hostdata;
1928 xmit->task_active = 0;
1930 dma_prog_region_init(&xmit->prog);
1932 prog_size = sizeof(struct iso_xmit_cmd) * iso->buf_packets;
1934 if (dma_prog_region_alloc(&xmit->prog, prog_size, xmit->ohci->dev))
1935 goto err;
1937 ohci1394_init_iso_tasklet(&xmit->task, OHCI_ISO_TRANSMIT,
1938 ohci_iso_xmit_task, (unsigned long) iso);
1940 if (ohci1394_register_iso_tasklet(xmit->ohci, &xmit->task) < 0) {
1941 ret = -EBUSY;
1942 goto err;
1945 xmit->task_active = 1;
1947 /* xmit context registers are spaced 16 bytes apart */
1948 ctx = xmit->task.context;
1949 xmit->ContextControlSet = OHCI1394_IsoXmitContextControlSet + 16 * ctx;
1950 xmit->ContextControlClear = OHCI1394_IsoXmitContextControlClear + 16 * ctx;
1951 xmit->CommandPtr = OHCI1394_IsoXmitCommandPtr + 16 * ctx;
1953 return 0;
1955 err:
1956 ohci_iso_xmit_shutdown(iso);
1957 return ret;
1960 static void ohci_iso_xmit_stop(struct hpsb_iso *iso)
1962 struct ohci_iso_xmit *xmit = iso->hostdata;
1963 struct ti_ohci *ohci = xmit->ohci;
1965 /* disable interrupts */
1966 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskClear, 1 << xmit->task.context);
1968 /* halt DMA */
1969 if (ohci1394_stop_context(xmit->ohci, xmit->ContextControlClear, NULL)) {
1970 /* XXX the DMA context will lock up if you try to send too much data! */
1971 PRINT(KERN_ERR,
1972 "you probably exceeded the OHCI card's bandwidth limit - "
1973 "reload the module and reduce xmit bandwidth");
1977 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso)
1979 struct ohci_iso_xmit *xmit = iso->hostdata;
1981 if (xmit->task_active) {
1982 ohci_iso_xmit_stop(iso);
1983 ohci1394_unregister_iso_tasklet(xmit->ohci, &xmit->task);
1984 xmit->task_active = 0;
1987 dma_prog_region_free(&xmit->prog);
1988 kfree(xmit);
1989 iso->hostdata = NULL;
1992 static void ohci_iso_xmit_task(unsigned long data)
1994 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1995 struct ohci_iso_xmit *xmit = iso->hostdata;
1996 struct ti_ohci *ohci = xmit->ohci;
1997 int wake = 0;
1998 int count;
2000 /* check the whole buffer if necessary, starting at pkt_dma */
2001 for (count = 0; count < iso->buf_packets; count++) {
2002 int cycle;
2004 /* DMA descriptor */
2005 struct iso_xmit_cmd *cmd = dma_region_i(&xmit->prog, struct iso_xmit_cmd, iso->pkt_dma);
2007 /* check for new writes to xferStatus */
2008 u16 xferstatus = le32_to_cpu(cmd->output_last.status) >> 16;
2009 u8 event = xferstatus & 0x1F;
2011 if (!event) {
2012 /* packet hasn't been sent yet; we are done for now */
2013 break;
2016 if (event != 0x11)
2017 PRINT(KERN_ERR,
2018 "IT DMA error - OHCI error code 0x%02x\n", event);
2020 /* at least one packet went out, so wake up the writer */
2021 wake = 1;
2023 /* parse cycle */
2024 cycle = le32_to_cpu(cmd->output_last.status) & 0x1FFF;
2026 /* tell the subsystem the packet has gone out */
2027 hpsb_iso_packet_sent(iso, cycle, event != 0x11);
2029 /* reset the DMA descriptor for next time */
2030 cmd->output_last.status = 0;
2033 if (wake)
2034 hpsb_iso_wake(iso);
2037 static int ohci_iso_xmit_queue(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
2039 struct ohci_iso_xmit *xmit = iso->hostdata;
2040 struct ti_ohci *ohci = xmit->ohci;
2042 int next_i, prev_i;
2043 struct iso_xmit_cmd *next, *prev;
2045 unsigned int offset;
2046 unsigned short len;
2047 unsigned char tag, sy;
2049 /* check that the packet doesn't cross a page boundary
2050 (we could allow this if we added OUTPUT_MORE descriptor support) */
2051 if (cross_bound(info->offset, info->len)) {
2052 PRINT(KERN_ERR,
2053 "rawiso xmit: packet %u crosses a page boundary",
2054 iso->first_packet);
2055 return -EINVAL;
2058 offset = info->offset;
2059 len = info->len;
2060 tag = info->tag;
2061 sy = info->sy;
2063 /* sync up the card's view of the buffer */
2064 dma_region_sync_for_device(&iso->data_buf, offset, len);
2066 /* append first_packet to the DMA chain */
2067 /* by linking the previous descriptor to it */
2068 /* (next will become the new end of the DMA chain) */
2070 next_i = iso->first_packet;
2071 prev_i = (next_i == 0) ? (iso->buf_packets - 1) : (next_i - 1);
2073 next = dma_region_i(&xmit->prog, struct iso_xmit_cmd, next_i);
2074 prev = dma_region_i(&xmit->prog, struct iso_xmit_cmd, prev_i);
2076 /* set up the OUTPUT_MORE_IMMEDIATE descriptor */
2077 memset(next, 0, sizeof(struct iso_xmit_cmd));
2078 next->output_more_immediate.control = cpu_to_le32(0x02000008);
2080 /* ISO packet header is embedded in the OUTPUT_MORE_IMMEDIATE */
2082 /* tcode = 0xA, and sy */
2083 next->iso_hdr[0] = 0xA0 | (sy & 0xF);
2085 /* tag and channel number */
2086 next->iso_hdr[1] = (tag << 6) | (iso->channel & 0x3F);
2088 /* transmission speed */
2089 next->iso_hdr[2] = iso->speed & 0x7;
2091 /* payload size */
2092 next->iso_hdr[6] = len & 0xFF;
2093 next->iso_hdr[7] = len >> 8;
2095 /* set up the OUTPUT_LAST */
2096 next->output_last.control = cpu_to_le32(1 << 28);
2097 next->output_last.control |= cpu_to_le32(1 << 27); /* update timeStamp */
2098 next->output_last.control |= cpu_to_le32(3 << 20); /* want interrupt */
2099 next->output_last.control |= cpu_to_le32(3 << 18); /* enable branch */
2100 next->output_last.control |= cpu_to_le32(len);
2102 /* payload bus address */
2103 next->output_last.address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, offset));
2105 /* leave branchAddress at zero for now */
2107 /* re-write the previous DMA descriptor to chain to this one */
2109 /* set prev branch address to point to next (Z=3) */
2110 prev->output_last.branchAddress = cpu_to_le32(
2111 dma_prog_region_offset_to_bus(&xmit->prog, sizeof(struct iso_xmit_cmd) * next_i) | 3);
2113 /* disable interrupt, unless required by the IRQ interval */
2114 if (prev_i % iso->irq_interval) {
2115 prev->output_last.control &= cpu_to_le32(~(3 << 20)); /* no interrupt */
2116 } else {
2117 prev->output_last.control |= cpu_to_le32(3 << 20); /* enable interrupt */
2120 wmb();
2122 /* wake DMA in case it is sleeping */
2123 reg_write(xmit->ohci, xmit->ContextControlSet, 1 << 12);
2125 /* issue a dummy read of the cycle timer to force all PCI
2126 writes to be posted immediately */
2127 mb();
2128 reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer);
2130 return 0;
2133 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle)
2135 struct ohci_iso_xmit *xmit = iso->hostdata;
2136 struct ti_ohci *ohci = xmit->ohci;
2138 /* clear out the control register */
2139 reg_write(xmit->ohci, xmit->ContextControlClear, 0xFFFFFFFF);
2140 wmb();
2142 /* address and length of first descriptor block (Z=3) */
2143 reg_write(xmit->ohci, xmit->CommandPtr,
2144 dma_prog_region_offset_to_bus(&xmit->prog, iso->pkt_dma * sizeof(struct iso_xmit_cmd)) | 3);
2146 /* cycle match */
2147 if (cycle != -1) {
2148 u32 start = cycle & 0x1FFF;
2150 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
2151 just snarf them from the current time */
2152 u32 seconds = reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
2154 /* advance one second to give some extra time for DMA to start */
2155 seconds += 1;
2157 start |= (seconds & 3) << 13;
2159 reg_write(xmit->ohci, xmit->ContextControlSet, 0x80000000 | (start << 16));
2162 /* enable interrupts */
2163 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskSet, 1 << xmit->task.context);
2165 /* run */
2166 reg_write(xmit->ohci, xmit->ContextControlSet, 0x8000);
2167 mb();
2169 /* wait 100 usec to give the card time to go active */
2170 udelay(100);
2172 /* check the RUN bit */
2173 if (!(reg_read(xmit->ohci, xmit->ContextControlSet) & 0x8000)) {
2174 PRINT(KERN_ERR, "Error starting IT DMA (ContextControl 0x%08x)\n",
2175 reg_read(xmit->ohci, xmit->ContextControlSet));
2176 return -1;
2179 return 0;
2182 static int ohci_isoctl(struct hpsb_iso *iso, enum isoctl_cmd cmd, unsigned long arg)
2185 switch(cmd) {
2186 case XMIT_INIT:
2187 return ohci_iso_xmit_init(iso);
2188 case XMIT_START:
2189 return ohci_iso_xmit_start(iso, arg);
2190 case XMIT_STOP:
2191 ohci_iso_xmit_stop(iso);
2192 return 0;
2193 case XMIT_QUEUE:
2194 return ohci_iso_xmit_queue(iso, (struct hpsb_iso_packet_info*) arg);
2195 case XMIT_SHUTDOWN:
2196 ohci_iso_xmit_shutdown(iso);
2197 return 0;
2199 case RECV_INIT:
2200 return ohci_iso_recv_init(iso);
2201 case RECV_START: {
2202 int *args = (int*) arg;
2203 return ohci_iso_recv_start(iso, args[0], args[1], args[2]);
2205 case RECV_STOP:
2206 ohci_iso_recv_stop(iso);
2207 return 0;
2208 case RECV_RELEASE:
2209 ohci_iso_recv_release(iso, (struct hpsb_iso_packet_info*) arg);
2210 return 0;
2211 case RECV_FLUSH:
2212 ohci_iso_recv_task((unsigned long) iso);
2213 return 0;
2214 case RECV_SHUTDOWN:
2215 ohci_iso_recv_shutdown(iso);
2216 return 0;
2217 case RECV_LISTEN_CHANNEL:
2218 ohci_iso_recv_change_channel(iso, arg, 1);
2219 return 0;
2220 case RECV_UNLISTEN_CHANNEL:
2221 ohci_iso_recv_change_channel(iso, arg, 0);
2222 return 0;
2223 case RECV_SET_CHANNEL_MASK:
2224 ohci_iso_recv_set_channel_mask(iso, *((u64*) arg));
2225 return 0;
2227 default:
2228 PRINT_G(KERN_ERR, "ohci_isoctl cmd %d not implemented yet",
2229 cmd);
2230 break;
2232 return -EINVAL;
2235 /***************************************
2236 * IEEE-1394 functionality section END *
2237 ***************************************/
2240 /********************************************************
2241 * Global stuff (interrupt handler, init/shutdown code) *
2242 ********************************************************/
2244 static void dma_trm_reset(struct dma_trm_ctx *d)
2246 unsigned long flags;
2247 LIST_HEAD(packet_list);
2248 struct ti_ohci *ohci = d->ohci;
2249 struct hpsb_packet *packet, *ptmp;
2251 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
2253 /* Lock the context, reset it and release it. Move the packets
2254 * that were pending in the context to packet_list and free
2255 * them after releasing the lock. */
2257 spin_lock_irqsave(&d->lock, flags);
2259 list_splice(&d->fifo_list, &packet_list);
2260 list_splice(&d->pending_list, &packet_list);
2261 INIT_LIST_HEAD(&d->fifo_list);
2262 INIT_LIST_HEAD(&d->pending_list);
2264 d->branchAddrPtr = NULL;
2265 d->sent_ind = d->prg_ind;
2266 d->free_prgs = d->num_desc;
2268 spin_unlock_irqrestore(&d->lock, flags);
2270 if (list_empty(&packet_list))
2271 return;
2273 PRINT(KERN_INFO, "AT dma reset ctx=%d, aborting transmission", d->ctx);
2275 /* Now process subsystem callbacks for the packets from this
2276 * context. */
2277 list_for_each_entry_safe(packet, ptmp, &packet_list, driver_list) {
2278 list_del_init(&packet->driver_list);
2279 hpsb_packet_sent(ohci->host, packet, ACKX_ABORTED);
2283 static void ohci_schedule_iso_tasklets(struct ti_ohci *ohci,
2284 quadlet_t rx_event,
2285 quadlet_t tx_event)
2287 struct ohci1394_iso_tasklet *t;
2288 unsigned long mask;
2289 unsigned long flags;
2291 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
2293 list_for_each_entry(t, &ohci->iso_tasklet_list, link) {
2294 mask = 1 << t->context;
2296 if (t->type == OHCI_ISO_TRANSMIT && tx_event & mask)
2297 tasklet_schedule(&t->tasklet);
2298 else if (rx_event & mask)
2299 tasklet_schedule(&t->tasklet);
2302 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
2305 static irqreturn_t ohci_irq_handler(int irq, void *dev_id,
2306 struct pt_regs *regs_are_unused)
2308 quadlet_t event, node_id;
2309 struct ti_ohci *ohci = (struct ti_ohci *)dev_id;
2310 struct hpsb_host *host = ohci->host;
2311 int phyid = -1, isroot = 0;
2312 unsigned long flags;
2314 /* Read and clear the interrupt event register. Don't clear
2315 * the busReset event, though. This is done when we get the
2316 * selfIDComplete interrupt. */
2317 spin_lock_irqsave(&ohci->event_lock, flags);
2318 event = reg_read(ohci, OHCI1394_IntEventClear);
2319 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
2320 spin_unlock_irqrestore(&ohci->event_lock, flags);
2322 if (!event)
2323 return IRQ_NONE;
2325 /* If event is ~(u32)0 cardbus card was ejected. In this case
2326 * we just return, and clean up in the ohci1394_pci_remove
2327 * function. */
2328 if (event == ~(u32) 0) {
2329 DBGMSG("Device removed.");
2330 return IRQ_NONE;
2333 DBGMSG("IntEvent: %08x", event);
2335 if (event & OHCI1394_unrecoverableError) {
2336 int ctx;
2337 PRINT(KERN_ERR, "Unrecoverable error!");
2339 if (reg_read(ohci, OHCI1394_AsReqTrContextControlSet) & 0x800)
2340 PRINT(KERN_ERR, "Async Req Tx Context died: "
2341 "ctrl[%08x] cmdptr[%08x]",
2342 reg_read(ohci, OHCI1394_AsReqTrContextControlSet),
2343 reg_read(ohci, OHCI1394_AsReqTrCommandPtr));
2345 if (reg_read(ohci, OHCI1394_AsRspTrContextControlSet) & 0x800)
2346 PRINT(KERN_ERR, "Async Rsp Tx Context died: "
2347 "ctrl[%08x] cmdptr[%08x]",
2348 reg_read(ohci, OHCI1394_AsRspTrContextControlSet),
2349 reg_read(ohci, OHCI1394_AsRspTrCommandPtr));
2351 if (reg_read(ohci, OHCI1394_AsReqRcvContextControlSet) & 0x800)
2352 PRINT(KERN_ERR, "Async Req Rcv Context died: "
2353 "ctrl[%08x] cmdptr[%08x]",
2354 reg_read(ohci, OHCI1394_AsReqRcvContextControlSet),
2355 reg_read(ohci, OHCI1394_AsReqRcvCommandPtr));
2357 if (reg_read(ohci, OHCI1394_AsRspRcvContextControlSet) & 0x800)
2358 PRINT(KERN_ERR, "Async Rsp Rcv Context died: "
2359 "ctrl[%08x] cmdptr[%08x]",
2360 reg_read(ohci, OHCI1394_AsRspRcvContextControlSet),
2361 reg_read(ohci, OHCI1394_AsRspRcvCommandPtr));
2363 for (ctx = 0; ctx < ohci->nb_iso_xmit_ctx; ctx++) {
2364 if (reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)) & 0x800)
2365 PRINT(KERN_ERR, "Iso Xmit %d Context died: "
2366 "ctrl[%08x] cmdptr[%08x]", ctx,
2367 reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)),
2368 reg_read(ohci, OHCI1394_IsoXmitCommandPtr + (16 * ctx)));
2371 for (ctx = 0; ctx < ohci->nb_iso_rcv_ctx; ctx++) {
2372 if (reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)) & 0x800)
2373 PRINT(KERN_ERR, "Iso Recv %d Context died: "
2374 "ctrl[%08x] cmdptr[%08x] match[%08x]", ctx,
2375 reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)),
2376 reg_read(ohci, OHCI1394_IsoRcvCommandPtr + (32 * ctx)),
2377 reg_read(ohci, OHCI1394_IsoRcvContextMatch + (32 * ctx)));
2380 event &= ~OHCI1394_unrecoverableError;
2382 if (event & OHCI1394_postedWriteErr) {
2383 PRINT(KERN_ERR, "physical posted write error");
2384 /* no recovery strategy yet, had to involve protocol drivers */
2386 if (event & OHCI1394_cycleTooLong) {
2387 if(printk_ratelimit())
2388 PRINT(KERN_WARNING, "isochronous cycle too long");
2389 else
2390 DBGMSG("OHCI1394_cycleTooLong");
2391 reg_write(ohci, OHCI1394_LinkControlSet,
2392 OHCI1394_LinkControl_CycleMaster);
2393 event &= ~OHCI1394_cycleTooLong;
2395 if (event & OHCI1394_cycleInconsistent) {
2396 /* We subscribe to the cycleInconsistent event only to
2397 * clear the corresponding event bit... otherwise,
2398 * isochronous cycleMatch DMA won't work. */
2399 DBGMSG("OHCI1394_cycleInconsistent");
2400 event &= ~OHCI1394_cycleInconsistent;
2402 if (event & OHCI1394_busReset) {
2403 /* The busReset event bit can't be cleared during the
2404 * selfID phase, so we disable busReset interrupts, to
2405 * avoid burying the cpu in interrupt requests. */
2406 spin_lock_irqsave(&ohci->event_lock, flags);
2407 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2409 if (ohci->check_busreset) {
2410 int loop_count = 0;
2412 udelay(10);
2414 while (reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
2415 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2417 spin_unlock_irqrestore(&ohci->event_lock, flags);
2418 udelay(10);
2419 spin_lock_irqsave(&ohci->event_lock, flags);
2421 /* The loop counter check is to prevent the driver
2422 * from remaining in this state forever. For the
2423 * initial bus reset, the loop continues for ever
2424 * and the system hangs, until some device is plugged-in
2425 * or out manually into a port! The forced reset seems
2426 * to solve this problem. This mainly effects nForce2. */
2427 if (loop_count > 10000) {
2428 ohci_devctl(host, RESET_BUS, LONG_RESET);
2429 DBGMSG("Detected bus-reset loop. Forced a bus reset!");
2430 loop_count = 0;
2433 loop_count++;
2436 spin_unlock_irqrestore(&ohci->event_lock, flags);
2437 if (!host->in_bus_reset) {
2438 DBGMSG("irq_handler: Bus reset requested");
2440 /* Subsystem call */
2441 hpsb_bus_reset(ohci->host);
2443 event &= ~OHCI1394_busReset;
2445 if (event & OHCI1394_reqTxComplete) {
2446 struct dma_trm_ctx *d = &ohci->at_req_context;
2447 DBGMSG("Got reqTxComplete interrupt "
2448 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2449 if (reg_read(ohci, d->ctrlSet) & 0x800)
2450 ohci1394_stop_context(ohci, d->ctrlClear,
2451 "reqTxComplete");
2452 else
2453 dma_trm_tasklet((unsigned long)d);
2454 //tasklet_schedule(&d->task);
2455 event &= ~OHCI1394_reqTxComplete;
2457 if (event & OHCI1394_respTxComplete) {
2458 struct dma_trm_ctx *d = &ohci->at_resp_context;
2459 DBGMSG("Got respTxComplete interrupt "
2460 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2461 if (reg_read(ohci, d->ctrlSet) & 0x800)
2462 ohci1394_stop_context(ohci, d->ctrlClear,
2463 "respTxComplete");
2464 else
2465 tasklet_schedule(&d->task);
2466 event &= ~OHCI1394_respTxComplete;
2468 if (event & OHCI1394_RQPkt) {
2469 struct dma_rcv_ctx *d = &ohci->ar_req_context;
2470 DBGMSG("Got RQPkt interrupt status=0x%08X",
2471 reg_read(ohci, d->ctrlSet));
2472 if (reg_read(ohci, d->ctrlSet) & 0x800)
2473 ohci1394_stop_context(ohci, d->ctrlClear, "RQPkt");
2474 else
2475 tasklet_schedule(&d->task);
2476 event &= ~OHCI1394_RQPkt;
2478 if (event & OHCI1394_RSPkt) {
2479 struct dma_rcv_ctx *d = &ohci->ar_resp_context;
2480 DBGMSG("Got RSPkt interrupt status=0x%08X",
2481 reg_read(ohci, d->ctrlSet));
2482 if (reg_read(ohci, d->ctrlSet) & 0x800)
2483 ohci1394_stop_context(ohci, d->ctrlClear, "RSPkt");
2484 else
2485 tasklet_schedule(&d->task);
2486 event &= ~OHCI1394_RSPkt;
2488 if (event & OHCI1394_isochRx) {
2489 quadlet_t rx_event;
2491 rx_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
2492 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, rx_event);
2493 ohci_schedule_iso_tasklets(ohci, rx_event, 0);
2494 event &= ~OHCI1394_isochRx;
2496 if (event & OHCI1394_isochTx) {
2497 quadlet_t tx_event;
2499 tx_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
2500 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, tx_event);
2501 ohci_schedule_iso_tasklets(ohci, 0, tx_event);
2502 event &= ~OHCI1394_isochTx;
2504 if (event & OHCI1394_selfIDComplete) {
2505 if (host->in_bus_reset) {
2506 node_id = reg_read(ohci, OHCI1394_NodeID);
2508 if (!(node_id & 0x80000000)) {
2509 PRINT(KERN_ERR,
2510 "SelfID received, but NodeID invalid "
2511 "(probably new bus reset occurred): %08X",
2512 node_id);
2513 goto selfid_not_valid;
2516 phyid = node_id & 0x0000003f;
2517 isroot = (node_id & 0x40000000) != 0;
2519 DBGMSG("SelfID interrupt received "
2520 "(phyid %d, %s)", phyid,
2521 (isroot ? "root" : "not root"));
2523 handle_selfid(ohci, host, phyid, isroot);
2525 /* Clear the bus reset event and re-enable the
2526 * busReset interrupt. */
2527 spin_lock_irqsave(&ohci->event_lock, flags);
2528 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2529 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2530 spin_unlock_irqrestore(&ohci->event_lock, flags);
2532 /* Turn on phys dma reception.
2534 * TODO: Enable some sort of filtering management.
2535 */
2536 if (phys_dma) {
2537 reg_write(ohci, OHCI1394_PhyReqFilterHiSet,
2538 0xffffffff);
2539 reg_write(ohci, OHCI1394_PhyReqFilterLoSet,
2540 0xffffffff);
2543 DBGMSG("PhyReqFilter=%08x%08x",
2544 reg_read(ohci, OHCI1394_PhyReqFilterHiSet),
2545 reg_read(ohci, OHCI1394_PhyReqFilterLoSet));
2547 hpsb_selfid_complete(host, phyid, isroot);
2548 } else
2549 PRINT(KERN_ERR,
2550 "SelfID received outside of bus reset sequence");
2552 selfid_not_valid:
2553 event &= ~OHCI1394_selfIDComplete;
2556 /* Make sure we handle everything, just in case we accidentally
2557 * enabled an interrupt that we didn't write a handler for. */
2558 if (event)
2559 PRINT(KERN_ERR, "Unhandled interrupt(s) 0x%08x",
2560 event);
2562 return IRQ_HANDLED;
2565 /* Put the buffer back into the dma context */
2566 static void insert_dma_buffer(struct dma_rcv_ctx *d, int idx)
2568 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2569 DBGMSG("Inserting dma buf ctx=%d idx=%d", d->ctx, idx);
2571 d->prg_cpu[idx]->status = cpu_to_le32(d->buf_size);
2572 d->prg_cpu[idx]->branchAddress &= le32_to_cpu(0xfffffff0);
2573 idx = (idx + d->num_desc - 1 ) % d->num_desc;
2574 d->prg_cpu[idx]->branchAddress |= le32_to_cpu(0x00000001);
2576 /* To avoid a race, ensure 1394 interface hardware sees the inserted
2577 * context program descriptors before it sees the wakeup bit set. */
2578 wmb();
2580 /* wake up the dma context if necessary */
2581 if (!(reg_read(ohci, d->ctrlSet) & 0x400)) {
2582 PRINT(KERN_INFO,
2583 "Waking dma ctx=%d ... processing is probably too slow",
2584 d->ctx);
2587 /* do this always, to avoid race condition */
2588 reg_write(ohci, d->ctrlSet, 0x1000);
2591 #define cond_le32_to_cpu(data, noswap) \
2592 (noswap ? data : le32_to_cpu(data))
2594 static const int TCODE_SIZE[16] = {20, 0, 16, -1, 16, 20, 20, 0,
2595 -1, 0, -1, 0, -1, -1, 16, -1};
2597 /*
2598 * Determine the length of a packet in the buffer
2599 * Optimization suggested by Pascal Drolet <pascal.drolet@informission.ca>
2600 */
2601 static __inline__ int packet_length(struct dma_rcv_ctx *d, int idx, quadlet_t *buf_ptr,
2602 int offset, unsigned char tcode, int noswap)
2604 int length = -1;
2606 if (d->type == DMA_CTX_ASYNC_REQ || d->type == DMA_CTX_ASYNC_RESP) {
2607 length = TCODE_SIZE[tcode];
2608 if (length == 0) {
2609 if (offset + 12 >= d->buf_size) {
2610 length = (cond_le32_to_cpu(d->buf_cpu[(idx + 1) % d->num_desc]
2611 [3 - ((d->buf_size - offset) >> 2)], noswap) >> 16);
2612 } else {
2613 length = (cond_le32_to_cpu(buf_ptr[3], noswap) >> 16);
2615 length += 20;
2617 } else if (d->type == DMA_CTX_ISO) {
2618 /* Assumption: buffer fill mode with header/trailer */
2619 length = (cond_le32_to_cpu(buf_ptr[0], noswap) >> 16) + 8;
2622 if (length > 0 && length % 4)
2623 length += 4 - (length % 4);
2625 return length;
2628 /* Tasklet that processes dma receive buffers */
2629 static void dma_rcv_tasklet (unsigned long data)
2631 struct dma_rcv_ctx *d = (struct dma_rcv_ctx*)data;
2632 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2633 unsigned int split_left, idx, offset, rescount;
2634 unsigned char tcode;
2635 int length, bytes_left, ack;
2636 unsigned long flags;
2637 quadlet_t *buf_ptr;
2638 char *split_ptr;
2639 char msg[256];
2641 spin_lock_irqsave(&d->lock, flags);
2643 idx = d->buf_ind;
2644 offset = d->buf_offset;
2645 buf_ptr = d->buf_cpu[idx] + offset/4;
2647 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2648 bytes_left = d->buf_size - rescount - offset;
2650 while (bytes_left > 0) {
2651 tcode = (cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming) >> 4) & 0xf;
2653 /* packet_length() will return < 4 for an error */
2654 length = packet_length(d, idx, buf_ptr, offset, tcode, ohci->no_swap_incoming);
2656 if (length < 4) { /* something is wrong */
2657 sprintf(msg,"Unexpected tcode 0x%x(0x%08x) in AR ctx=%d, length=%d",
2658 tcode, cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming),
2659 d->ctx, length);
2660 ohci1394_stop_context(ohci, d->ctrlClear, msg);
2661 spin_unlock_irqrestore(&d->lock, flags);
2662 return;
2665 /* The first case is where we have a packet that crosses
2666 * over more than one descriptor. The next case is where
2667 * it's all in the first descriptor. */
2668 if ((offset + length) > d->buf_size) {
2669 DBGMSG("Split packet rcv'd");
2670 if (length > d->split_buf_size) {
2671 ohci1394_stop_context(ohci, d->ctrlClear,
2672 "Split packet size exceeded");
2673 d->buf_ind = idx;
2674 d->buf_offset = offset;
2675 spin_unlock_irqrestore(&d->lock, flags);
2676 return;
2679 if (le32_to_cpu(d->prg_cpu[(idx+1)%d->num_desc]->status)
2680 == d->buf_size) {
2681 /* Other part of packet not written yet.
2682 * this should never happen I think
2683 * anyway we'll get it on the next call. */
2684 PRINT(KERN_INFO,
2685 "Got only half a packet!");
2686 d->buf_ind = idx;
2687 d->buf_offset = offset;
2688 spin_unlock_irqrestore(&d->lock, flags);
2689 return;
2692 split_left = length;
2693 split_ptr = (char *)d->spb;
2694 memcpy(split_ptr,buf_ptr,d->buf_size-offset);
2695 split_left -= d->buf_size-offset;
2696 split_ptr += d->buf_size-offset;
2697 insert_dma_buffer(d, idx);
2698 idx = (idx+1) % d->num_desc;
2699 buf_ptr = d->buf_cpu[idx];
2700 offset=0;
2702 while (split_left >= d->buf_size) {
2703 memcpy(split_ptr,buf_ptr,d->buf_size);
2704 split_ptr += d->buf_size;
2705 split_left -= d->buf_size;
2706 insert_dma_buffer(d, idx);
2707 idx = (idx+1) % d->num_desc;
2708 buf_ptr = d->buf_cpu[idx];
2711 if (split_left > 0) {
2712 memcpy(split_ptr, buf_ptr, split_left);
2713 offset = split_left;
2714 buf_ptr += offset/4;
2716 } else {
2717 DBGMSG("Single packet rcv'd");
2718 memcpy(d->spb, buf_ptr, length);
2719 offset += length;
2720 buf_ptr += length/4;
2721 if (offset==d->buf_size) {
2722 insert_dma_buffer(d, idx);
2723 idx = (idx+1) % d->num_desc;
2724 buf_ptr = d->buf_cpu[idx];
2725 offset=0;
2729 /* We get one phy packet to the async descriptor for each
2730 * bus reset. We always ignore it. */
2731 if (tcode != OHCI1394_TCODE_PHY) {
2732 if (!ohci->no_swap_incoming)
2733 packet_swab(d->spb, tcode);
2734 DBGMSG("Packet received from node"
2735 " %d ack=0x%02X spd=%d tcode=0x%X"
2736 " length=%d ctx=%d tlabel=%d",
2737 (d->spb[1]>>16)&0x3f,
2738 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f,
2739 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>21)&0x3,
2740 tcode, length, d->ctx,
2741 (cond_le32_to_cpu(d->spb[0], ohci->no_swap_incoming)>>10)&0x3f);
2743 ack = (((cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f)
2744 == 0x11) ? 1 : 0;
2746 hpsb_packet_received(ohci->host, d->spb,
2747 length-4, ack);
2749 #ifdef OHCI1394_DEBUG
2750 else
2751 PRINT (KERN_DEBUG, "Got phy packet ctx=%d ... discarded",
2752 d->ctx);
2753 #endif
2755 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2757 bytes_left = d->buf_size - rescount - offset;
2761 d->buf_ind = idx;
2762 d->buf_offset = offset;
2764 spin_unlock_irqrestore(&d->lock, flags);
2767 /* Bottom half that processes sent packets */
2768 static void dma_trm_tasklet (unsigned long data)
2770 struct dma_trm_ctx *d = (struct dma_trm_ctx*)data;
2771 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2772 struct hpsb_packet *packet, *ptmp;
2773 unsigned long flags;
2774 u32 status, ack;
2775 size_t datasize;
2777 spin_lock_irqsave(&d->lock, flags);
2779 list_for_each_entry_safe(packet, ptmp, &d->fifo_list, driver_list) {
2780 datasize = packet->data_size;
2781 if (datasize && packet->type != hpsb_raw)
2782 status = le32_to_cpu(
2783 d->prg_cpu[d->sent_ind]->end.status) >> 16;
2784 else
2785 status = le32_to_cpu(
2786 d->prg_cpu[d->sent_ind]->begin.status) >> 16;
2788 if (status == 0)
2789 /* this packet hasn't been sent yet*/
2790 break;
2792 #ifdef OHCI1394_DEBUG
2793 if (datasize)
2794 if (((le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf) == 0xa)
2795 DBGMSG("Stream packet sent to channel %d tcode=0x%X "
2796 "ack=0x%X spd=%d dataLength=%d ctx=%d",
2797 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>8)&0x3f,
2798 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2799 status&0x1f, (status>>5)&0x3,
2800 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16,
2801 d->ctx);
2802 else
2803 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2804 "%d ack=0x%X spd=%d dataLength=%d ctx=%d",
2805 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16)&0x3f,
2806 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2807 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>10)&0x3f,
2808 status&0x1f, (status>>5)&0x3,
2809 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3])>>16,
2810 d->ctx);
2811 else
2812 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2813 "%d ack=0x%X spd=%d data=0x%08X ctx=%d",
2814 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])
2815 >>16)&0x3f,
2816 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2817 >>4)&0xf,
2818 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2819 >>10)&0x3f,
2820 status&0x1f, (status>>5)&0x3,
2821 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3]),
2822 d->ctx);
2823 #endif
2825 if (status & 0x10) {
2826 ack = status & 0xf;
2827 } else {
2828 switch (status & 0x1f) {
2829 case EVT_NO_STATUS: /* that should never happen */
2830 case EVT_RESERVED_A: /* that should never happen */
2831 case EVT_LONG_PACKET: /* that should never happen */
2832 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2833 ack = ACKX_SEND_ERROR;
2834 break;
2835 case EVT_MISSING_ACK:
2836 ack = ACKX_TIMEOUT;
2837 break;
2838 case EVT_UNDERRUN:
2839 ack = ACKX_SEND_ERROR;
2840 break;
2841 case EVT_OVERRUN: /* that should never happen */
2842 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2843 ack = ACKX_SEND_ERROR;
2844 break;
2845 case EVT_DESCRIPTOR_READ:
2846 case EVT_DATA_READ:
2847 case EVT_DATA_WRITE:
2848 ack = ACKX_SEND_ERROR;
2849 break;
2850 case EVT_BUS_RESET: /* that should never happen */
2851 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2852 ack = ACKX_SEND_ERROR;
2853 break;
2854 case EVT_TIMEOUT:
2855 ack = ACKX_TIMEOUT;
2856 break;
2857 case EVT_TCODE_ERR:
2858 ack = ACKX_SEND_ERROR;
2859 break;
2860 case EVT_RESERVED_B: /* that should never happen */
2861 case EVT_RESERVED_C: /* that should never happen */
2862 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2863 ack = ACKX_SEND_ERROR;
2864 break;
2865 case EVT_UNKNOWN:
2866 case EVT_FLUSHED:
2867 ack = ACKX_SEND_ERROR;
2868 break;
2869 default:
2870 PRINT(KERN_ERR, "Unhandled OHCI evt_* error 0x%x", status & 0x1f);
2871 ack = ACKX_SEND_ERROR;
2872 BUG();
2876 list_del_init(&packet->driver_list);
2877 hpsb_packet_sent(ohci->host, packet, ack);
2879 if (datasize) {
2880 pci_unmap_single(ohci->dev,
2881 cpu_to_le32(d->prg_cpu[d->sent_ind]->end.address),
2882 datasize, PCI_DMA_TODEVICE);
2883 OHCI_DMA_FREE("single Xmit data packet");
2886 d->sent_ind = (d->sent_ind+1)%d->num_desc;
2887 d->free_prgs++;
2890 dma_trm_flush(ohci, d);
2892 spin_unlock_irqrestore(&d->lock, flags);
2895 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d)
2897 if (d->ctrlClear) {
2898 ohci1394_stop_context(d->ohci, d->ctrlClear, NULL);
2900 if (d->type == DMA_CTX_ISO) {
2901 /* disable interrupts */
2902 reg_write(d->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << d->ctx);
2903 ohci1394_unregister_iso_tasklet(d->ohci, &d->ohci->ir_legacy_tasklet);
2904 } else {
2905 tasklet_kill(&d->task);
2911 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d)
2913 int i;
2914 struct ti_ohci *ohci = d->ohci;
2916 if (ohci == NULL)
2917 return;
2919 DBGMSG("Freeing dma_rcv_ctx %d", d->ctx);
2921 if (d->buf_cpu) {
2922 for (i=0; i<d->num_desc; i++)
2923 if (d->buf_cpu[i] && d->buf_bus[i]) {
2924 pci_free_consistent(
2925 ohci->dev, d->buf_size,
2926 d->buf_cpu[i], d->buf_bus[i]);
2927 OHCI_DMA_FREE("consistent dma_rcv buf[%d]", i);
2929 kfree(d->buf_cpu);
2930 kfree(d->buf_bus);
2932 if (d->prg_cpu) {
2933 for (i=0; i<d->num_desc; i++)
2934 if (d->prg_cpu[i] && d->prg_bus[i]) {
2935 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
2936 OHCI_DMA_FREE("consistent dma_rcv prg[%d]", i);
2938 pci_pool_destroy(d->prg_pool);
2939 OHCI_DMA_FREE("dma_rcv prg pool");
2940 kfree(d->prg_cpu);
2941 kfree(d->prg_bus);
2943 kfree(d->spb);
2945 /* Mark this context as freed. */
2946 d->ohci = NULL;
2949 static int
2950 alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
2951 enum context_type type, int ctx, int num_desc,
2952 int buf_size, int split_buf_size, int context_base)
2954 int i, len;
2955 static int num_allocs;
2956 static char pool_name[20];
2958 d->ohci = ohci;
2959 d->type = type;
2960 d->ctx = ctx;
2962 d->num_desc = num_desc;
2963 d->buf_size = buf_size;
2964 d->split_buf_size = split_buf_size;
2966 d->ctrlSet = 0;
2967 d->ctrlClear = 0;
2968 d->cmdPtr = 0;
2970 d->buf_cpu = kzalloc(d->num_desc * sizeof(*d->buf_cpu), GFP_ATOMIC);
2971 d->buf_bus = kzalloc(d->num_desc * sizeof(*d->buf_bus), GFP_ATOMIC);
2973 if (d->buf_cpu == NULL || d->buf_bus == NULL) {
2974 PRINT(KERN_ERR, "Failed to allocate dma buffer");
2975 free_dma_rcv_ctx(d);
2976 return -ENOMEM;
2979 d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_ATOMIC);
2980 d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_ATOMIC);
2982 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
2983 PRINT(KERN_ERR, "Failed to allocate dma prg");
2984 free_dma_rcv_ctx(d);
2985 return -ENOMEM;
2988 d->spb = kmalloc(d->split_buf_size, GFP_ATOMIC);
2990 if (d->spb == NULL) {
2991 PRINT(KERN_ERR, "Failed to allocate split buffer");
2992 free_dma_rcv_ctx(d);
2993 return -ENOMEM;
2996 len = sprintf(pool_name, "ohci1394_rcv_prg");
2997 sprintf(pool_name+len, "%d", num_allocs);
2998 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
2999 sizeof(struct dma_cmd), 4, 0);
3000 if(d->prg_pool == NULL)
3002 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3003 free_dma_rcv_ctx(d);
3004 return -ENOMEM;
3006 num_allocs++;
3008 OHCI_DMA_ALLOC("dma_rcv prg pool");
3010 for (i=0; i<d->num_desc; i++) {
3011 d->buf_cpu[i] = pci_alloc_consistent(ohci->dev,
3012 d->buf_size,
3013 d->buf_bus+i);
3014 OHCI_DMA_ALLOC("consistent dma_rcv buf[%d]", i);
3016 if (d->buf_cpu[i] != NULL) {
3017 memset(d->buf_cpu[i], 0, d->buf_size);
3018 } else {
3019 PRINT(KERN_ERR,
3020 "Failed to allocate dma buffer");
3021 free_dma_rcv_ctx(d);
3022 return -ENOMEM;
3025 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3026 OHCI_DMA_ALLOC("pool dma_rcv prg[%d]", i);
3028 if (d->prg_cpu[i] != NULL) {
3029 memset(d->prg_cpu[i], 0, sizeof(struct dma_cmd));
3030 } else {
3031 PRINT(KERN_ERR,
3032 "Failed to allocate dma prg");
3033 free_dma_rcv_ctx(d);
3034 return -ENOMEM;
3038 spin_lock_init(&d->lock);
3040 if (type == DMA_CTX_ISO) {
3041 ohci1394_init_iso_tasklet(&ohci->ir_legacy_tasklet,
3042 OHCI_ISO_MULTICHANNEL_RECEIVE,
3043 dma_rcv_tasklet, (unsigned long) d);
3044 } else {
3045 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3046 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3047 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3049 tasklet_init (&d->task, dma_rcv_tasklet, (unsigned long) d);
3052 return 0;
3055 static void free_dma_trm_ctx(struct dma_trm_ctx *d)
3057 int i;
3058 struct ti_ohci *ohci = d->ohci;
3060 if (ohci == NULL)
3061 return;
3063 DBGMSG("Freeing dma_trm_ctx %d", d->ctx);
3065 if (d->prg_cpu) {
3066 for (i=0; i<d->num_desc; i++)
3067 if (d->prg_cpu[i] && d->prg_bus[i]) {
3068 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
3069 OHCI_DMA_FREE("pool dma_trm prg[%d]", i);
3071 pci_pool_destroy(d->prg_pool);
3072 OHCI_DMA_FREE("dma_trm prg pool");
3073 kfree(d->prg_cpu);
3074 kfree(d->prg_bus);
3077 /* Mark this context as freed. */
3078 d->ohci = NULL;
3081 static int
3082 alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
3083 enum context_type type, int ctx, int num_desc,
3084 int context_base)
3086 int i, len;
3087 static char pool_name[20];
3088 static int num_allocs=0;
3090 d->ohci = ohci;
3091 d->type = type;
3092 d->ctx = ctx;
3093 d->num_desc = num_desc;
3094 d->ctrlSet = 0;
3095 d->ctrlClear = 0;
3096 d->cmdPtr = 0;
3098 d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_KERNEL);
3099 d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_KERNEL);
3101 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
3102 PRINT(KERN_ERR, "Failed to allocate at dma prg");
3103 free_dma_trm_ctx(d);
3104 return -ENOMEM;
3107 len = sprintf(pool_name, "ohci1394_trm_prg");
3108 sprintf(pool_name+len, "%d", num_allocs);
3109 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
3110 sizeof(struct at_dma_prg), 4, 0);
3111 if (d->prg_pool == NULL) {
3112 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3113 free_dma_trm_ctx(d);
3114 return -ENOMEM;
3116 num_allocs++;
3118 OHCI_DMA_ALLOC("dma_rcv prg pool");
3120 for (i = 0; i < d->num_desc; i++) {
3121 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3122 OHCI_DMA_ALLOC("pool dma_trm prg[%d]", i);
3124 if (d->prg_cpu[i] != NULL) {
3125 memset(d->prg_cpu[i], 0, sizeof(struct at_dma_prg));
3126 } else {
3127 PRINT(KERN_ERR,
3128 "Failed to allocate at dma prg");
3129 free_dma_trm_ctx(d);
3130 return -ENOMEM;
3134 spin_lock_init(&d->lock);
3136 /* initialize tasklet */
3137 if (type == DMA_CTX_ISO) {
3138 ohci1394_init_iso_tasklet(&ohci->it_legacy_tasklet, OHCI_ISO_TRANSMIT,
3139 dma_trm_tasklet, (unsigned long) d);
3140 if (ohci1394_register_iso_tasklet(ohci,
3141 &ohci->it_legacy_tasklet) < 0) {
3142 PRINT(KERN_ERR, "No IT DMA context available");
3143 free_dma_trm_ctx(d);
3144 return -EBUSY;
3147 /* IT can be assigned to any context by register_iso_tasklet */
3148 d->ctx = ohci->it_legacy_tasklet.context;
3149 d->ctrlSet = OHCI1394_IsoXmitContextControlSet + 16 * d->ctx;
3150 d->ctrlClear = OHCI1394_IsoXmitContextControlClear + 16 * d->ctx;
3151 d->cmdPtr = OHCI1394_IsoXmitCommandPtr + 16 * d->ctx;
3152 } else {
3153 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3154 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3155 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3156 tasklet_init (&d->task, dma_trm_tasklet, (unsigned long)d);
3159 return 0;
3162 static void ohci_set_hw_config_rom(struct hpsb_host *host, quadlet_t *config_rom)
3164 struct ti_ohci *ohci = host->hostdata;
3166 reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(config_rom[0]));
3167 reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(config_rom[2]));
3169 memcpy(ohci->csr_config_rom_cpu, config_rom, OHCI_CONFIG_ROM_LEN);
3173 static quadlet_t ohci_hw_csr_reg(struct hpsb_host *host, int reg,
3174 quadlet_t data, quadlet_t compare)
3176 struct ti_ohci *ohci = host->hostdata;
3177 int i;
3179 reg_write(ohci, OHCI1394_CSRData, data);
3180 reg_write(ohci, OHCI1394_CSRCompareData, compare);
3181 reg_write(ohci, OHCI1394_CSRControl, reg & 0x3);
3183 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
3184 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
3185 break;
3187 mdelay(1);
3190 return reg_read(ohci, OHCI1394_CSRData);
3193 static struct hpsb_host_driver ohci1394_driver = {
3194 .owner = THIS_MODULE,
3195 .name = OHCI1394_DRIVER_NAME,
3196 .set_hw_config_rom = ohci_set_hw_config_rom,
3197 .transmit_packet = ohci_transmit,
3198 .devctl = ohci_devctl,
3199 .isoctl = ohci_isoctl,
3200 .hw_csr_reg = ohci_hw_csr_reg,
3201 };
3203 /***********************************
3204 * PCI Driver Interface functions *
3205 ***********************************/
3207 #define FAIL(err, fmt, args...) \
3208 do { \
3209 PRINT_G(KERN_ERR, fmt , ## args); \
3210 ohci1394_pci_remove(dev); \
3211 return err; \
3212 } while (0)
3214 static int __devinit ohci1394_pci_probe(struct pci_dev *dev,
3215 const struct pci_device_id *ent)
3217 struct hpsb_host *host;
3218 struct ti_ohci *ohci; /* shortcut to currently handled device */
3219 resource_size_t ohci_base;
3221 #ifdef CONFIG_PPC_PMAC
3222 /* Necessary on some machines if ohci1394 was loaded/ unloaded before */
3223 if (machine_is(powermac)) {
3224 struct device_node *of_node = pci_device_to_OF_node(dev);
3226 if (of_node) {
3227 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, of_node,
3228 0, 1);
3229 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 1);
3232 #endif /* CONFIG_PPC_PMAC */
3234 if (pci_enable_device(dev))
3235 FAIL(-ENXIO, "Failed to enable OHCI hardware");
3236 pci_set_master(dev);
3238 host = hpsb_alloc_host(&ohci1394_driver, sizeof(struct ti_ohci), &dev->dev);
3239 if (!host) FAIL(-ENOMEM, "Failed to allocate host structure");
3241 ohci = host->hostdata;
3242 ohci->dev = dev;
3243 ohci->host = host;
3244 ohci->init_state = OHCI_INIT_ALLOC_HOST;
3245 host->pdev = dev;
3246 pci_set_drvdata(dev, ohci);
3248 /* We don't want hardware swapping */
3249 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3251 /* Some oddball Apple controllers do not order the selfid
3252 * properly, so we make up for it here. */
3253 #ifndef __LITTLE_ENDIAN
3254 /* XXX: Need a better way to check this. I'm wondering if we can
3255 * read the values of the OHCI1394_PCI_HCI_Control and the
3256 * noByteSwapData registers to see if they were not cleared to
3257 * zero. Should this work? Obviously it's not defined what these
3258 * registers will read when they aren't supported. Bleh! */
3259 if (dev->vendor == PCI_VENDOR_ID_APPLE &&
3260 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) {
3261 ohci->no_swap_incoming = 1;
3262 ohci->selfid_swap = 0;
3263 } else
3264 ohci->selfid_swap = 1;
3265 #endif
3268 #ifndef PCI_DEVICE_ID_NVIDIA_NFORCE2_FW
3269 #define PCI_DEVICE_ID_NVIDIA_NFORCE2_FW 0x006e
3270 #endif
3272 /* These chipsets require a bit of extra care when checking after
3273 * a busreset. */
3274 if ((dev->vendor == PCI_VENDOR_ID_APPLE &&
3275 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) ||
3276 (dev->vendor == PCI_VENDOR_ID_NVIDIA &&
3277 dev->device == PCI_DEVICE_ID_NVIDIA_NFORCE2_FW))
3278 ohci->check_busreset = 1;
3280 /* We hardwire the MMIO length, since some CardBus adaptors
3281 * fail to report the right length. Anyway, the ohci spec
3282 * clearly says it's 2kb, so this shouldn't be a problem. */
3283 ohci_base = pci_resource_start(dev, 0);
3284 if (pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE)
3285 PRINT(KERN_WARNING, "PCI resource length of 0x%llx too small!",
3286 (unsigned long long)pci_resource_len(dev, 0));
3288 /* Seems PCMCIA handles this internally. Not sure why. Seems
3289 * pretty bogus to force a driver to special case this. */
3290 #ifndef PCMCIA
3291 if (!request_mem_region (ohci_base, OHCI1394_REGISTER_SIZE, OHCI1394_DRIVER_NAME))
3292 FAIL(-ENOMEM, "MMIO resource (0x%llx - 0x%llx) unavailable",
3293 (unsigned long long)ohci_base,
3294 (unsigned long long)ohci_base + OHCI1394_REGISTER_SIZE);
3295 #endif
3296 ohci->init_state = OHCI_INIT_HAVE_MEM_REGION;
3298 ohci->registers = ioremap(ohci_base, OHCI1394_REGISTER_SIZE);
3299 if (ohci->registers == NULL)
3300 FAIL(-ENXIO, "Failed to remap registers - card not accessible");
3301 ohci->init_state = OHCI_INIT_HAVE_IOMAPPING;
3302 DBGMSG("Remapped memory spaces reg 0x%p", ohci->registers);
3304 /* csr_config rom allocation */
3305 ohci->csr_config_rom_cpu =
3306 pci_alloc_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3307 &ohci->csr_config_rom_bus);
3308 OHCI_DMA_ALLOC("consistent csr_config_rom");
3309 if (ohci->csr_config_rom_cpu == NULL)
3310 FAIL(-ENOMEM, "Failed to allocate buffer config rom");
3311 ohci->init_state = OHCI_INIT_HAVE_CONFIG_ROM_BUFFER;
3313 /* self-id dma buffer allocation */
3314 ohci->selfid_buf_cpu =
3315 pci_alloc_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3316 &ohci->selfid_buf_bus);
3317 OHCI_DMA_ALLOC("consistent selfid_buf");
3319 if (ohci->selfid_buf_cpu == NULL)
3320 FAIL(-ENOMEM, "Failed to allocate DMA buffer for self-id packets");
3321 ohci->init_state = OHCI_INIT_HAVE_SELFID_BUFFER;
3323 if ((unsigned long)ohci->selfid_buf_cpu & 0x1fff)
3324 PRINT(KERN_INFO, "SelfID buffer %p is not aligned on "
3325 "8Kb boundary... may cause problems on some CXD3222 chip",
3326 ohci->selfid_buf_cpu);
3328 /* No self-id errors at startup */
3329 ohci->self_id_errors = 0;
3331 ohci->init_state = OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE;
3332 /* AR DMA request context allocation */
3333 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_req_context,
3334 DMA_CTX_ASYNC_REQ, 0, AR_REQ_NUM_DESC,
3335 AR_REQ_BUF_SIZE, AR_REQ_SPLIT_BUF_SIZE,
3336 OHCI1394_AsReqRcvContextBase) < 0)
3337 FAIL(-ENOMEM, "Failed to allocate AR Req context");
3339 /* AR DMA response context allocation */
3340 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_resp_context,
3341 DMA_CTX_ASYNC_RESP, 0, AR_RESP_NUM_DESC,
3342 AR_RESP_BUF_SIZE, AR_RESP_SPLIT_BUF_SIZE,
3343 OHCI1394_AsRspRcvContextBase) < 0)
3344 FAIL(-ENOMEM, "Failed to allocate AR Resp context");
3346 /* AT DMA request context */
3347 if (alloc_dma_trm_ctx(ohci, &ohci->at_req_context,
3348 DMA_CTX_ASYNC_REQ, 0, AT_REQ_NUM_DESC,
3349 OHCI1394_AsReqTrContextBase) < 0)
3350 FAIL(-ENOMEM, "Failed to allocate AT Req context");
3352 /* AT DMA response context */
3353 if (alloc_dma_trm_ctx(ohci, &ohci->at_resp_context,
3354 DMA_CTX_ASYNC_RESP, 1, AT_RESP_NUM_DESC,
3355 OHCI1394_AsRspTrContextBase) < 0)
3356 FAIL(-ENOMEM, "Failed to allocate AT Resp context");
3358 /* Start off with a soft reset, to clear everything to a sane
3359 * state. */
3360 ohci_soft_reset(ohci);
3362 /* Now enable LPS, which we need in order to start accessing
3363 * most of the registers. In fact, on some cards (ALI M5251),
3364 * accessing registers in the SClk domain without LPS enabled
3365 * will lock up the machine. Wait 50msec to make sure we have
3366 * full link enabled. */
3367 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS);
3369 /* Disable and clear interrupts */
3370 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3371 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3373 mdelay(50);
3375 /* Determine the number of available IR and IT contexts. */
3376 ohci->nb_iso_rcv_ctx =
3377 get_nb_iso_ctx(ohci, OHCI1394_IsoRecvIntMaskSet);
3378 ohci->nb_iso_xmit_ctx =
3379 get_nb_iso_ctx(ohci, OHCI1394_IsoXmitIntMaskSet);
3381 /* Set the usage bits for non-existent contexts so they can't
3382 * be allocated */
3383 ohci->ir_ctx_usage = ~0 << ohci->nb_iso_rcv_ctx;
3384 ohci->it_ctx_usage = ~0 << ohci->nb_iso_xmit_ctx;
3386 INIT_LIST_HEAD(&ohci->iso_tasklet_list);
3387 spin_lock_init(&ohci->iso_tasklet_list_lock);
3388 ohci->ISO_channel_usage = 0;
3389 spin_lock_init(&ohci->IR_channel_lock);
3391 /* Allocate the IR DMA context right here so we don't have
3392 * to do it in interrupt path - note that this doesn't
3393 * waste much memory and avoids the jugglery required to
3394 * allocate it in IRQ path. */
3395 if (alloc_dma_rcv_ctx(ohci, &ohci->ir_legacy_context,
3396 DMA_CTX_ISO, 0, IR_NUM_DESC,
3397 IR_BUF_SIZE, IR_SPLIT_BUF_SIZE,
3398 OHCI1394_IsoRcvContextBase) < 0) {
3399 FAIL(-ENOMEM, "Cannot allocate IR Legacy DMA context");
3402 /* We hopefully don't have to pre-allocate IT DMA like we did
3403 * for IR DMA above. Allocate it on-demand and mark inactive. */
3404 ohci->it_legacy_context.ohci = NULL;
3405 spin_lock_init(&ohci->event_lock);
3407 /*
3408 * interrupts are disabled, all right, but... due to IRQF_SHARED we
3409 * might get called anyway. We'll see no event, of course, but
3410 * we need to get to that "no event", so enough should be initialized
3411 * by that point.
3412 */
3413 if (request_irq(dev->irq, ohci_irq_handler, IRQF_SHARED,
3414 OHCI1394_DRIVER_NAME, ohci))
3415 FAIL(-ENOMEM, "Failed to allocate shared interrupt %d", dev->irq);
3417 ohci->init_state = OHCI_INIT_HAVE_IRQ;
3418 ohci_initialize(ohci);
3420 /* Set certain csr values */
3421 host->csr.guid_hi = reg_read(ohci, OHCI1394_GUIDHi);
3422 host->csr.guid_lo = reg_read(ohci, OHCI1394_GUIDLo);
3423 host->csr.cyc_clk_acc = 100; /* how do we determine clk accuracy? */
3424 host->csr.max_rec = (reg_read(ohci, OHCI1394_BusOptions) >> 12) & 0xf;
3425 host->csr.lnk_spd = reg_read(ohci, OHCI1394_BusOptions) & 0x7;
3427 if (phys_dma) {
3428 host->low_addr_space =
3429 (u64) reg_read(ohci, OHCI1394_PhyUpperBound) << 16;
3430 if (!host->low_addr_space)
3431 host->low_addr_space = OHCI1394_PHYS_UPPER_BOUND_FIXED;
3433 host->middle_addr_space = OHCI1394_MIDDLE_ADDRESS_SPACE;
3435 /* Tell the highlevel this host is ready */
3436 if (hpsb_add_host(host))
3437 FAIL(-ENOMEM, "Failed to register host with highlevel");
3439 ohci->init_state = OHCI_INIT_DONE;
3441 return 0;
3442 #undef FAIL
3445 static void ohci1394_pci_remove(struct pci_dev *pdev)
3447 struct ti_ohci *ohci;
3448 struct device *dev;
3450 ohci = pci_get_drvdata(pdev);
3451 if (!ohci)
3452 return;
3454 dev = get_device(&ohci->host->device);
3456 switch (ohci->init_state) {
3457 case OHCI_INIT_DONE:
3458 hpsb_remove_host(ohci->host);
3460 /* Clear out BUS Options */
3461 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
3462 reg_write(ohci, OHCI1394_BusOptions,
3463 (reg_read(ohci, OHCI1394_BusOptions) & 0x0000f007) |
3464 0x00ff0000);
3465 memset(ohci->csr_config_rom_cpu, 0, OHCI_CONFIG_ROM_LEN);
3467 case OHCI_INIT_HAVE_IRQ:
3468 /* Clear interrupt registers */
3469 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3470 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3471 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
3472 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
3473 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
3474 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
3476 /* Disable IRM Contender */
3477 set_phy_reg(ohci, 4, ~0xc0 & get_phy_reg(ohci, 4));
3479 /* Clear link control register */
3480 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
3482 /* Let all other nodes know to ignore us */
3483 ohci_devctl(ohci->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
3485 /* Soft reset before we start - this disables
3486 * interrupts and clears linkEnable and LPS. */
3487 ohci_soft_reset(ohci);
3488 free_irq(ohci->dev->irq, ohci);
3490 case OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE:
3491 /* The ohci_soft_reset() stops all DMA contexts, so we
3492 * dont need to do this. */
3493 free_dma_rcv_ctx(&ohci->ar_req_context);
3494 free_dma_rcv_ctx(&ohci->ar_resp_context);
3495 free_dma_trm_ctx(&ohci->at_req_context);
3496 free_dma_trm_ctx(&ohci->at_resp_context);
3497 free_dma_rcv_ctx(&ohci->ir_legacy_context);
3498 free_dma_trm_ctx(&ohci->it_legacy_context);
3500 case OHCI_INIT_HAVE_SELFID_BUFFER:
3501 pci_free_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3502 ohci->selfid_buf_cpu,
3503 ohci->selfid_buf_bus);
3504 OHCI_DMA_FREE("consistent selfid_buf");
3506 case OHCI_INIT_HAVE_CONFIG_ROM_BUFFER:
3507 pci_free_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3508 ohci->csr_config_rom_cpu,
3509 ohci->csr_config_rom_bus);
3510 OHCI_DMA_FREE("consistent csr_config_rom");
3512 case OHCI_INIT_HAVE_IOMAPPING:
3513 iounmap(ohci->registers);
3515 case OHCI_INIT_HAVE_MEM_REGION:
3516 #ifndef PCMCIA
3517 release_mem_region(pci_resource_start(ohci->dev, 0),
3518 OHCI1394_REGISTER_SIZE);
3519 #endif
3521 #ifdef CONFIG_PPC_PMAC
3522 /* On UniNorth, power down the cable and turn off the chip clock
3523 * to save power on laptops */
3524 if (machine_is(powermac)) {
3525 struct device_node* of_node;
3527 of_node = pci_device_to_OF_node(ohci->dev);
3528 if (of_node) {
3529 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3530 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, of_node, 0, 0);
3533 #endif /* CONFIG_PPC_PMAC */
3535 case OHCI_INIT_ALLOC_HOST:
3536 pci_set_drvdata(ohci->dev, NULL);
3539 if (dev)
3540 put_device(dev);
3544 static int ohci1394_pci_resume (struct pci_dev *pdev)
3546 #ifdef CONFIG_PPC_PMAC
3547 if (machine_is(powermac)) {
3548 struct device_node *of_node;
3550 /* Re-enable 1394 */
3551 of_node = pci_device_to_OF_node (pdev);
3552 if (of_node)
3553 pmac_call_feature (PMAC_FTR_1394_ENABLE, of_node, 0, 1);
3555 #endif /* CONFIG_PPC_PMAC */
3557 pci_restore_state(pdev);
3558 pci_enable_device(pdev);
3560 return 0;
3564 static int ohci1394_pci_suspend (struct pci_dev *pdev, pm_message_t state)
3566 pci_save_state(pdev);
3568 #ifdef CONFIG_PPC_PMAC
3569 if (machine_is(powermac)) {
3570 struct device_node *of_node;
3572 /* Disable 1394 */
3573 of_node = pci_device_to_OF_node (pdev);
3574 if (of_node)
3575 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3577 #endif
3579 return 0;
3583 #define PCI_CLASS_FIREWIRE_OHCI ((PCI_CLASS_SERIAL_FIREWIRE << 8) | 0x10)
3585 static struct pci_device_id ohci1394_pci_tbl[] = {
3587 .class = PCI_CLASS_FIREWIRE_OHCI,
3588 .class_mask = PCI_ANY_ID,
3589 .vendor = PCI_ANY_ID,
3590 .device = PCI_ANY_ID,
3591 .subvendor = PCI_ANY_ID,
3592 .subdevice = PCI_ANY_ID,
3593 },
3594 { 0, },
3595 };
3597 MODULE_DEVICE_TABLE(pci, ohci1394_pci_tbl);
3599 static struct pci_driver ohci1394_pci_driver = {
3600 .name = OHCI1394_DRIVER_NAME,
3601 .id_table = ohci1394_pci_tbl,
3602 .probe = ohci1394_pci_probe,
3603 .remove = ohci1394_pci_remove,
3604 .resume = ohci1394_pci_resume,
3605 .suspend = ohci1394_pci_suspend,
3606 };
3608 /***********************************
3609 * OHCI1394 Video Interface *
3610 ***********************************/
3612 /* essentially the only purpose of this code is to allow another
3613 module to hook into ohci's interrupt handler */
3615 int ohci1394_stop_context(struct ti_ohci *ohci, int reg, char *msg)
3617 int i=0;
3619 /* stop the channel program if it's still running */
3620 reg_write(ohci, reg, 0x8000);
3622 /* Wait until it effectively stops */
3623 while (reg_read(ohci, reg) & 0x400) {
3624 i++;
3625 if (i>5000) {
3626 PRINT(KERN_ERR,
3627 "Runaway loop while stopping context: %s...", msg ? msg : "");
3628 return 1;
3631 mb();
3632 udelay(10);
3634 if (msg) PRINT(KERN_ERR, "%s: dma prg stopped", msg);
3635 return 0;
3638 void ohci1394_init_iso_tasklet(struct ohci1394_iso_tasklet *tasklet, int type,
3639 void (*func)(unsigned long), unsigned long data)
3641 tasklet_init(&tasklet->tasklet, func, data);
3642 tasklet->type = type;
3643 /* We init the tasklet->link field, so we can list_del() it
3644 * without worrying whether it was added to the list or not. */
3645 INIT_LIST_HEAD(&tasklet->link);
3648 int ohci1394_register_iso_tasklet(struct ti_ohci *ohci,
3649 struct ohci1394_iso_tasklet *tasklet)
3651 unsigned long flags, *usage;
3652 int n, i, r = -EBUSY;
3654 if (tasklet->type == OHCI_ISO_TRANSMIT) {
3655 n = ohci->nb_iso_xmit_ctx;
3656 usage = &ohci->it_ctx_usage;
3658 else {
3659 n = ohci->nb_iso_rcv_ctx;
3660 usage = &ohci->ir_ctx_usage;
3662 /* only one receive context can be multichannel (OHCI sec 10.4.1) */
3663 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3664 if (test_and_set_bit(0, &ohci->ir_multichannel_used)) {
3665 return r;
3670 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3672 for (i = 0; i < n; i++)
3673 if (!test_and_set_bit(i, usage)) {
3674 tasklet->context = i;
3675 list_add_tail(&tasklet->link, &ohci->iso_tasklet_list);
3676 r = 0;
3677 break;
3680 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3682 return r;
3685 void ohci1394_unregister_iso_tasklet(struct ti_ohci *ohci,
3686 struct ohci1394_iso_tasklet *tasklet)
3688 unsigned long flags;
3690 tasklet_kill(&tasklet->tasklet);
3692 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3694 if (tasklet->type == OHCI_ISO_TRANSMIT)
3695 clear_bit(tasklet->context, &ohci->it_ctx_usage);
3696 else {
3697 clear_bit(tasklet->context, &ohci->ir_ctx_usage);
3699 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3700 clear_bit(0, &ohci->ir_multichannel_used);
3704 list_del(&tasklet->link);
3706 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3709 EXPORT_SYMBOL(ohci1394_stop_context);
3710 EXPORT_SYMBOL(ohci1394_init_iso_tasklet);
3711 EXPORT_SYMBOL(ohci1394_register_iso_tasklet);
3712 EXPORT_SYMBOL(ohci1394_unregister_iso_tasklet);
3714 /***********************************
3715 * General module initialization *
3716 ***********************************/
3718 MODULE_AUTHOR("Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>");
3719 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE-1394 controllers");
3720 MODULE_LICENSE("GPL");
3722 static void __exit ohci1394_cleanup (void)
3724 pci_unregister_driver(&ohci1394_pci_driver);
3727 static int __init ohci1394_init(void)
3729 return pci_register_driver(&ohci1394_pci_driver);
3732 module_init(ohci1394_init);
3733 module_exit(ohci1394_cleanup);