ia64/linux-2.6.18-xen.hg

view kernel/auditsc.c @ 912:dd42cdb0ab89

[IA64] Build blktap2 driver by default in x86 builds.

add CONFIG_XEN_BLKDEV_TAP2=y to buildconfigs/linux-defconfig_xen_ia64.

Signed-off-by: Isaku Yamahata <yamahata@valinux.co.jp>
author Isaku Yamahata <yamahata@valinux.co.jp>
date Mon Jun 29 12:09:16 2009 +0900 (2009-06-29)
parents 831230e53067
children
line source
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <asm/types.h>
49 #include <linux/fs.h>
50 #include <linux/namei.h>
51 #include <linux/mm.h>
52 #include <linux/module.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/selinux.h>
66 #include <linux/binfmts.h>
67 #include <linux/syscalls.h>
69 #include "audit.h"
71 extern struct list_head audit_filter_list[];
73 /* No syscall auditing will take place unless audit_enabled != 0. */
74 extern int audit_enabled;
76 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
77 * for saving names from getname(). */
78 #define AUDIT_NAMES 20
80 /* AUDIT_NAMES_RESERVED is the number of slots we reserve in the
81 * audit_context from being used for nameless inodes from
82 * path_lookup. */
83 #define AUDIT_NAMES_RESERVED 7
85 /* Indicates that audit should log the full pathname. */
86 #define AUDIT_NAME_FULL -1
88 /* number of audit rules */
89 int audit_n_rules;
91 /* When fs/namei.c:getname() is called, we store the pointer in name and
92 * we don't let putname() free it (instead we free all of the saved
93 * pointers at syscall exit time).
94 *
95 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
96 struct audit_names {
97 const char *name;
98 int name_len; /* number of name's characters to log */
99 unsigned name_put; /* call __putname() for this name */
100 unsigned long ino;
101 dev_t dev;
102 umode_t mode;
103 uid_t uid;
104 gid_t gid;
105 dev_t rdev;
106 u32 osid;
107 };
109 struct audit_aux_data {
110 struct audit_aux_data *next;
111 int type;
112 };
114 #define AUDIT_AUX_IPCPERM 0
116 struct audit_aux_data_mq_open {
117 struct audit_aux_data d;
118 int oflag;
119 mode_t mode;
120 struct mq_attr attr;
121 };
123 struct audit_aux_data_mq_sendrecv {
124 struct audit_aux_data d;
125 mqd_t mqdes;
126 size_t msg_len;
127 unsigned int msg_prio;
128 struct timespec abs_timeout;
129 };
131 struct audit_aux_data_mq_notify {
132 struct audit_aux_data d;
133 mqd_t mqdes;
134 struct sigevent notification;
135 };
137 struct audit_aux_data_mq_getsetattr {
138 struct audit_aux_data d;
139 mqd_t mqdes;
140 struct mq_attr mqstat;
141 };
143 struct audit_aux_data_ipcctl {
144 struct audit_aux_data d;
145 struct ipc_perm p;
146 unsigned long qbytes;
147 uid_t uid;
148 gid_t gid;
149 mode_t mode;
150 u32 osid;
151 };
153 struct audit_aux_data_execve {
154 struct audit_aux_data d;
155 int argc;
156 int envc;
157 char mem[0];
158 };
160 struct audit_aux_data_socketcall {
161 struct audit_aux_data d;
162 int nargs;
163 unsigned long args[0];
164 };
166 struct audit_aux_data_sockaddr {
167 struct audit_aux_data d;
168 int len;
169 char a[0];
170 };
172 struct audit_aux_data_path {
173 struct audit_aux_data d;
174 struct dentry *dentry;
175 struct vfsmount *mnt;
176 };
178 /* The per-task audit context. */
179 struct audit_context {
180 int dummy; /* must be the first element */
181 int in_syscall; /* 1 if task is in a syscall */
182 enum audit_state state;
183 unsigned int serial; /* serial number for record */
184 struct timespec ctime; /* time of syscall entry */
185 uid_t loginuid; /* login uid (identity) */
186 int major; /* syscall number */
187 unsigned long argv[4]; /* syscall arguments */
188 int return_valid; /* return code is valid */
189 long return_code;/* syscall return code */
190 int auditable; /* 1 if record should be written */
191 int name_count;
192 struct audit_names names[AUDIT_NAMES];
193 char * filterkey; /* key for rule that triggered record */
194 struct dentry * pwd;
195 struct vfsmount * pwdmnt;
196 struct audit_context *previous; /* For nested syscalls */
197 struct audit_aux_data *aux;
199 /* Save things to print about task_struct */
200 pid_t pid, ppid;
201 uid_t uid, euid, suid, fsuid;
202 gid_t gid, egid, sgid, fsgid;
203 unsigned long personality;
204 int arch;
206 #if AUDIT_DEBUG
207 int put_count;
208 int ino_count;
209 #endif
210 };
212 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
213 static inline int open_arg(int flags, int mask)
214 {
215 int n = ACC_MODE(flags);
216 if (flags & (O_TRUNC | O_CREAT))
217 n |= AUDIT_PERM_WRITE;
218 return n & mask;
219 }
221 static int audit_match_perm(struct audit_context *ctx, int mask)
222 {
223 unsigned n = ctx->major;
224 switch (audit_classify_syscall(ctx->arch, n)) {
225 case 0: /* native */
226 if ((mask & AUDIT_PERM_WRITE) &&
227 audit_match_class(AUDIT_CLASS_WRITE, n))
228 return 1;
229 if ((mask & AUDIT_PERM_READ) &&
230 audit_match_class(AUDIT_CLASS_READ, n))
231 return 1;
232 if ((mask & AUDIT_PERM_ATTR) &&
233 audit_match_class(AUDIT_CLASS_CHATTR, n))
234 return 1;
235 return 0;
236 case 1: /* 32bit on biarch */
237 if ((mask & AUDIT_PERM_WRITE) &&
238 audit_match_class(AUDIT_CLASS_WRITE_32, n))
239 return 1;
240 if ((mask & AUDIT_PERM_READ) &&
241 audit_match_class(AUDIT_CLASS_READ_32, n))
242 return 1;
243 if ((mask & AUDIT_PERM_ATTR) &&
244 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
245 return 1;
246 return 0;
247 case 2: /* open */
248 return mask & ACC_MODE(ctx->argv[1]);
249 case 3: /* openat */
250 return mask & ACC_MODE(ctx->argv[2]);
251 case 4: /* socketcall */
252 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
253 case 5: /* execve */
254 return mask & AUDIT_PERM_EXEC;
255 default:
256 return 0;
257 }
258 }
260 /* Determine if any context name data matches a rule's watch data */
261 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
262 * otherwise. */
263 static int audit_filter_rules(struct task_struct *tsk,
264 struct audit_krule *rule,
265 struct audit_context *ctx,
266 struct audit_names *name,
267 enum audit_state *state)
268 {
269 int i, j, need_sid = 1;
270 u32 sid;
272 for (i = 0; i < rule->field_count; i++) {
273 struct audit_field *f = &rule->fields[i];
274 int result = 0;
276 switch (f->type) {
277 case AUDIT_PID:
278 result = audit_comparator(tsk->pid, f->op, f->val);
279 break;
280 case AUDIT_PPID:
281 if (ctx)
282 result = audit_comparator(ctx->ppid, f->op, f->val);
283 break;
284 case AUDIT_UID:
285 result = audit_comparator(tsk->uid, f->op, f->val);
286 break;
287 case AUDIT_EUID:
288 result = audit_comparator(tsk->euid, f->op, f->val);
289 break;
290 case AUDIT_SUID:
291 result = audit_comparator(tsk->suid, f->op, f->val);
292 break;
293 case AUDIT_FSUID:
294 result = audit_comparator(tsk->fsuid, f->op, f->val);
295 break;
296 case AUDIT_GID:
297 result = audit_comparator(tsk->gid, f->op, f->val);
298 break;
299 case AUDIT_EGID:
300 result = audit_comparator(tsk->egid, f->op, f->val);
301 break;
302 case AUDIT_SGID:
303 result = audit_comparator(tsk->sgid, f->op, f->val);
304 break;
305 case AUDIT_FSGID:
306 result = audit_comparator(tsk->fsgid, f->op, f->val);
307 break;
308 case AUDIT_PERS:
309 result = audit_comparator(tsk->personality, f->op, f->val);
310 break;
311 case AUDIT_ARCH:
312 if (ctx)
313 result = audit_comparator(ctx->arch, f->op, f->val);
314 break;
316 case AUDIT_EXIT:
317 if (ctx && ctx->return_valid)
318 result = audit_comparator(ctx->return_code, f->op, f->val);
319 break;
320 case AUDIT_SUCCESS:
321 if (ctx && ctx->return_valid) {
322 if (f->val)
323 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
324 else
325 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
326 }
327 break;
328 case AUDIT_DEVMAJOR:
329 if (name)
330 result = audit_comparator(MAJOR(name->dev),
331 f->op, f->val);
332 else if (ctx) {
333 for (j = 0; j < ctx->name_count; j++) {
334 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
335 ++result;
336 break;
337 }
338 }
339 }
340 break;
341 case AUDIT_DEVMINOR:
342 if (name)
343 result = audit_comparator(MINOR(name->dev),
344 f->op, f->val);
345 else if (ctx) {
346 for (j = 0; j < ctx->name_count; j++) {
347 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
348 ++result;
349 break;
350 }
351 }
352 }
353 break;
354 case AUDIT_INODE:
355 if (name)
356 result = (name->ino == f->val);
357 else if (ctx) {
358 for (j = 0; j < ctx->name_count; j++) {
359 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
360 ++result;
361 break;
362 }
363 }
364 }
365 break;
366 case AUDIT_WATCH:
367 if (name && rule->watch->ino != (unsigned long)-1)
368 result = (name->dev == rule->watch->dev &&
369 name->ino == rule->watch->ino);
370 break;
371 case AUDIT_LOGINUID:
372 result = 0;
373 if (ctx)
374 result = audit_comparator(ctx->loginuid, f->op, f->val);
375 break;
376 case AUDIT_SUBJ_USER:
377 case AUDIT_SUBJ_ROLE:
378 case AUDIT_SUBJ_TYPE:
379 case AUDIT_SUBJ_SEN:
380 case AUDIT_SUBJ_CLR:
381 /* NOTE: this may return negative values indicating
382 a temporary error. We simply treat this as a
383 match for now to avoid losing information that
384 may be wanted. An error message will also be
385 logged upon error */
386 if (f->se_rule) {
387 if (need_sid) {
388 selinux_task_ctxid(tsk, &sid);
389 need_sid = 0;
390 }
391 result = selinux_audit_rule_match(sid, f->type,
392 f->op,
393 f->se_rule,
394 ctx);
395 }
396 break;
397 case AUDIT_OBJ_USER:
398 case AUDIT_OBJ_ROLE:
399 case AUDIT_OBJ_TYPE:
400 case AUDIT_OBJ_LEV_LOW:
401 case AUDIT_OBJ_LEV_HIGH:
402 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
403 also applies here */
404 if (f->se_rule) {
405 /* Find files that match */
406 if (name) {
407 result = selinux_audit_rule_match(
408 name->osid, f->type, f->op,
409 f->se_rule, ctx);
410 } else if (ctx) {
411 for (j = 0; j < ctx->name_count; j++) {
412 if (selinux_audit_rule_match(
413 ctx->names[j].osid,
414 f->type, f->op,
415 f->se_rule, ctx)) {
416 ++result;
417 break;
418 }
419 }
420 }
421 /* Find ipc objects that match */
422 if (ctx) {
423 struct audit_aux_data *aux;
424 for (aux = ctx->aux; aux;
425 aux = aux->next) {
426 if (aux->type == AUDIT_IPC) {
427 struct audit_aux_data_ipcctl *axi = (void *)aux;
428 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
429 ++result;
430 break;
431 }
432 }
433 }
434 }
435 }
436 break;
437 case AUDIT_ARG0:
438 case AUDIT_ARG1:
439 case AUDIT_ARG2:
440 case AUDIT_ARG3:
441 if (ctx)
442 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
443 break;
444 case AUDIT_FILTERKEY:
445 /* ignore this field for filtering */
446 result = 1;
447 break;
448 case AUDIT_PERM:
449 result = audit_match_perm(ctx, f->val);
450 break;
451 }
453 if (!result)
454 return 0;
455 }
456 if (rule->filterkey)
457 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
458 switch (rule->action) {
459 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
460 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
461 }
462 return 1;
463 }
465 /* At process creation time, we can determine if system-call auditing is
466 * completely disabled for this task. Since we only have the task
467 * structure at this point, we can only check uid and gid.
468 */
469 static enum audit_state audit_filter_task(struct task_struct *tsk)
470 {
471 struct audit_entry *e;
472 enum audit_state state;
474 rcu_read_lock();
475 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
476 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
477 rcu_read_unlock();
478 return state;
479 }
480 }
481 rcu_read_unlock();
482 return AUDIT_BUILD_CONTEXT;
483 }
485 /* At syscall entry and exit time, this filter is called if the
486 * audit_state is not low enough that auditing cannot take place, but is
487 * also not high enough that we already know we have to write an audit
488 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
489 */
490 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
491 struct audit_context *ctx,
492 struct list_head *list)
493 {
494 struct audit_entry *e;
495 enum audit_state state;
497 if (audit_pid && tsk->tgid == audit_pid)
498 return AUDIT_DISABLED;
500 rcu_read_lock();
501 if (!list_empty(list)) {
502 int word = AUDIT_WORD(ctx->major);
503 int bit = AUDIT_BIT(ctx->major);
505 list_for_each_entry_rcu(e, list, list) {
506 if ((e->rule.mask[word] & bit) == bit &&
507 audit_filter_rules(tsk, &e->rule, ctx, NULL,
508 &state)) {
509 rcu_read_unlock();
510 return state;
511 }
512 }
513 }
514 rcu_read_unlock();
515 return AUDIT_BUILD_CONTEXT;
516 }
518 /* At syscall exit time, this filter is called if any audit_names[] have been
519 * collected during syscall processing. We only check rules in sublists at hash
520 * buckets applicable to the inode numbers in audit_names[].
521 * Regarding audit_state, same rules apply as for audit_filter_syscall().
522 */
523 enum audit_state audit_filter_inodes(struct task_struct *tsk,
524 struct audit_context *ctx)
525 {
526 int i;
527 struct audit_entry *e;
528 enum audit_state state;
530 if (audit_pid && tsk->tgid == audit_pid)
531 return AUDIT_DISABLED;
533 rcu_read_lock();
534 for (i = 0; i < ctx->name_count; i++) {
535 int word = AUDIT_WORD(ctx->major);
536 int bit = AUDIT_BIT(ctx->major);
537 struct audit_names *n = &ctx->names[i];
538 int h = audit_hash_ino((u32)n->ino);
539 struct list_head *list = &audit_inode_hash[h];
541 if (list_empty(list))
542 continue;
544 list_for_each_entry_rcu(e, list, list) {
545 if ((e->rule.mask[word] & bit) == bit &&
546 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
547 rcu_read_unlock();
548 return state;
549 }
550 }
551 }
552 rcu_read_unlock();
553 return AUDIT_BUILD_CONTEXT;
554 }
556 void audit_set_auditable(struct audit_context *ctx)
557 {
558 ctx->auditable = 1;
559 }
561 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
562 int return_valid,
563 int return_code)
564 {
565 struct audit_context *context = tsk->audit_context;
567 if (likely(!context))
568 return NULL;
569 context->return_valid = return_valid;
570 context->return_code = return_code;
572 if (context->in_syscall && !context->dummy && !context->auditable) {
573 enum audit_state state;
575 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
576 if (state == AUDIT_RECORD_CONTEXT) {
577 context->auditable = 1;
578 goto get_context;
579 }
581 state = audit_filter_inodes(tsk, context);
582 if (state == AUDIT_RECORD_CONTEXT)
583 context->auditable = 1;
585 }
587 get_context:
589 tsk->audit_context = NULL;
590 return context;
591 }
593 static inline void audit_free_names(struct audit_context *context)
594 {
595 int i;
597 #if AUDIT_DEBUG == 2
598 if (context->auditable
599 ||context->put_count + context->ino_count != context->name_count) {
600 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
601 " name_count=%d put_count=%d"
602 " ino_count=%d [NOT freeing]\n",
603 __FILE__, __LINE__,
604 context->serial, context->major, context->in_syscall,
605 context->name_count, context->put_count,
606 context->ino_count);
607 for (i = 0; i < context->name_count; i++) {
608 printk(KERN_ERR "names[%d] = %p = %s\n", i,
609 context->names[i].name,
610 context->names[i].name ?: "(null)");
611 }
612 dump_stack();
613 return;
614 }
615 #endif
616 #if AUDIT_DEBUG
617 context->put_count = 0;
618 context->ino_count = 0;
619 #endif
621 for (i = 0; i < context->name_count; i++) {
622 if (context->names[i].name && context->names[i].name_put)
623 __putname(context->names[i].name);
624 }
625 context->name_count = 0;
626 if (context->pwd)
627 dput(context->pwd);
628 if (context->pwdmnt)
629 mntput(context->pwdmnt);
630 context->pwd = NULL;
631 context->pwdmnt = NULL;
632 }
634 static inline void audit_free_aux(struct audit_context *context)
635 {
636 struct audit_aux_data *aux;
638 while ((aux = context->aux)) {
639 if (aux->type == AUDIT_AVC_PATH) {
640 struct audit_aux_data_path *axi = (void *)aux;
641 dput(axi->dentry);
642 mntput(axi->mnt);
643 }
645 context->aux = aux->next;
646 kfree(aux);
647 }
648 }
650 static inline void audit_zero_context(struct audit_context *context,
651 enum audit_state state)
652 {
653 uid_t loginuid = context->loginuid;
655 memset(context, 0, sizeof(*context));
656 context->state = state;
657 context->loginuid = loginuid;
658 }
660 static inline struct audit_context *audit_alloc_context(enum audit_state state)
661 {
662 struct audit_context *context;
664 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
665 return NULL;
666 audit_zero_context(context, state);
667 return context;
668 }
670 /**
671 * audit_alloc - allocate an audit context block for a task
672 * @tsk: task
673 *
674 * Filter on the task information and allocate a per-task audit context
675 * if necessary. Doing so turns on system call auditing for the
676 * specified task. This is called from copy_process, so no lock is
677 * needed.
678 */
679 int audit_alloc(struct task_struct *tsk)
680 {
681 struct audit_context *context;
682 enum audit_state state;
684 if (likely(!audit_enabled))
685 return 0; /* Return if not auditing. */
687 state = audit_filter_task(tsk);
688 if (likely(state == AUDIT_DISABLED))
689 return 0;
691 if (!(context = audit_alloc_context(state))) {
692 audit_log_lost("out of memory in audit_alloc");
693 return -ENOMEM;
694 }
696 /* Preserve login uid */
697 context->loginuid = -1;
698 if (current->audit_context)
699 context->loginuid = current->audit_context->loginuid;
701 tsk->audit_context = context;
702 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
703 return 0;
704 }
706 static inline void audit_free_context(struct audit_context *context)
707 {
708 struct audit_context *previous;
709 int count = 0;
711 do {
712 previous = context->previous;
713 if (previous || (count && count < 10)) {
714 ++count;
715 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
716 " freeing multiple contexts (%d)\n",
717 context->serial, context->major,
718 context->name_count, count);
719 }
720 audit_free_names(context);
721 audit_free_aux(context);
722 kfree(context->filterkey);
723 kfree(context);
724 context = previous;
725 } while (context);
726 if (count >= 10)
727 printk(KERN_ERR "audit: freed %d contexts\n", count);
728 }
730 static void audit_log_task_context(struct audit_buffer *ab)
731 {
732 char *ctx = NULL;
733 ssize_t len = 0;
735 len = security_getprocattr(current, "current", NULL, 0);
736 if (len < 0) {
737 if (len != -EINVAL)
738 goto error_path;
739 return;
740 }
742 ctx = kmalloc(len, GFP_KERNEL);
743 if (!ctx)
744 goto error_path;
746 len = security_getprocattr(current, "current", ctx, len);
747 if (len < 0 )
748 goto error_path;
750 audit_log_format(ab, " subj=%s", ctx);
751 return;
753 error_path:
754 kfree(ctx);
755 audit_panic("error in audit_log_task_context");
756 return;
757 }
759 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
760 {
761 char name[sizeof(tsk->comm)];
762 struct mm_struct *mm = tsk->mm;
763 struct vm_area_struct *vma;
765 /* tsk == current */
767 get_task_comm(name, tsk);
768 audit_log_format(ab, " comm=");
769 audit_log_untrustedstring(ab, name);
771 if (mm) {
772 down_read(&mm->mmap_sem);
773 vma = mm->mmap;
774 while (vma) {
775 if ((vma->vm_flags & VM_EXECUTABLE) &&
776 vma->vm_file) {
777 audit_log_d_path(ab, "exe=",
778 vma->vm_file->f_dentry,
779 vma->vm_file->f_vfsmnt);
780 break;
781 }
782 vma = vma->vm_next;
783 }
784 up_read(&mm->mmap_sem);
785 }
786 audit_log_task_context(ab);
787 }
789 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
790 {
791 int i, call_panic = 0;
792 struct audit_buffer *ab;
793 struct audit_aux_data *aux;
794 const char *tty;
796 /* tsk == current */
797 context->pid = tsk->pid;
798 context->ppid = sys_getppid(); /* sic. tsk == current in all cases */
799 context->uid = tsk->uid;
800 context->gid = tsk->gid;
801 context->euid = tsk->euid;
802 context->suid = tsk->suid;
803 context->fsuid = tsk->fsuid;
804 context->egid = tsk->egid;
805 context->sgid = tsk->sgid;
806 context->fsgid = tsk->fsgid;
807 context->personality = tsk->personality;
809 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
810 if (!ab)
811 return; /* audit_panic has been called */
812 audit_log_format(ab, "arch=%x syscall=%d",
813 context->arch, context->major);
814 if (context->personality != PER_LINUX)
815 audit_log_format(ab, " per=%lx", context->personality);
816 if (context->return_valid)
817 audit_log_format(ab, " success=%s exit=%ld",
818 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
819 context->return_code);
820 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
821 tty = tsk->signal->tty->name;
822 else
823 tty = "(none)";
824 audit_log_format(ab,
825 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
826 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
827 " euid=%u suid=%u fsuid=%u"
828 " egid=%u sgid=%u fsgid=%u tty=%s",
829 context->argv[0],
830 context->argv[1],
831 context->argv[2],
832 context->argv[3],
833 context->name_count,
834 context->ppid,
835 context->pid,
836 context->loginuid,
837 context->uid,
838 context->gid,
839 context->euid, context->suid, context->fsuid,
840 context->egid, context->sgid, context->fsgid, tty);
841 audit_log_task_info(ab, tsk);
842 if (context->filterkey) {
843 audit_log_format(ab, " key=");
844 audit_log_untrustedstring(ab, context->filterkey);
845 } else
846 audit_log_format(ab, " key=(null)");
847 audit_log_end(ab);
849 for (aux = context->aux; aux; aux = aux->next) {
851 ab = audit_log_start(context, GFP_KERNEL, aux->type);
852 if (!ab)
853 continue; /* audit_panic has been called */
855 switch (aux->type) {
856 case AUDIT_MQ_OPEN: {
857 struct audit_aux_data_mq_open *axi = (void *)aux;
858 audit_log_format(ab,
859 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
860 "mq_msgsize=%ld mq_curmsgs=%ld",
861 axi->oflag, axi->mode, axi->attr.mq_flags,
862 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
863 axi->attr.mq_curmsgs);
864 break; }
866 case AUDIT_MQ_SENDRECV: {
867 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
868 audit_log_format(ab,
869 "mqdes=%d msg_len=%zd msg_prio=%u "
870 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
871 axi->mqdes, axi->msg_len, axi->msg_prio,
872 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
873 break; }
875 case AUDIT_MQ_NOTIFY: {
876 struct audit_aux_data_mq_notify *axi = (void *)aux;
877 audit_log_format(ab,
878 "mqdes=%d sigev_signo=%d",
879 axi->mqdes,
880 axi->notification.sigev_signo);
881 break; }
883 case AUDIT_MQ_GETSETATTR: {
884 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
885 audit_log_format(ab,
886 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
887 "mq_curmsgs=%ld ",
888 axi->mqdes,
889 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
890 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
891 break; }
893 case AUDIT_IPC: {
894 struct audit_aux_data_ipcctl *axi = (void *)aux;
895 audit_log_format(ab,
896 "ouid=%u ogid=%u mode=%x",
897 axi->uid, axi->gid, axi->mode);
898 if (axi->osid != 0) {
899 char *ctx = NULL;
900 u32 len;
901 if (selinux_ctxid_to_string(
902 axi->osid, &ctx, &len)) {
903 audit_log_format(ab, " osid=%u",
904 axi->osid);
905 call_panic = 1;
906 } else
907 audit_log_format(ab, " obj=%s", ctx);
908 kfree(ctx);
909 }
910 break; }
912 case AUDIT_IPC_SET_PERM: {
913 struct audit_aux_data_ipcctl *axi = (void *)aux;
914 audit_log_format(ab,
915 "qbytes=%lx ouid=%u ogid=%u mode=%x",
916 axi->qbytes, axi->uid, axi->gid, axi->mode);
917 break; }
919 case AUDIT_EXECVE: {
920 struct audit_aux_data_execve *axi = (void *)aux;
921 int i;
922 const char *p;
923 for (i = 0, p = axi->mem; i < axi->argc; i++) {
924 audit_log_format(ab, "a%d=", i);
925 p = audit_log_untrustedstring(ab, p);
926 audit_log_format(ab, "\n");
927 }
928 break; }
930 case AUDIT_SOCKETCALL: {
931 int i;
932 struct audit_aux_data_socketcall *axs = (void *)aux;
933 audit_log_format(ab, "nargs=%d", axs->nargs);
934 for (i=0; i<axs->nargs; i++)
935 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
936 break; }
938 case AUDIT_SOCKADDR: {
939 struct audit_aux_data_sockaddr *axs = (void *)aux;
941 audit_log_format(ab, "saddr=");
942 audit_log_hex(ab, axs->a, axs->len);
943 break; }
945 case AUDIT_AVC_PATH: {
946 struct audit_aux_data_path *axi = (void *)aux;
947 audit_log_d_path(ab, "path=", axi->dentry, axi->mnt);
948 break; }
950 }
951 audit_log_end(ab);
952 }
954 if (context->pwd && context->pwdmnt) {
955 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
956 if (ab) {
957 audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
958 audit_log_end(ab);
959 }
960 }
961 for (i = 0; i < context->name_count; i++) {
962 struct audit_names *n = &context->names[i];
964 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
965 if (!ab)
966 continue; /* audit_panic has been called */
968 audit_log_format(ab, "item=%d", i);
970 if (n->name) {
971 switch(n->name_len) {
972 case AUDIT_NAME_FULL:
973 /* log the full path */
974 audit_log_format(ab, " name=");
975 audit_log_untrustedstring(ab, n->name);
976 break;
977 case 0:
978 /* name was specified as a relative path and the
979 * directory component is the cwd */
980 audit_log_d_path(ab, " name=", context->pwd,
981 context->pwdmnt);
982 break;
983 default:
984 /* log the name's directory component */
985 audit_log_format(ab, " name=");
986 audit_log_n_untrustedstring(ab, n->name_len,
987 n->name);
988 }
989 } else
990 audit_log_format(ab, " name=(null)");
992 if (n->ino != (unsigned long)-1) {
993 audit_log_format(ab, " inode=%lu"
994 " dev=%02x:%02x mode=%#o"
995 " ouid=%u ogid=%u rdev=%02x:%02x",
996 n->ino,
997 MAJOR(n->dev),
998 MINOR(n->dev),
999 n->mode,
1000 n->uid,
1001 n->gid,
1002 MAJOR(n->rdev),
1003 MINOR(n->rdev));
1005 if (n->osid != 0) {
1006 char *ctx = NULL;
1007 u32 len;
1008 if (selinux_ctxid_to_string(
1009 n->osid, &ctx, &len)) {
1010 audit_log_format(ab, " osid=%u", n->osid);
1011 call_panic = 2;
1012 } else
1013 audit_log_format(ab, " obj=%s", ctx);
1014 kfree(ctx);
1017 audit_log_end(ab);
1019 if (call_panic)
1020 audit_panic("error converting sid to string");
1023 /**
1024 * audit_free - free a per-task audit context
1025 * @tsk: task whose audit context block to free
1027 * Called from copy_process and do_exit
1028 */
1029 void audit_free(struct task_struct *tsk)
1031 struct audit_context *context;
1033 context = audit_get_context(tsk, 0, 0);
1034 if (likely(!context))
1035 return;
1037 /* Check for system calls that do not go through the exit
1038 * function (e.g., exit_group), then free context block.
1039 * We use GFP_ATOMIC here because we might be doing this
1040 * in the context of the idle thread */
1041 /* that can happen only if we are called from do_exit() */
1042 if (context->in_syscall && context->auditable)
1043 audit_log_exit(context, tsk);
1045 audit_free_context(context);
1048 /**
1049 * audit_syscall_entry - fill in an audit record at syscall entry
1050 * @tsk: task being audited
1051 * @arch: architecture type
1052 * @major: major syscall type (function)
1053 * @a1: additional syscall register 1
1054 * @a2: additional syscall register 2
1055 * @a3: additional syscall register 3
1056 * @a4: additional syscall register 4
1058 * Fill in audit context at syscall entry. This only happens if the
1059 * audit context was created when the task was created and the state or
1060 * filters demand the audit context be built. If the state from the
1061 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1062 * then the record will be written at syscall exit time (otherwise, it
1063 * will only be written if another part of the kernel requests that it
1064 * be written).
1065 */
1066 void audit_syscall_entry(int arch, int major,
1067 unsigned long a1, unsigned long a2,
1068 unsigned long a3, unsigned long a4)
1070 struct task_struct *tsk = current;
1071 struct audit_context *context = tsk->audit_context;
1072 enum audit_state state;
1074 BUG_ON(!context);
1076 /*
1077 * This happens only on certain architectures that make system
1078 * calls in kernel_thread via the entry.S interface, instead of
1079 * with direct calls. (If you are porting to a new
1080 * architecture, hitting this condition can indicate that you
1081 * got the _exit/_leave calls backward in entry.S.)
1083 * i386 no
1084 * x86_64 no
1085 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1087 * This also happens with vm86 emulation in a non-nested manner
1088 * (entries without exits), so this case must be caught.
1089 */
1090 if (context->in_syscall) {
1091 struct audit_context *newctx;
1093 #if AUDIT_DEBUG
1094 printk(KERN_ERR
1095 "audit(:%d) pid=%d in syscall=%d;"
1096 " entering syscall=%d\n",
1097 context->serial, tsk->pid, context->major, major);
1098 #endif
1099 newctx = audit_alloc_context(context->state);
1100 if (newctx) {
1101 newctx->previous = context;
1102 context = newctx;
1103 tsk->audit_context = newctx;
1104 } else {
1105 /* If we can't alloc a new context, the best we
1106 * can do is to leak memory (any pending putname
1107 * will be lost). The only other alternative is
1108 * to abandon auditing. */
1109 audit_zero_context(context, context->state);
1112 BUG_ON(context->in_syscall || context->name_count);
1114 if (!audit_enabled)
1115 return;
1117 context->arch = arch;
1118 context->major = major;
1119 context->argv[0] = a1;
1120 context->argv[1] = a2;
1121 context->argv[2] = a3;
1122 context->argv[3] = a4;
1124 state = context->state;
1125 context->dummy = !audit_n_rules;
1126 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1127 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1128 if (likely(state == AUDIT_DISABLED))
1129 return;
1131 context->serial = 0;
1132 context->ctime = CURRENT_TIME;
1133 context->in_syscall = 1;
1134 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1137 /**
1138 * audit_syscall_exit - deallocate audit context after a system call
1139 * @tsk: task being audited
1140 * @valid: success/failure flag
1141 * @return_code: syscall return value
1143 * Tear down after system call. If the audit context has been marked as
1144 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1145 * filtering, or because some other part of the kernel write an audit
1146 * message), then write out the syscall information. In call cases,
1147 * free the names stored from getname().
1148 */
1149 void audit_syscall_exit(int valid, long return_code)
1151 struct task_struct *tsk = current;
1152 struct audit_context *context;
1154 context = audit_get_context(tsk, valid, return_code);
1156 if (likely(!context))
1157 return;
1159 if (context->in_syscall && context->auditable)
1160 audit_log_exit(context, tsk);
1162 context->in_syscall = 0;
1163 context->auditable = 0;
1165 if (context->previous) {
1166 struct audit_context *new_context = context->previous;
1167 context->previous = NULL;
1168 audit_free_context(context);
1169 tsk->audit_context = new_context;
1170 } else {
1171 audit_free_names(context);
1172 audit_free_aux(context);
1173 kfree(context->filterkey);
1174 context->filterkey = NULL;
1175 tsk->audit_context = context;
1179 /**
1180 * audit_getname - add a name to the list
1181 * @name: name to add
1183 * Add a name to the list of audit names for this context.
1184 * Called from fs/namei.c:getname().
1185 */
1186 void __audit_getname(const char *name)
1188 struct audit_context *context = current->audit_context;
1190 if (IS_ERR(name) || !name)
1191 return;
1193 if (!context->in_syscall) {
1194 #if AUDIT_DEBUG == 2
1195 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1196 __FILE__, __LINE__, context->serial, name);
1197 dump_stack();
1198 #endif
1199 return;
1201 BUG_ON(context->name_count >= AUDIT_NAMES);
1202 context->names[context->name_count].name = name;
1203 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1204 context->names[context->name_count].name_put = 1;
1205 context->names[context->name_count].ino = (unsigned long)-1;
1206 ++context->name_count;
1207 if (!context->pwd) {
1208 read_lock(&current->fs->lock);
1209 context->pwd = dget(current->fs->pwd);
1210 context->pwdmnt = mntget(current->fs->pwdmnt);
1211 read_unlock(&current->fs->lock);
1216 /* audit_putname - intercept a putname request
1217 * @name: name to intercept and delay for putname
1219 * If we have stored the name from getname in the audit context,
1220 * then we delay the putname until syscall exit.
1221 * Called from include/linux/fs.h:putname().
1222 */
1223 void audit_putname(const char *name)
1225 struct audit_context *context = current->audit_context;
1227 BUG_ON(!context);
1228 if (!context->in_syscall) {
1229 #if AUDIT_DEBUG == 2
1230 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1231 __FILE__, __LINE__, context->serial, name);
1232 if (context->name_count) {
1233 int i;
1234 for (i = 0; i < context->name_count; i++)
1235 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1236 context->names[i].name,
1237 context->names[i].name ?: "(null)");
1239 #endif
1240 __putname(name);
1242 #if AUDIT_DEBUG
1243 else {
1244 ++context->put_count;
1245 if (context->put_count > context->name_count) {
1246 printk(KERN_ERR "%s:%d(:%d): major=%d"
1247 " in_syscall=%d putname(%p) name_count=%d"
1248 " put_count=%d\n",
1249 __FILE__, __LINE__,
1250 context->serial, context->major,
1251 context->in_syscall, name, context->name_count,
1252 context->put_count);
1253 dump_stack();
1256 #endif
1259 /* Copy inode data into an audit_names. */
1260 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1262 name->ino = inode->i_ino;
1263 name->dev = inode->i_sb->s_dev;
1264 name->mode = inode->i_mode;
1265 name->uid = inode->i_uid;
1266 name->gid = inode->i_gid;
1267 name->rdev = inode->i_rdev;
1268 selinux_get_inode_sid(inode, &name->osid);
1271 /**
1272 * audit_inode - store the inode and device from a lookup
1273 * @name: name being audited
1274 * @inode: inode being audited
1276 * Called from fs/namei.c:path_lookup().
1277 */
1278 void __audit_inode(const char *name, const struct inode *inode)
1280 int idx;
1281 struct audit_context *context = current->audit_context;
1283 if (!context->in_syscall)
1284 return;
1285 if (context->name_count
1286 && context->names[context->name_count-1].name
1287 && context->names[context->name_count-1].name == name)
1288 idx = context->name_count - 1;
1289 else if (context->name_count > 1
1290 && context->names[context->name_count-2].name
1291 && context->names[context->name_count-2].name == name)
1292 idx = context->name_count - 2;
1293 else {
1294 /* FIXME: how much do we care about inodes that have no
1295 * associated name? */
1296 if (context->name_count >= AUDIT_NAMES - AUDIT_NAMES_RESERVED)
1297 return;
1298 idx = context->name_count++;
1299 context->names[idx].name = NULL;
1300 #if AUDIT_DEBUG
1301 ++context->ino_count;
1302 #endif
1304 audit_copy_inode(&context->names[idx], inode);
1307 /**
1308 * audit_inode_child - collect inode info for created/removed objects
1309 * @dname: inode's dentry name
1310 * @inode: inode being audited
1311 * @parent: inode of dentry parent
1313 * For syscalls that create or remove filesystem objects, audit_inode
1314 * can only collect information for the filesystem object's parent.
1315 * This call updates the audit context with the child's information.
1316 * Syscalls that create a new filesystem object must be hooked after
1317 * the object is created. Syscalls that remove a filesystem object
1318 * must be hooked prior, in order to capture the target inode during
1319 * unsuccessful attempts.
1320 */
1321 void __audit_inode_child(const char *dname, const struct inode *inode,
1322 const struct inode *parent)
1324 int idx;
1325 struct audit_context *context = current->audit_context;
1326 const char *found_name = NULL;
1327 int dirlen = 0;
1329 if (!context->in_syscall)
1330 return;
1332 /* determine matching parent */
1333 if (!dname)
1334 goto update_context;
1335 for (idx = 0; idx < context->name_count; idx++)
1336 if (context->names[idx].ino == parent->i_ino) {
1337 const char *name = context->names[idx].name;
1339 if (!name)
1340 continue;
1342 if (audit_compare_dname_path(dname, name, &dirlen) == 0) {
1343 context->names[idx].name_len = dirlen;
1344 found_name = name;
1345 break;
1349 update_context:
1350 idx = context->name_count++;
1351 #if AUDIT_DEBUG
1352 context->ino_count++;
1353 #endif
1354 /* Re-use the name belonging to the slot for a matching parent directory.
1355 * All names for this context are relinquished in audit_free_names() */
1356 context->names[idx].name = found_name;
1357 context->names[idx].name_len = AUDIT_NAME_FULL;
1358 context->names[idx].name_put = 0; /* don't call __putname() */
1360 if (!inode)
1361 context->names[idx].ino = (unsigned long)-1;
1362 else
1363 audit_copy_inode(&context->names[idx], inode);
1365 /* A parent was not found in audit_names, so copy the inode data for the
1366 * provided parent. */
1367 if (!found_name) {
1368 idx = context->name_count++;
1369 #if AUDIT_DEBUG
1370 context->ino_count++;
1371 #endif
1372 audit_copy_inode(&context->names[idx], parent);
1376 /**
1377 * audit_inode_update - update inode info for last collected name
1378 * @inode: inode being audited
1380 * When open() is called on an existing object with the O_CREAT flag, the inode
1381 * data audit initially collects is incorrect. This additional hook ensures
1382 * audit has the inode data for the actual object to be opened.
1383 */
1384 void __audit_inode_update(const struct inode *inode)
1386 struct audit_context *context = current->audit_context;
1387 int idx;
1389 if (!context->in_syscall || !inode)
1390 return;
1392 if (context->name_count == 0) {
1393 context->name_count++;
1394 #if AUDIT_DEBUG
1395 context->ino_count++;
1396 #endif
1398 idx = context->name_count - 1;
1400 audit_copy_inode(&context->names[idx], inode);
1403 /**
1404 * auditsc_get_stamp - get local copies of audit_context values
1405 * @ctx: audit_context for the task
1406 * @t: timespec to store time recorded in the audit_context
1407 * @serial: serial value that is recorded in the audit_context
1409 * Also sets the context as auditable.
1410 */
1411 void auditsc_get_stamp(struct audit_context *ctx,
1412 struct timespec *t, unsigned int *serial)
1414 if (!ctx->serial)
1415 ctx->serial = audit_serial();
1416 t->tv_sec = ctx->ctime.tv_sec;
1417 t->tv_nsec = ctx->ctime.tv_nsec;
1418 *serial = ctx->serial;
1419 ctx->auditable = 1;
1422 /**
1423 * audit_set_loginuid - set a task's audit_context loginuid
1424 * @task: task whose audit context is being modified
1425 * @loginuid: loginuid value
1427 * Returns 0.
1429 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1430 */
1431 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1433 struct audit_context *context = task->audit_context;
1435 if (context) {
1436 /* Only log if audit is enabled */
1437 if (context->in_syscall) {
1438 struct audit_buffer *ab;
1440 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1441 if (ab) {
1442 audit_log_format(ab, "login pid=%d uid=%u "
1443 "old auid=%u new auid=%u",
1444 task->pid, task->uid,
1445 context->loginuid, loginuid);
1446 audit_log_end(ab);
1449 context->loginuid = loginuid;
1451 return 0;
1454 /**
1455 * audit_get_loginuid - get the loginuid for an audit_context
1456 * @ctx: the audit_context
1458 * Returns the context's loginuid or -1 if @ctx is NULL.
1459 */
1460 uid_t audit_get_loginuid(struct audit_context *ctx)
1462 return ctx ? ctx->loginuid : -1;
1465 /**
1466 * __audit_mq_open - record audit data for a POSIX MQ open
1467 * @oflag: open flag
1468 * @mode: mode bits
1469 * @u_attr: queue attributes
1471 * Returns 0 for success or NULL context or < 0 on error.
1472 */
1473 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1475 struct audit_aux_data_mq_open *ax;
1476 struct audit_context *context = current->audit_context;
1478 if (!audit_enabled)
1479 return 0;
1481 if (likely(!context))
1482 return 0;
1484 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1485 if (!ax)
1486 return -ENOMEM;
1488 if (u_attr != NULL) {
1489 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1490 kfree(ax);
1491 return -EFAULT;
1493 } else
1494 memset(&ax->attr, 0, sizeof(ax->attr));
1496 ax->oflag = oflag;
1497 ax->mode = mode;
1499 ax->d.type = AUDIT_MQ_OPEN;
1500 ax->d.next = context->aux;
1501 context->aux = (void *)ax;
1502 return 0;
1505 /**
1506 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1507 * @mqdes: MQ descriptor
1508 * @msg_len: Message length
1509 * @msg_prio: Message priority
1510 * @u_abs_timeout: Message timeout in absolute time
1512 * Returns 0 for success or NULL context or < 0 on error.
1513 */
1514 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1515 const struct timespec __user *u_abs_timeout)
1517 struct audit_aux_data_mq_sendrecv *ax;
1518 struct audit_context *context = current->audit_context;
1520 if (!audit_enabled)
1521 return 0;
1523 if (likely(!context))
1524 return 0;
1526 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1527 if (!ax)
1528 return -ENOMEM;
1530 if (u_abs_timeout != NULL) {
1531 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1532 kfree(ax);
1533 return -EFAULT;
1535 } else
1536 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1538 ax->mqdes = mqdes;
1539 ax->msg_len = msg_len;
1540 ax->msg_prio = msg_prio;
1542 ax->d.type = AUDIT_MQ_SENDRECV;
1543 ax->d.next = context->aux;
1544 context->aux = (void *)ax;
1545 return 0;
1548 /**
1549 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1550 * @mqdes: MQ descriptor
1551 * @msg_len: Message length
1552 * @u_msg_prio: Message priority
1553 * @u_abs_timeout: Message timeout in absolute time
1555 * Returns 0 for success or NULL context or < 0 on error.
1556 */
1557 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1558 unsigned int __user *u_msg_prio,
1559 const struct timespec __user *u_abs_timeout)
1561 struct audit_aux_data_mq_sendrecv *ax;
1562 struct audit_context *context = current->audit_context;
1564 if (!audit_enabled)
1565 return 0;
1567 if (likely(!context))
1568 return 0;
1570 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1571 if (!ax)
1572 return -ENOMEM;
1574 if (u_msg_prio != NULL) {
1575 if (get_user(ax->msg_prio, u_msg_prio)) {
1576 kfree(ax);
1577 return -EFAULT;
1579 } else
1580 ax->msg_prio = 0;
1582 if (u_abs_timeout != NULL) {
1583 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1584 kfree(ax);
1585 return -EFAULT;
1587 } else
1588 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1590 ax->mqdes = mqdes;
1591 ax->msg_len = msg_len;
1593 ax->d.type = AUDIT_MQ_SENDRECV;
1594 ax->d.next = context->aux;
1595 context->aux = (void *)ax;
1596 return 0;
1599 /**
1600 * __audit_mq_notify - record audit data for a POSIX MQ notify
1601 * @mqdes: MQ descriptor
1602 * @u_notification: Notification event
1604 * Returns 0 for success or NULL context or < 0 on error.
1605 */
1607 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1609 struct audit_aux_data_mq_notify *ax;
1610 struct audit_context *context = current->audit_context;
1612 if (!audit_enabled)
1613 return 0;
1615 if (likely(!context))
1616 return 0;
1618 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1619 if (!ax)
1620 return -ENOMEM;
1622 if (u_notification != NULL) {
1623 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1624 kfree(ax);
1625 return -EFAULT;
1627 } else
1628 memset(&ax->notification, 0, sizeof(ax->notification));
1630 ax->mqdes = mqdes;
1632 ax->d.type = AUDIT_MQ_NOTIFY;
1633 ax->d.next = context->aux;
1634 context->aux = (void *)ax;
1635 return 0;
1638 /**
1639 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1640 * @mqdes: MQ descriptor
1641 * @mqstat: MQ flags
1643 * Returns 0 for success or NULL context or < 0 on error.
1644 */
1645 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
1647 struct audit_aux_data_mq_getsetattr *ax;
1648 struct audit_context *context = current->audit_context;
1650 if (!audit_enabled)
1651 return 0;
1653 if (likely(!context))
1654 return 0;
1656 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1657 if (!ax)
1658 return -ENOMEM;
1660 ax->mqdes = mqdes;
1661 ax->mqstat = *mqstat;
1663 ax->d.type = AUDIT_MQ_GETSETATTR;
1664 ax->d.next = context->aux;
1665 context->aux = (void *)ax;
1666 return 0;
1669 /**
1670 * audit_ipc_obj - record audit data for ipc object
1671 * @ipcp: ipc permissions
1673 * Returns 0 for success or NULL context or < 0 on error.
1674 */
1675 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
1677 struct audit_aux_data_ipcctl *ax;
1678 struct audit_context *context = current->audit_context;
1680 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1681 if (!ax)
1682 return -ENOMEM;
1684 ax->uid = ipcp->uid;
1685 ax->gid = ipcp->gid;
1686 ax->mode = ipcp->mode;
1687 selinux_get_ipc_sid(ipcp, &ax->osid);
1689 ax->d.type = AUDIT_IPC;
1690 ax->d.next = context->aux;
1691 context->aux = (void *)ax;
1692 return 0;
1695 /**
1696 * audit_ipc_set_perm - record audit data for new ipc permissions
1697 * @qbytes: msgq bytes
1698 * @uid: msgq user id
1699 * @gid: msgq group id
1700 * @mode: msgq mode (permissions)
1702 * Returns 0 for success or NULL context or < 0 on error.
1703 */
1704 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1706 struct audit_aux_data_ipcctl *ax;
1707 struct audit_context *context = current->audit_context;
1709 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1710 if (!ax)
1711 return -ENOMEM;
1713 ax->qbytes = qbytes;
1714 ax->uid = uid;
1715 ax->gid = gid;
1716 ax->mode = mode;
1718 ax->d.type = AUDIT_IPC_SET_PERM;
1719 ax->d.next = context->aux;
1720 context->aux = (void *)ax;
1721 return 0;
1724 int audit_bprm(struct linux_binprm *bprm)
1726 struct audit_aux_data_execve *ax;
1727 struct audit_context *context = current->audit_context;
1728 unsigned long p, next;
1729 void *to;
1731 if (likely(!audit_enabled || !context || context->dummy))
1732 return 0;
1734 ax = kmalloc(sizeof(*ax) + PAGE_SIZE * MAX_ARG_PAGES - bprm->p,
1735 GFP_KERNEL);
1736 if (!ax)
1737 return -ENOMEM;
1739 ax->argc = bprm->argc;
1740 ax->envc = bprm->envc;
1741 for (p = bprm->p, to = ax->mem; p < MAX_ARG_PAGES*PAGE_SIZE; p = next) {
1742 struct page *page = bprm->page[p / PAGE_SIZE];
1743 void *kaddr = kmap(page);
1744 next = (p + PAGE_SIZE) & ~(PAGE_SIZE - 1);
1745 memcpy(to, kaddr + (p & (PAGE_SIZE - 1)), next - p);
1746 to += next - p;
1747 kunmap(page);
1750 ax->d.type = AUDIT_EXECVE;
1751 ax->d.next = context->aux;
1752 context->aux = (void *)ax;
1753 return 0;
1757 /**
1758 * audit_socketcall - record audit data for sys_socketcall
1759 * @nargs: number of args
1760 * @args: args array
1762 * Returns 0 for success or NULL context or < 0 on error.
1763 */
1764 int audit_socketcall(int nargs, unsigned long *args)
1766 struct audit_aux_data_socketcall *ax;
1767 struct audit_context *context = current->audit_context;
1769 if (likely(!context || context->dummy))
1770 return 0;
1772 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
1773 if (!ax)
1774 return -ENOMEM;
1776 ax->nargs = nargs;
1777 memcpy(ax->args, args, nargs * sizeof(unsigned long));
1779 ax->d.type = AUDIT_SOCKETCALL;
1780 ax->d.next = context->aux;
1781 context->aux = (void *)ax;
1782 return 0;
1785 /**
1786 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
1787 * @len: data length in user space
1788 * @a: data address in kernel space
1790 * Returns 0 for success or NULL context or < 0 on error.
1791 */
1792 int audit_sockaddr(int len, void *a)
1794 struct audit_aux_data_sockaddr *ax;
1795 struct audit_context *context = current->audit_context;
1797 if (likely(!context || context->dummy))
1798 return 0;
1800 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
1801 if (!ax)
1802 return -ENOMEM;
1804 ax->len = len;
1805 memcpy(ax->a, a, len);
1807 ax->d.type = AUDIT_SOCKADDR;
1808 ax->d.next = context->aux;
1809 context->aux = (void *)ax;
1810 return 0;
1813 /**
1814 * audit_avc_path - record the granting or denial of permissions
1815 * @dentry: dentry to record
1816 * @mnt: mnt to record
1818 * Returns 0 for success or NULL context or < 0 on error.
1820 * Called from security/selinux/avc.c::avc_audit()
1821 */
1822 int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt)
1824 struct audit_aux_data_path *ax;
1825 struct audit_context *context = current->audit_context;
1827 if (likely(!context))
1828 return 0;
1830 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1831 if (!ax)
1832 return -ENOMEM;
1834 ax->dentry = dget(dentry);
1835 ax->mnt = mntget(mnt);
1837 ax->d.type = AUDIT_AVC_PATH;
1838 ax->d.next = context->aux;
1839 context->aux = (void *)ax;
1840 return 0;
1843 /**
1844 * audit_signal_info - record signal info for shutting down audit subsystem
1845 * @sig: signal value
1846 * @t: task being signaled
1848 * If the audit subsystem is being terminated, record the task (pid)
1849 * and uid that is doing that.
1850 */
1851 void __audit_signal_info(int sig, struct task_struct *t)
1853 extern pid_t audit_sig_pid;
1854 extern uid_t audit_sig_uid;
1855 extern u32 audit_sig_sid;
1857 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
1858 struct task_struct *tsk = current;
1859 struct audit_context *ctx = tsk->audit_context;
1860 audit_sig_pid = tsk->pid;
1861 if (ctx)
1862 audit_sig_uid = ctx->loginuid;
1863 else
1864 audit_sig_uid = tsk->uid;
1865 selinux_get_task_sid(tsk, &audit_sig_sid);