ia64/linux-2.6.18-xen.hg

view arch/mips/kernel/time.c @ 452:c7ed6fe5dca0

kexec: dont initialise regions in reserve_memory()

There is no need to initialise efi_memmap_res and boot_param_res in
reserve_memory() for the initial xen domain as it is done in
machine_kexec_setup_resources() using values from the kexec hypercall.

Signed-off-by: Simon Horman <horms@verge.net.au>
author Keir Fraser <keir.fraser@citrix.com>
date Thu Feb 28 10:55:18 2008 +0000 (2008-02-28)
parents 831230e53067
children
line source
1 /*
2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4 * Copyright (c) 2003, 2004 Maciej W. Rozycki
5 *
6 * Common time service routines for MIPS machines. See
7 * Documentation/mips/time.README.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 */
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/param.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/smp.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
27 #include <asm/bootinfo.h>
28 #include <asm/cache.h>
29 #include <asm/compiler.h>
30 #include <asm/cpu.h>
31 #include <asm/cpu-features.h>
32 #include <asm/div64.h>
33 #include <asm/sections.h>
34 #include <asm/time.h>
36 /*
37 * The integer part of the number of usecs per jiffy is taken from tick,
38 * but the fractional part is not recorded, so we calculate it using the
39 * initial value of HZ. This aids systems where tick isn't really an
40 * integer (e.g. for HZ = 128).
41 */
42 #define USECS_PER_JIFFY TICK_SIZE
43 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
45 #define TICK_SIZE (tick_nsec / 1000)
47 /*
48 * forward reference
49 */
50 extern volatile unsigned long wall_jiffies;
52 DEFINE_SPINLOCK(rtc_lock);
54 /*
55 * By default we provide the null RTC ops
56 */
57 static unsigned long null_rtc_get_time(void)
58 {
59 return mktime(2000, 1, 1, 0, 0, 0);
60 }
62 static int null_rtc_set_time(unsigned long sec)
63 {
64 return 0;
65 }
67 unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
68 int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
69 int (*rtc_mips_set_mmss)(unsigned long);
72 /* usecs per counter cycle, shifted to left by 32 bits */
73 static unsigned int sll32_usecs_per_cycle;
75 /* how many counter cycles in a jiffy */
76 static unsigned long cycles_per_jiffy __read_mostly;
78 /* Cycle counter value at the previous timer interrupt.. */
79 static unsigned int timerhi, timerlo;
81 /* expirelo is the count value for next CPU timer interrupt */
82 static unsigned int expirelo;
85 /*
86 * Null timer ack for systems not needing one (e.g. i8254).
87 */
88 static void null_timer_ack(void) { /* nothing */ }
90 /*
91 * Null high precision timer functions for systems lacking one.
92 */
93 static unsigned int null_hpt_read(void)
94 {
95 return 0;
96 }
98 static void null_hpt_init(unsigned int count)
99 {
100 /* nothing */
101 }
104 /*
105 * Timer ack for an R4k-compatible timer of a known frequency.
106 */
107 static void c0_timer_ack(void)
108 {
109 unsigned int count;
111 #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */
112 /* Ack this timer interrupt and set the next one. */
113 expirelo += cycles_per_jiffy;
114 #endif
115 write_c0_compare(expirelo);
117 /* Check to see if we have missed any timer interrupts. */
118 while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
119 /* missed_timer_count++; */
120 expirelo = count + cycles_per_jiffy;
121 write_c0_compare(expirelo);
122 }
123 }
125 /*
126 * High precision timer functions for a R4k-compatible timer.
127 */
128 static unsigned int c0_hpt_read(void)
129 {
130 return read_c0_count();
131 }
133 /* For use solely as a high precision timer. */
134 static void c0_hpt_init(unsigned int count)
135 {
136 write_c0_count(read_c0_count() - count);
137 }
139 /* For use both as a high precision timer and an interrupt source. */
140 static void c0_hpt_timer_init(unsigned int count)
141 {
142 count = read_c0_count() - count;
143 expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
144 write_c0_count(expirelo - cycles_per_jiffy);
145 write_c0_compare(expirelo);
146 write_c0_count(count);
147 }
149 int (*mips_timer_state)(void);
150 void (*mips_timer_ack)(void);
151 unsigned int (*mips_hpt_read)(void);
152 void (*mips_hpt_init)(unsigned int);
155 /*
156 * This version of gettimeofday has microsecond resolution and better than
157 * microsecond precision on fast machines with cycle counter.
158 */
159 void do_gettimeofday(struct timeval *tv)
160 {
161 unsigned long seq;
162 unsigned long lost;
163 unsigned long usec, sec;
164 unsigned long max_ntp_tick;
166 do {
167 seq = read_seqbegin(&xtime_lock);
169 usec = do_gettimeoffset();
171 lost = jiffies - wall_jiffies;
173 /*
174 * If time_adjust is negative then NTP is slowing the clock
175 * so make sure not to go into next possible interval.
176 * Better to lose some accuracy than have time go backwards..
177 */
178 if (unlikely(time_adjust < 0)) {
179 max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj;
180 usec = min(usec, max_ntp_tick);
182 if (lost)
183 usec += lost * max_ntp_tick;
184 } else if (unlikely(lost))
185 usec += lost * (USEC_PER_SEC / HZ);
187 sec = xtime.tv_sec;
188 usec += (xtime.tv_nsec / 1000);
190 } while (read_seqretry(&xtime_lock, seq));
192 while (usec >= 1000000) {
193 usec -= 1000000;
194 sec++;
195 }
197 tv->tv_sec = sec;
198 tv->tv_usec = usec;
199 }
201 EXPORT_SYMBOL(do_gettimeofday);
203 int do_settimeofday(struct timespec *tv)
204 {
205 time_t wtm_sec, sec = tv->tv_sec;
206 long wtm_nsec, nsec = tv->tv_nsec;
208 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
209 return -EINVAL;
211 write_seqlock_irq(&xtime_lock);
213 /*
214 * This is revolting. We need to set "xtime" correctly. However,
215 * the value in this location is the value at the most recent update
216 * of wall time. Discover what correction gettimeofday() would have
217 * made, and then undo it!
218 */
219 nsec -= do_gettimeoffset() * NSEC_PER_USEC;
220 nsec -= (jiffies - wall_jiffies) * tick_nsec;
222 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
223 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
225 set_normalized_timespec(&xtime, sec, nsec);
226 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
228 ntp_clear();
229 write_sequnlock_irq(&xtime_lock);
230 clock_was_set();
231 return 0;
232 }
234 EXPORT_SYMBOL(do_settimeofday);
236 /*
237 * Gettimeoffset routines. These routines returns the time duration
238 * since last timer interrupt in usecs.
239 *
240 * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
241 * Otherwise use calibrate_gettimeoffset()
242 *
243 * If the CPU does not have the counter register, you can either supply
244 * your own gettimeoffset() routine, or use null_gettimeoffset(), which
245 * gives the same resolution as HZ.
246 */
248 static unsigned long null_gettimeoffset(void)
249 {
250 return 0;
251 }
254 /* The function pointer to one of the gettimeoffset funcs. */
255 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
258 static unsigned long fixed_rate_gettimeoffset(void)
259 {
260 u32 count;
261 unsigned long res;
263 /* Get last timer tick in absolute kernel time */
264 count = mips_hpt_read();
266 /* .. relative to previous jiffy (32 bits is enough) */
267 count -= timerlo;
269 __asm__("multu %1,%2"
270 : "=h" (res)
271 : "r" (count), "r" (sll32_usecs_per_cycle)
272 : "lo", GCC_REG_ACCUM);
274 /*
275 * Due to possible jiffies inconsistencies, we need to check
276 * the result so that we'll get a timer that is monotonic.
277 */
278 if (res >= USECS_PER_JIFFY)
279 res = USECS_PER_JIFFY - 1;
281 return res;
282 }
285 /*
286 * Cached "1/(clocks per usec) * 2^32" value.
287 * It has to be recalculated once each jiffy.
288 */
289 static unsigned long cached_quotient;
291 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
292 static unsigned long last_jiffies;
294 /*
295 * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
296 */
297 static unsigned long calibrate_div32_gettimeoffset(void)
298 {
299 u32 count;
300 unsigned long res, tmp;
301 unsigned long quotient;
303 tmp = jiffies;
305 quotient = cached_quotient;
307 if (last_jiffies != tmp) {
308 last_jiffies = tmp;
309 if (last_jiffies != 0) {
310 unsigned long r0;
311 do_div64_32(r0, timerhi, timerlo, tmp);
312 do_div64_32(quotient, USECS_PER_JIFFY,
313 USECS_PER_JIFFY_FRAC, r0);
314 cached_quotient = quotient;
315 }
316 }
318 /* Get last timer tick in absolute kernel time */
319 count = mips_hpt_read();
321 /* .. relative to previous jiffy (32 bits is enough) */
322 count -= timerlo;
324 __asm__("multu %1,%2"
325 : "=h" (res)
326 : "r" (count), "r" (quotient)
327 : "lo", GCC_REG_ACCUM);
329 /*
330 * Due to possible jiffies inconsistencies, we need to check
331 * the result so that we'll get a timer that is monotonic.
332 */
333 if (res >= USECS_PER_JIFFY)
334 res = USECS_PER_JIFFY - 1;
336 return res;
337 }
339 static unsigned long calibrate_div64_gettimeoffset(void)
340 {
341 u32 count;
342 unsigned long res, tmp;
343 unsigned long quotient;
345 tmp = jiffies;
347 quotient = cached_quotient;
349 if (last_jiffies != tmp) {
350 last_jiffies = tmp;
351 if (last_jiffies) {
352 unsigned long r0;
353 __asm__(".set push\n\t"
354 ".set mips3\n\t"
355 "lwu %0,%3\n\t"
356 "dsll32 %1,%2,0\n\t"
357 "or %1,%1,%0\n\t"
358 "ddivu $0,%1,%4\n\t"
359 "mflo %1\n\t"
360 "dsll32 %0,%5,0\n\t"
361 "or %0,%0,%6\n\t"
362 "ddivu $0,%0,%1\n\t"
363 "mflo %0\n\t"
364 ".set pop"
365 : "=&r" (quotient), "=&r" (r0)
366 : "r" (timerhi), "m" (timerlo),
367 "r" (tmp), "r" (USECS_PER_JIFFY),
368 "r" (USECS_PER_JIFFY_FRAC)
369 : "hi", "lo", GCC_REG_ACCUM);
370 cached_quotient = quotient;
371 }
372 }
374 /* Get last timer tick in absolute kernel time */
375 count = mips_hpt_read();
377 /* .. relative to previous jiffy (32 bits is enough) */
378 count -= timerlo;
380 __asm__("multu %1,%2"
381 : "=h" (res)
382 : "r" (count), "r" (quotient)
383 : "lo", GCC_REG_ACCUM);
385 /*
386 * Due to possible jiffies inconsistencies, we need to check
387 * the result so that we'll get a timer that is monotonic.
388 */
389 if (res >= USECS_PER_JIFFY)
390 res = USECS_PER_JIFFY - 1;
392 return res;
393 }
396 /* last time when xtime and rtc are sync'ed up */
397 static long last_rtc_update;
399 /*
400 * local_timer_interrupt() does profiling and process accounting
401 * on a per-CPU basis.
402 *
403 * In UP mode, it is invoked from the (global) timer_interrupt.
404 *
405 * In SMP mode, it might invoked by per-CPU timer interrupt, or
406 * a broadcasted inter-processor interrupt which itself is triggered
407 * by the global timer interrupt.
408 */
409 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
410 {
411 if (current->pid)
412 profile_tick(CPU_PROFILING, regs);
413 update_process_times(user_mode(regs));
414 }
416 /*
417 * High-level timer interrupt service routines. This function
418 * is set as irqaction->handler and is invoked through do_IRQ.
419 */
420 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
421 {
422 unsigned long j;
423 unsigned int count;
425 write_seqlock(&xtime_lock);
427 count = mips_hpt_read();
428 mips_timer_ack();
430 /* Update timerhi/timerlo for intra-jiffy calibration. */
431 timerhi += count < timerlo; /* Wrap around */
432 timerlo = count;
434 /*
435 * call the generic timer interrupt handling
436 */
437 do_timer(regs);
439 /*
440 * If we have an externally synchronized Linux clock, then update
441 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
442 * called as close as possible to 500 ms before the new second starts.
443 */
444 if (ntp_synced() &&
445 xtime.tv_sec > last_rtc_update + 660 &&
446 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
447 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
448 if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
449 last_rtc_update = xtime.tv_sec;
450 } else {
451 /* do it again in 60 s */
452 last_rtc_update = xtime.tv_sec - 600;
453 }
454 }
456 /*
457 * If jiffies has overflown in this timer_interrupt, we must
458 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
459 * quotient calc still valid. -arca
460 *
461 * The first timer interrupt comes late as interrupts are
462 * enabled long after timers are initialized. Therefore the
463 * high precision timer is fast, leading to wrong gettimeoffset()
464 * calculations. We deal with it by setting it based on the
465 * number of its ticks between the second and the third interrupt.
466 * That is still somewhat imprecise, but it's a good estimate.
467 * --macro
468 */
469 j = jiffies;
470 if (j < 4) {
471 static unsigned int prev_count;
472 static int hpt_initialized;
474 switch (j) {
475 case 0:
476 timerhi = timerlo = 0;
477 mips_hpt_init(count);
478 break;
479 case 2:
480 prev_count = count;
481 break;
482 case 3:
483 if (!hpt_initialized) {
484 unsigned int c3 = 3 * (count - prev_count);
486 timerhi = 0;
487 timerlo = c3;
488 mips_hpt_init(count - c3);
489 hpt_initialized = 1;
490 }
491 break;
492 default:
493 break;
494 }
495 }
497 write_sequnlock(&xtime_lock);
499 /*
500 * In UP mode, we call local_timer_interrupt() to do profiling
501 * and process accouting.
502 *
503 * In SMP mode, local_timer_interrupt() is invoked by appropriate
504 * low-level local timer interrupt handler.
505 */
506 local_timer_interrupt(irq, dev_id, regs);
508 return IRQ_HANDLED;
509 }
511 int null_perf_irq(struct pt_regs *regs)
512 {
513 return 0;
514 }
516 int (*perf_irq)(struct pt_regs *regs) = null_perf_irq;
518 EXPORT_SYMBOL(null_perf_irq);
519 EXPORT_SYMBOL(perf_irq);
521 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
522 {
523 int r2 = cpu_has_mips_r2;
525 irq_enter();
526 kstat_this_cpu.irqs[irq]++;
528 /*
529 * Suckage alert:
530 * Before R2 of the architecture there was no way to see if a
531 * performance counter interrupt was pending, so we have to run the
532 * performance counter interrupt handler anyway.
533 */
534 if (!r2 || (read_c0_cause() & (1 << 26)))
535 if (perf_irq(regs))
536 goto out;
538 /* we keep interrupt disabled all the time */
539 if (!r2 || (read_c0_cause() & (1 << 30)))
540 timer_interrupt(irq, NULL, regs);
542 out:
543 irq_exit();
544 }
546 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
547 {
548 irq_enter();
549 if (smp_processor_id() != 0)
550 kstat_this_cpu.irqs[irq]++;
552 /* we keep interrupt disabled all the time */
553 local_timer_interrupt(irq, NULL, regs);
555 irq_exit();
556 }
558 /*
559 * time_init() - it does the following things.
560 *
561 * 1) board_time_init() -
562 * a) (optional) set up RTC routines,
563 * b) (optional) calibrate and set the mips_hpt_frequency
564 * (only needed if you intended to use fixed_rate_gettimeoffset
565 * or use cpu counter as timer interrupt source)
566 * 2) setup xtime based on rtc_mips_get_time().
567 * 3) choose a appropriate gettimeoffset routine.
568 * 4) calculate a couple of cached variables for later usage
569 * 5) plat_timer_setup() -
570 * a) (optional) over-write any choices made above by time_init().
571 * b) machine specific code should setup the timer irqaction.
572 * c) enable the timer interrupt
573 */
575 void (*board_time_init)(void);
577 unsigned int mips_hpt_frequency;
579 static struct irqaction timer_irqaction = {
580 .handler = timer_interrupt,
581 .flags = IRQF_DISABLED,
582 .name = "timer",
583 };
585 static unsigned int __init calibrate_hpt(void)
586 {
587 u64 frequency;
588 u32 hpt_start, hpt_end, hpt_count, hz;
590 const int loops = HZ / 10;
591 int log_2_loops = 0;
592 int i;
594 /*
595 * We want to calibrate for 0.1s, but to avoid a 64-bit
596 * division we round the number of loops up to the nearest
597 * power of 2.
598 */
599 while (loops > 1 << log_2_loops)
600 log_2_loops++;
601 i = 1 << log_2_loops;
603 /*
604 * Wait for a rising edge of the timer interrupt.
605 */
606 while (mips_timer_state());
607 while (!mips_timer_state());
609 /*
610 * Now see how many high precision timer ticks happen
611 * during the calculated number of periods between timer
612 * interrupts.
613 */
614 hpt_start = mips_hpt_read();
615 do {
616 while (mips_timer_state());
617 while (!mips_timer_state());
618 } while (--i);
619 hpt_end = mips_hpt_read();
621 hpt_count = hpt_end - hpt_start;
622 hz = HZ;
623 frequency = (u64)hpt_count * (u64)hz;
625 return frequency >> log_2_loops;
626 }
628 void __init time_init(void)
629 {
630 if (board_time_init)
631 board_time_init();
633 if (!rtc_mips_set_mmss)
634 rtc_mips_set_mmss = rtc_mips_set_time;
636 xtime.tv_sec = rtc_mips_get_time();
637 xtime.tv_nsec = 0;
639 set_normalized_timespec(&wall_to_monotonic,
640 -xtime.tv_sec, -xtime.tv_nsec);
642 /* Choose appropriate high precision timer routines. */
643 if (!cpu_has_counter && !mips_hpt_read) {
644 /* No high precision timer -- sorry. */
645 mips_hpt_read = null_hpt_read;
646 mips_hpt_init = null_hpt_init;
647 } else if (!mips_hpt_frequency && !mips_timer_state) {
648 /* A high precision timer of unknown frequency. */
649 if (!mips_hpt_read) {
650 /* No external high precision timer -- use R4k. */
651 mips_hpt_read = c0_hpt_read;
652 mips_hpt_init = c0_hpt_init;
653 }
655 if (cpu_has_mips32r1 || cpu_has_mips32r2 ||
656 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
657 (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
658 /*
659 * We need to calibrate the counter but we don't have
660 * 64-bit division.
661 */
662 do_gettimeoffset = calibrate_div32_gettimeoffset;
663 else
664 /*
665 * We need to calibrate the counter but we *do* have
666 * 64-bit division.
667 */
668 do_gettimeoffset = calibrate_div64_gettimeoffset;
669 } else {
670 /* We know counter frequency. Or we can get it. */
671 if (!mips_hpt_read) {
672 /* No external high precision timer -- use R4k. */
673 mips_hpt_read = c0_hpt_read;
675 if (mips_timer_state)
676 mips_hpt_init = c0_hpt_init;
677 else {
678 /* No external timer interrupt -- use R4k. */
679 mips_hpt_init = c0_hpt_timer_init;
680 mips_timer_ack = c0_timer_ack;
681 }
682 }
683 if (!mips_hpt_frequency)
684 mips_hpt_frequency = calibrate_hpt();
686 do_gettimeoffset = fixed_rate_gettimeoffset;
688 /* Calculate cache parameters. */
689 cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
691 /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
692 do_div64_32(sll32_usecs_per_cycle,
693 1000000, mips_hpt_frequency / 2,
694 mips_hpt_frequency);
696 /* Report the high precision timer rate for a reference. */
697 printk("Using %u.%03u MHz high precision timer.\n",
698 ((mips_hpt_frequency + 500) / 1000) / 1000,
699 ((mips_hpt_frequency + 500) / 1000) % 1000);
700 }
702 if (!mips_timer_ack)
703 /* No timer interrupt ack (e.g. i8254). */
704 mips_timer_ack = null_timer_ack;
706 /* This sets up the high precision timer for the first interrupt. */
707 mips_hpt_init(mips_hpt_read());
709 /*
710 * Call board specific timer interrupt setup.
711 *
712 * this pointer must be setup in machine setup routine.
713 *
714 * Even if a machine chooses to use a low-level timer interrupt,
715 * it still needs to setup the timer_irqaction.
716 * In that case, it might be better to set timer_irqaction.handler
717 * to be NULL function so that we are sure the high-level code
718 * is not invoked accidentally.
719 */
720 plat_timer_setup(&timer_irqaction);
721 }
723 #define FEBRUARY 2
724 #define STARTOFTIME 1970
725 #define SECDAY 86400L
726 #define SECYR (SECDAY * 365)
727 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
728 #define days_in_year(y) (leapyear(y) ? 366 : 365)
729 #define days_in_month(m) (month_days[(m) - 1])
731 static int month_days[12] = {
732 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
733 };
735 void to_tm(unsigned long tim, struct rtc_time *tm)
736 {
737 long hms, day, gday;
738 int i;
740 gday = day = tim / SECDAY;
741 hms = tim % SECDAY;
743 /* Hours, minutes, seconds are easy */
744 tm->tm_hour = hms / 3600;
745 tm->tm_min = (hms % 3600) / 60;
746 tm->tm_sec = (hms % 3600) % 60;
748 /* Number of years in days */
749 for (i = STARTOFTIME; day >= days_in_year(i); i++)
750 day -= days_in_year(i);
751 tm->tm_year = i;
753 /* Number of months in days left */
754 if (leapyear(tm->tm_year))
755 days_in_month(FEBRUARY) = 29;
756 for (i = 1; day >= days_in_month(i); i++)
757 day -= days_in_month(i);
758 days_in_month(FEBRUARY) = 28;
759 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
761 /* Days are what is left over (+1) from all that. */
762 tm->tm_mday = day + 1;
764 /*
765 * Determine the day of week
766 */
767 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
768 }
770 EXPORT_SYMBOL(rtc_lock);
771 EXPORT_SYMBOL(to_tm);
772 EXPORT_SYMBOL(rtc_mips_set_time);
773 EXPORT_SYMBOL(rtc_mips_get_time);
775 unsigned long long sched_clock(void)
776 {
777 return (unsigned long long)jiffies*(1000000000/HZ);
778 }