ia64/linux-2.6.18-xen.hg

view arch/m68k/kernel/head.S @ 452:c7ed6fe5dca0

kexec: dont initialise regions in reserve_memory()

There is no need to initialise efi_memmap_res and boot_param_res in
reserve_memory() for the initial xen domain as it is done in
machine_kexec_setup_resources() using values from the kexec hypercall.

Signed-off-by: Simon Horman <horms@verge.net.au>
author Keir Fraser <keir.fraser@citrix.com>
date Thu Feb 28 10:55:18 2008 +0000 (2008-02-28)
parents 831230e53067
children
line source
1 /* -*- mode: asm -*-
2 **
3 ** head.S -- This file contains the initial boot code for the
4 ** Linux/68k kernel.
5 **
6 ** Copyright 1993 by Hamish Macdonald
7 **
8 ** 68040 fixes by Michael Rausch
9 ** 68060 fixes by Roman Hodek
10 ** MMU cleanup by Randy Thelen
11 ** Final MMU cleanup by Roman Zippel
12 **
13 ** Atari support by Andreas Schwab, using ideas of Robert de Vries
14 ** and Bjoern Brauel
15 ** VME Support by Richard Hirst
16 **
17 ** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18 ** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19 ** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20 ** 95/11/18 Richard Hirst: Added MVME166 support
21 ** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22 ** Magnum- and FX-alternate ram
23 ** 98/04/25 Phil Blundell: added HP300 support
24 ** 1998/08/30 David Kilzer: Added support for font_desc structures
25 ** for linux-2.1.115
26 ** 9/02/11 Richard Zidlicky: added Q40 support (initial vesion 99/01/01)
27 ** 2004/05/13 Kars de Jong: Finalised HP300 support
28 **
29 ** This file is subject to the terms and conditions of the GNU General Public
30 ** License. See the file README.legal in the main directory of this archive
31 ** for more details.
32 **
33 */
35 /*
36 * Linux startup code.
37 *
38 * At this point, the boot loader has:
39 * Disabled interrupts
40 * Disabled caches
41 * Put us in supervisor state.
42 *
43 * The kernel setup code takes the following steps:
44 * . Raise interrupt level
45 * . Set up initial kernel memory mapping.
46 * . This sets up a mapping of the 4M of memory the kernel is located in.
47 * . It also does a mapping of any initial machine specific areas.
48 * . Enable the MMU
49 * . Enable cache memories
50 * . Jump to kernel startup
51 *
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
56 *
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished. It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation. So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
63 *
64 * General Structure:
65 * ------------------
66 * Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
68 * for the kernel.
69 * There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 * First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller. This routine makes writing the
74 * actual per-machine specific code very simple.
75 * A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
78 * regions.
79 * Also, there will be a description of engaging the MMU and
80 * caches.
81 * You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine. This is present
83 * only in debug modes and can be very helpful.
84 * Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode. Currently, it's only supported
86 * on the Macintosh class of machines. However, it is hoped that
87 * others will plug-in support for specific machines.
88 *
89 * ######################################################################
90 *
91 * mmu_map
92 * -------
93 * mmu_map was written for two key reasons. First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory. Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 * mmu_map requires some parameters:
99 *
100 * mmu_map (logical, physical, length, cache_type)
101 *
102 * While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
104 *
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
111 *
112 * These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
125 * size.
126 *
127 * ######################################################################
128 *
129 *
130 * ######################################################################
131 *
132 * mmu_engage
133 * ----------
134 * Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * postion and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
140 * other purposes.
141 *
142 * ######################################################################
143 *
144 * mmu_print
145 * ---------
146 * This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040. This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149 *
150 * ######################################################################
151 *
152 * console_init
153 * ------------
154 * The console is also able to be turned off. The console in head.S
155 * is specifically for debugging and can be very useful. It is surrounded by
156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
157 * kernels. It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for
160 * debugging so I can see more good data. But it was trivial to add support
161 * for both fonts, so I included it.
162 * Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers. This could be very useful.
165 *
166 * console_put_penguin
167 * -------------------
168 * An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen! This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
171 *
172 * console_scroll
173 * --------------
174 * My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
177 *
178 * console_putc
179 * -------------
180 *
181 * ######################################################################
182 *
183 * Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
189 *
190 * ######################################################################
191 *
192 * options
193 * -------
194 * There are many options available in a build of this file. I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
197 *
198 * CONFIG_xxx: These are the obvious machine configuration defines created
199 * during configuration. These are defined in include/linux/autoconf.h.
200 *
201 * CONSOLE: There is support for head.S console in this file. This
202 * console can talk to a Mac frame buffer, but could easily be extrapolated
203 * to extend it to support other platforms.
204 *
205 * TEST_MMU: This is a test harness for running on any given machine but
206 * getting an MMU dump for another class of machine. The classes of machines
207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
208 * and any of the models (030, 040, 060, etc.).
209 *
210 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed
211 * When head.S boots on Atari, Amiga, Macintosh, and VME
212 * machines. At that point the underlying logic will be
213 * believed to be solid enough to be trusted, and TEST_MMU
214 * can be dropped. Do note that that will clean up the
215 * head.S code significantly as large blocks of #if/#else
216 * clauses can be removed.
217 *
218 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into
219 * determing why devices don't appear to work. A test case was to remove
220 * the cacheability of the kernel bits.
221 *
222 * MMU_PRINT: There is a routine built into head.S that can display the
223 * MMU data structures. It outputs its result through the serial_putc
224 * interface. So where ever that winds up driving data, that's where the
225 * mmu struct will appear. On the Macintosh that's typically the console.
226 *
227 * SERIAL_DEBUG: There are a series of putc() macro statements
228 * scattered through out the code to give progress of status to the
229 * person sitting at the console. This constant determines whether those
230 * are used.
231 *
232 * DEBUG: This is the standard DEBUG flag that can be set for building
233 * the kernel. It has the effect adding additional tests into
234 * the code.
235 *
236 * FONT_6x11:
237 * FONT_8x8:
238 * FONT_8x16:
239 * In theory these could be determined at run time or handed
240 * over by the booter. But, let's be real, it's a fine hard
241 * coded value. (But, you will notice the code is run-time
242 * flexible!) A pointer to the font's struct font_desc
243 * is kept locally in Lconsole_font. It is used to determine
244 * font size information dynamically.
245 *
246 * Atari constants:
247 * USE_PRINTER: Use the printer port for serial debug.
248 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug.
249 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug.
250 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug.
251 *
252 * Macintosh constants:
253 * MAC_SERIAL_DEBUG: Turns on serial debug output for the Macintosh.
254 * MAC_USE_SCC_A: Use the SCC port A (modem) for serial debug.
255 * MAC_USE_SCC_B: Use the SCC port B (printer) for serial debug (default).
256 */
258 #include <linux/linkage.h>
259 #include <linux/init.h>
260 #include <asm/bootinfo.h>
261 #include <asm/setup.h>
262 #include <asm/entry.h>
263 #include <asm/pgtable.h>
264 #include <asm/page.h>
265 #include <asm/asm-offsets.h>
267 #ifdef CONFIG_MAC
269 #include <asm/machw.h>
271 /*
272 * Macintosh console support
273 */
275 #ifdef CONFIG_FRAMEBUFFER_CONSOLE
276 #define CONSOLE
277 #define CONSOLE_PENGUIN
278 #endif
280 /*
281 * Macintosh serial debug support; outputs boot info to the printer
282 * and/or modem serial ports
283 */
284 #undef MAC_SERIAL_DEBUG
286 /*
287 * Macintosh serial debug port selection; define one or both;
288 * requires MAC_SERIAL_DEBUG to be defined
289 */
290 #define MAC_USE_SCC_A /* Macintosh modem serial port */
291 #define MAC_USE_SCC_B /* Macintosh printer serial port */
293 #endif /* CONFIG_MAC */
295 #undef MMU_PRINT
296 #undef MMU_NOCACHE_KERNEL
297 #define SERIAL_DEBUG
298 #undef DEBUG
300 /*
301 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
302 * The 8x8 font is harder to read but fits more on the screen.
303 */
304 #define FONT_8x8 /* default */
305 /* #define FONT_8x16 */ /* 2nd choice */
306 /* #define FONT_6x11 */ /* 3rd choice */
308 .globl kernel_pg_dir
309 .globl availmem
310 .globl m68k_pgtable_cachemode
311 .globl m68k_supervisor_cachemode
312 #ifdef CONFIG_MVME16x
313 .globl mvme_bdid
314 #endif
315 #ifdef CONFIG_Q40
316 .globl q40_mem_cptr
317 #endif
319 CPUTYPE_040 = 1 /* indicates an 040 */
320 CPUTYPE_060 = 2 /* indicates an 060 */
321 CPUTYPE_0460 = 3 /* if either above are set, this is set */
322 CPUTYPE_020 = 4 /* indicates an 020 */
324 /* Translation control register */
325 TC_ENABLE = 0x8000
326 TC_PAGE8K = 0x4000
327 TC_PAGE4K = 0x0000
329 /* Transparent translation registers */
330 TTR_ENABLE = 0x8000 /* enable transparent translation */
331 TTR_ANYMODE = 0x4000 /* user and kernel mode access */
332 TTR_KERNELMODE = 0x2000 /* only kernel mode access */
333 TTR_USERMODE = 0x0000 /* only user mode access */
334 TTR_CI = 0x0400 /* inhibit cache */
335 TTR_RW = 0x0200 /* read/write mode */
336 TTR_RWM = 0x0100 /* read/write mask */
337 TTR_FCB2 = 0x0040 /* function code base bit 2 */
338 TTR_FCB1 = 0x0020 /* function code base bit 1 */
339 TTR_FCB0 = 0x0010 /* function code base bit 0 */
340 TTR_FCM2 = 0x0004 /* function code mask bit 2 */
341 TTR_FCM1 = 0x0002 /* function code mask bit 1 */
342 TTR_FCM0 = 0x0001 /* function code mask bit 0 */
344 /* Cache Control registers */
345 CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */
346 CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */
347 CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */
348 CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */
349 CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */
350 CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */
351 CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */
352 CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */
353 CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */
354 CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */
355 CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */
356 CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */
357 CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */
358 CC3_CLR_D = 0x00000800 /* clear data cache (68030) */
359 CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */
360 CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */
361 CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */
362 CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */
363 CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */
364 CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */
365 CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */
366 CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */
368 /* Miscellaneous definitions */
369 PAGESIZE = 4096
370 PAGESHIFT = 12
372 ROOT_TABLE_SIZE = 128
373 PTR_TABLE_SIZE = 128
374 PAGE_TABLE_SIZE = 64
375 ROOT_INDEX_SHIFT = 25
376 PTR_INDEX_SHIFT = 18
377 PAGE_INDEX_SHIFT = 12
379 #ifdef DEBUG
380 /* When debugging use readable names for labels */
381 #ifdef __STDC__
382 #define L(name) .head.S.##name
383 #else
384 #define L(name) .head.S./**/name
385 #endif
386 #else
387 #ifdef __STDC__
388 #define L(name) .L##name
389 #else
390 #define L(name) .L/**/name
391 #endif
392 #endif
394 /* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
395 #ifndef __INITDATA
396 #define __INITDATA .data
397 #define __FINIT .previous
398 #endif
400 /* Several macros to make the writing of subroutines easier:
401 * - func_start marks the beginning of the routine which setups the frame
402 * register and saves the registers, it also defines another macro
403 * to automatically restore the registers again.
404 * - func_return marks the end of the routine and simply calls the prepared
405 * macro to restore registers and jump back to the caller.
406 * - func_define generates another macro to automatically put arguments
407 * onto the stack call the subroutine and cleanup the stack again.
408 */
410 /* Within subroutines these macros can be used to access the arguments
411 * on the stack. With STACK some allocated memory on the stack can be
412 * accessed and ARG0 points to the return address (used by mmu_engage).
413 */
414 #define STACK %a6@(stackstart)
415 #define ARG0 %a6@(4)
416 #define ARG1 %a6@(8)
417 #define ARG2 %a6@(12)
418 #define ARG3 %a6@(16)
419 #define ARG4 %a6@(20)
421 .macro func_start name,saveregs,stack=0
422 L(\name):
423 linkw %a6,#-\stack
424 moveml \saveregs,%sp@-
425 .set stackstart,-\stack
427 .macro func_return_\name
428 moveml %sp@+,\saveregs
429 unlk %a6
430 rts
431 .endm
432 .endm
434 .macro func_return name
435 func_return_\name
436 .endm
438 .macro func_call name
439 jbsr L(\name)
440 .endm
442 .macro move_stack nr,arg1,arg2,arg3,arg4
443 .if \nr
444 move_stack "(\nr-1)",\arg2,\arg3,\arg4
445 movel \arg1,%sp@-
446 .endif
447 .endm
449 .macro func_define name,nr=0
450 .macro \name arg1,arg2,arg3,arg4
451 move_stack \nr,\arg1,\arg2,\arg3,\arg4
452 func_call \name
453 .if \nr
454 lea %sp@(\nr*4),%sp
455 .endif
456 .endm
457 .endm
459 func_define mmu_map,4
460 func_define mmu_map_tt,4
461 func_define mmu_fixup_page_mmu_cache,1
462 func_define mmu_temp_map,2
463 func_define mmu_engage
464 func_define mmu_get_root_table_entry,1
465 func_define mmu_get_ptr_table_entry,2
466 func_define mmu_get_page_table_entry,2
467 func_define mmu_print
468 func_define get_new_page
469 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
470 func_define set_leds
471 #endif
473 .macro mmu_map_eq arg1,arg2,arg3
474 mmu_map \arg1,\arg1,\arg2,\arg3
475 .endm
477 .macro get_bi_record record
478 pea \record
479 func_call get_bi_record
480 addql #4,%sp
481 .endm
483 func_define serial_putc,1
484 func_define console_putc,1
486 func_define console_init
487 func_define console_put_stats
488 func_define console_put_penguin
489 func_define console_plot_pixel,3
490 func_define console_scroll
492 .macro putc ch
493 #if defined(CONSOLE) || defined(SERIAL_DEBUG)
494 pea \ch
495 #endif
496 #ifdef CONSOLE
497 func_call console_putc
498 #endif
499 #ifdef SERIAL_DEBUG
500 func_call serial_putc
501 #endif
502 #if defined(CONSOLE) || defined(SERIAL_DEBUG)
503 addql #4,%sp
504 #endif
505 .endm
507 .macro dputc ch
508 #ifdef DEBUG
509 putc \ch
510 #endif
511 .endm
513 func_define putn,1
515 .macro dputn nr
516 #ifdef DEBUG
517 putn \nr
518 #endif
519 .endm
521 .macro puts string
522 #if defined(CONSOLE) || defined(SERIAL_DEBUG)
523 __INITDATA
524 .Lstr\@:
525 .string "\string"
526 __FINIT
527 pea %pc@(.Lstr\@)
528 func_call puts
529 addql #4,%sp
530 #endif
531 .endm
533 .macro dputs string
534 #ifdef DEBUG
535 puts "\string"
536 #endif
537 .endm
539 #define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
540 #define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
541 #define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
542 #define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
543 #define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
544 #define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
545 #define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
546 #define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
547 #define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
548 #define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
549 #define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
550 #define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
551 #define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
553 #define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
554 jeq 42f; \
555 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
556 jne lab ;\
557 42:\
559 #define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
560 #define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
561 #define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
562 #define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
563 #define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
564 #define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
565 #define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
567 /* On the HP300 we use the on-board LEDs for debug output before
568 the console is running. Writing a 1 bit turns the corresponding LED
569 _off_ - on the 340 bit 7 is towards the back panel of the machine. */
570 .macro leds mask
571 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
572 hasnt_leds(.Lled\@)
573 pea \mask
574 func_call set_leds
575 addql #4,%sp
576 .Lled\@:
577 #endif
578 .endm
580 .text
581 ENTRY(_stext)
582 /*
583 * Version numbers of the bootinfo interface
584 * The area from _stext to _start will later be used as kernel pointer table
585 */
586 bras 1f /* Jump over bootinfo version numbers */
588 .long BOOTINFOV_MAGIC
589 .long MACH_AMIGA, AMIGA_BOOTI_VERSION
590 .long MACH_ATARI, ATARI_BOOTI_VERSION
591 .long MACH_MVME147, MVME147_BOOTI_VERSION
592 .long MACH_MVME16x, MVME16x_BOOTI_VERSION
593 .long MACH_BVME6000, BVME6000_BOOTI_VERSION
594 .long MACH_MAC, MAC_BOOTI_VERSION
595 .long MACH_Q40, Q40_BOOTI_VERSION
596 .long MACH_HP300, HP300_BOOTI_VERSION
597 .long 0
598 1: jra __start
600 .equ kernel_pg_dir,_stext
602 .equ .,_stext+PAGESIZE
604 ENTRY(_start)
605 jra __start
606 __INIT
607 ENTRY(__start)
608 /*
609 * Setup initial stack pointer
610 */
611 lea %pc@(_stext),%sp
613 /*
614 * Record the CPU and machine type.
615 */
616 get_bi_record BI_MACHTYPE
617 lea %pc@(m68k_machtype),%a1
618 movel %a0@,%a1@
620 get_bi_record BI_FPUTYPE
621 lea %pc@(m68k_fputype),%a1
622 movel %a0@,%a1@
624 get_bi_record BI_MMUTYPE
625 lea %pc@(m68k_mmutype),%a1
626 movel %a0@,%a1@
628 get_bi_record BI_CPUTYPE
629 lea %pc@(m68k_cputype),%a1
630 movel %a0@,%a1@
632 leds 0x1
634 #ifdef CONFIG_MAC
635 /*
636 * For Macintosh, we need to determine the display parameters early (at least
637 * while debugging it).
638 */
640 is_not_mac(L(test_notmac))
642 get_bi_record BI_MAC_VADDR
643 lea %pc@(L(mac_videobase)),%a1
644 movel %a0@,%a1@
646 get_bi_record BI_MAC_VDEPTH
647 lea %pc@(L(mac_videodepth)),%a1
648 movel %a0@,%a1@
650 get_bi_record BI_MAC_VDIM
651 lea %pc@(L(mac_dimensions)),%a1
652 movel %a0@,%a1@
654 get_bi_record BI_MAC_VROW
655 lea %pc@(L(mac_rowbytes)),%a1
656 movel %a0@,%a1@
658 #ifdef MAC_SERIAL_DEBUG
659 get_bi_record BI_MAC_SCCBASE
660 lea %pc@(L(mac_sccbase)),%a1
661 movel %a0@,%a1@
662 #endif /* MAC_SERIAL_DEBUG */
664 #if 0
665 /*
666 * Clear the screen
667 */
668 lea %pc@(L(mac_videobase)),%a0
669 movel %a0@,%a1
670 lea %pc@(L(mac_dimensions)),%a0
671 movel %a0@,%d1
672 swap %d1 /* #rows is high bytes */
673 andl #0xFFFF,%d1 /* rows */
674 subl #10,%d1
675 lea %pc@(L(mac_rowbytes)),%a0
676 loopy2:
677 movel %a0@,%d0
678 subql #1,%d0
679 loopx2:
680 moveb #0x55, %a1@+
681 dbra %d0,loopx2
682 dbra %d1,loopy2
683 #endif
685 L(test_notmac):
686 #endif /* CONFIG_MAC */
689 /*
690 * There are ultimately two pieces of information we want for all kinds of
691 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter
692 * and is converted here from a booter type definition to a separate bit
693 * number which allows for the standard is_0x0 macro tests.
694 */
695 movel %pc@(m68k_cputype),%d0
696 /*
697 * Assume it's an 030
698 */
699 clrl %d1
701 /*
702 * Test the BootInfo cputype for 060
703 */
704 btst #CPUB_68060,%d0
705 jeq 1f
706 bset #CPUTYPE_060,%d1
707 bset #CPUTYPE_0460,%d1
708 jra 3f
709 1:
710 /*
711 * Test the BootInfo cputype for 040
712 */
713 btst #CPUB_68040,%d0
714 jeq 2f
715 bset #CPUTYPE_040,%d1
716 bset #CPUTYPE_0460,%d1
717 jra 3f
718 2:
719 /*
720 * Test the BootInfo cputype for 020
721 */
722 btst #CPUB_68020,%d0
723 jeq 3f
724 bset #CPUTYPE_020,%d1
725 jra 3f
726 3:
727 /*
728 * Record the cpu type
729 */
730 lea %pc@(L(cputype)),%a0
731 movel %d1,%a0@
733 /*
734 * NOTE:
735 *
736 * Now the macros are valid:
737 * is_040_or_060
738 * is_not_040_or_060
739 * is_040
740 * is_060
741 * is_not_060
742 */
744 /*
745 * Determine the cache mode for pages holding MMU tables
746 * and for supervisor mode, unused for '020 and '030
747 */
748 clrl %d0
749 clrl %d1
751 is_not_040_or_060(L(save_cachetype))
753 /*
754 * '040 or '060
755 * d1 := cacheable write-through
756 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
757 * but we have been using write-through since at least 2.0.29 so I
758 * guess it is OK.
759 */
760 #ifdef CONFIG_060_WRITETHROUGH
761 /*
762 * If this is a 68060 board using drivers with cache coherency
763 * problems, then supervisor memory accesses need to be write-through
764 * also; otherwise, we want copyback.
765 */
767 is_not_060(1f)
768 movel #_PAGE_CACHE040W,%d0
769 jra L(save_cachetype)
770 #endif /* CONFIG_060_WRITETHROUGH */
771 1:
772 movew #_PAGE_CACHE040,%d0
774 movel #_PAGE_CACHE040W,%d1
776 L(save_cachetype):
777 /* Save cache mode for supervisor mode and page tables
778 */
779 lea %pc@(m68k_supervisor_cachemode),%a0
780 movel %d0,%a0@
781 lea %pc@(m68k_pgtable_cachemode),%a0
782 movel %d1,%a0@
784 /*
785 * raise interrupt level
786 */
787 movew #0x2700,%sr
789 /*
790 If running on an Atari, determine the I/O base of the
791 serial port and test if we are running on a Medusa or Hades.
792 This test is necessary here, because on the Hades the serial
793 port is only accessible in the high I/O memory area.
795 The test whether it is a Medusa is done by writing to the byte at
796 phys. 0x0. This should result in a bus error on all other machines.
798 ...should, but doesn't. The Afterburner040 for the Falcon has the
799 same behaviour (0x0..0x7 are no ROM shadow). So we have to do
800 another test to distinguish Medusa and AB040. This is a
801 read attempt for 0x00ff82fe phys. that should bus error on a Falcon
802 (+AB040), but is in the range where the Medusa always asserts DTACK.
804 The test for the Hades is done by reading address 0xb0000000. This
805 should give a bus error on the Medusa.
806 */
808 #ifdef CONFIG_ATARI
809 is_not_atari(L(notypetest))
811 /* get special machine type (Medusa/Hades/AB40) */
812 moveq #0,%d3 /* default if tag doesn't exist */
813 get_bi_record BI_ATARI_MCH_TYPE
814 tstl %d0
815 jbmi 1f
816 movel %a0@,%d3
817 lea %pc@(atari_mch_type),%a0
818 movel %d3,%a0@
819 1:
820 /* On the Hades, the iobase must be set up before opening the
821 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
822 moveq #0,%d0
823 cmpl #ATARI_MACH_HADES,%d3
824 jbne 1f
825 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */
826 1: lea %pc@(L(iobase)),%a0
827 movel %d0,%a0@
829 L(notypetest):
830 #endif
832 #ifdef CONFIG_VME
833 is_mvme147(L(getvmetype))
834 is_bvme6000(L(getvmetype))
835 is_not_mvme16x(L(gvtdone))
837 /* See if the loader has specified the BI_VME_TYPE tag. Recent
838 * versions of VMELILO and TFTPLILO do this. We have to do this
839 * early so we know how to handle console output. If the tag
840 * doesn't exist then we use the Bug for output on MVME16x.
841 */
842 L(getvmetype):
843 get_bi_record BI_VME_TYPE
844 tstl %d0
845 jbmi 1f
846 movel %a0@,%d3
847 lea %pc@(vme_brdtype),%a0
848 movel %d3,%a0@
849 1:
850 #ifdef CONFIG_MVME16x
851 is_not_mvme16x(L(gvtdone))
853 /* Need to get the BRD_ID info to differentiate between 162, 167,
854 * etc. This is available as a BI_VME_BRDINFO tag with later
855 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
856 */
857 get_bi_record BI_VME_BRDINFO
858 tstl %d0
859 jpl 1f
861 /* Get pointer to board ID data from Bug */
862 movel %d2,%sp@-
863 trap #15
864 .word 0x70 /* trap 0x70 - .BRD_ID */
865 movel %sp@+,%a0
866 1:
867 lea %pc@(mvme_bdid),%a1
868 /* Structure is 32 bytes long */
869 movel %a0@+,%a1@+
870 movel %a0@+,%a1@+
871 movel %a0@+,%a1@+
872 movel %a0@+,%a1@+
873 movel %a0@+,%a1@+
874 movel %a0@+,%a1@+
875 movel %a0@+,%a1@+
876 movel %a0@+,%a1@+
877 #endif
879 L(gvtdone):
881 #endif
883 #ifdef CONFIG_HP300
884 is_not_hp300(L(nothp))
886 /* Get the address of the UART for serial debugging */
887 get_bi_record BI_HP300_UART_ADDR
888 tstl %d0
889 jbmi 1f
890 movel %a0@,%d3
891 lea %pc@(L(uartbase)),%a0
892 movel %d3,%a0@
893 get_bi_record BI_HP300_UART_SCODE
894 tstl %d0
895 jbmi 1f
896 movel %a0@,%d3
897 lea %pc@(L(uart_scode)),%a0
898 movel %d3,%a0@
899 1:
900 L(nothp):
901 #endif
903 /*
904 * Initialize serial port
905 */
906 jbsr L(serial_init)
908 /*
909 * Initialize console
910 */
911 #ifdef CONFIG_MAC
912 is_not_mac(L(nocon))
913 #ifdef CONSOLE
914 console_init
915 #ifdef CONSOLE_PENGUIN
916 console_put_penguin
917 #endif /* CONSOLE_PENGUIN */
918 console_put_stats
919 #endif /* CONSOLE */
920 L(nocon):
921 #endif /* CONFIG_MAC */
924 putc '\n'
925 putc 'A'
926 leds 0x2
927 dputn %pc@(L(cputype))
928 dputn %pc@(m68k_supervisor_cachemode)
929 dputn %pc@(m68k_pgtable_cachemode)
930 dputc '\n'
932 /*
933 * Save physical start address of kernel
934 */
935 lea %pc@(L(phys_kernel_start)),%a0
936 lea %pc@(_stext),%a1
937 subl #_stext,%a1
938 addl #PAGE_OFFSET,%a1
939 movel %a1,%a0@
941 putc 'B'
943 leds 0x4
945 /*
946 * mmu_init
947 *
948 * This block of code does what's necessary to map in the various kinds
949 * of machines for execution of Linux.
950 * First map the first 4 MB of kernel code & data
951 */
953 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
954 %pc@(m68k_supervisor_cachemode)
956 putc 'C'
958 #ifdef CONFIG_AMIGA
960 L(mmu_init_amiga):
962 is_not_amiga(L(mmu_init_not_amiga))
963 /*
964 * mmu_init_amiga
965 */
967 putc 'D'
969 is_not_040_or_060(1f)
971 /*
972 * 040: Map the 16Meg range physical 0x0 upto logical 0x8000.0000
973 */
974 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
975 /*
976 * Map the Zorro III I/O space with transparent translation
977 * for frame buffer memory etc.
978 */
979 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
981 jbra L(mmu_init_done)
983 1:
984 /*
985 * 030: Map the 32Meg range physical 0x0 upto logical 0x8000.0000
986 */
987 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
988 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
990 jbra L(mmu_init_done)
992 L(mmu_init_not_amiga):
993 #endif
995 #ifdef CONFIG_ATARI
997 L(mmu_init_atari):
999 is_not_atari(L(mmu_init_not_atari))
1001 putc 'E'
1003 /* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
1004 the last 16 MB of virtual address space to the first 16 MB (i.e.
1005 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
1006 needed. I/O ranges are marked non-cachable.
1008 For the Medusa it is better to map the I/O region transparently
1009 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
1010 accessible only in the high area.
1012 On the Hades all I/O registers are only accessible in the high
1013 area.
1014 */
1016 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1017 moveq #0,%d0
1018 movel %pc@(atari_mch_type),%d3
1019 cmpl #ATARI_MACH_MEDUSA,%d3
1020 jbeq 2f
1021 cmpl #ATARI_MACH_HADES,%d3
1022 jbne 1f
1023 2: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
1024 1: movel %d0,%d3
1026 is_040_or_060(L(spata68040))
1028 /* Map everything non-cacheable, though not all parts really
1029 * need to disable caches (crucial only for 0xff8000..0xffffff
1030 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1031 * isn't really used, except for sometimes peeking into the
1032 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1033 * this. */
1034 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1036 jbra L(mmu_init_done)
1038 L(spata68040):
1040 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1042 jbra L(mmu_init_done)
1044 L(mmu_init_not_atari):
1045 #endif
1047 #ifdef CONFIG_Q40
1048 is_not_q40(L(notq40))
1049 /*
1050 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1051 * non-cached serialized etc..
1052 * this includes master chip, DAC, RTC and ISA ports
1053 * 0xfe000000-0xfeffffff is for screen and ROM
1054 */
1056 putc 'Q'
1058 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1059 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1061 jbra L(mmu_init_done)
1063 L(notq40):
1064 #endif
1066 #ifdef CONFIG_HP300
1067 is_not_hp300(L(nothp300))
1069 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1070 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1071 * The ROM mapping is needed because the LEDs are mapped there too.
1072 */
1074 is_040(1f)
1076 /*
1077 * 030: Map the 32Meg range physical 0x0 upto logical 0xf000.0000
1078 */
1079 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1081 jbra L(mmu_init_done)
1083 1:
1084 /*
1085 * 040: Map the 16Meg range physical 0x0 upto logical 0xf000.0000
1086 */
1087 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1089 jbra L(mmu_init_done)
1091 L(nothp300):
1092 #endif /* CONFIG_HP300 */
1094 #ifdef CONFIG_MVME147
1096 is_not_mvme147(L(not147))
1098 /*
1099 * On MVME147 we have already created kernel page tables for
1100 * 4MB of RAM at address 0, so now need to do a transparent
1101 * mapping of the top of memory space. Make it 0.5GByte for now,
1102 * so we can access on-board i/o areas.
1103 */
1105 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1107 jbra L(mmu_init_done)
1109 L(not147):
1110 #endif /* CONFIG_MVME147 */
1112 #ifdef CONFIG_MVME16x
1114 is_not_mvme16x(L(not16x))
1116 /*
1117 * On MVME16x we have already created kernel page tables for
1118 * 4MB of RAM at address 0, so now need to do a transparent
1119 * mapping of the top of memory space. Make it 0.5GByte for now.
1120 * Supervisor only access, so transparent mapping doesn't
1121 * clash with User code virtual address space.
1122 * this covers IO devices, PROM and SRAM. The PROM and SRAM
1123 * mapping is needed to allow 167Bug to run.
1124 * IO is in the range 0xfff00000 to 0xfffeffff.
1125 * PROM is 0xff800000->0xffbfffff and SRAM is
1126 * 0xffe00000->0xffe1ffff.
1127 */
1129 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1131 jbra L(mmu_init_done)
1133 L(not16x):
1134 #endif /* CONFIG_MVME162 | CONFIG_MVME167 */
1136 #ifdef CONFIG_BVME6000
1138 is_not_bvme6000(L(not6000))
1140 /*
1141 * On BVME6000 we have already created kernel page tables for
1142 * 4MB of RAM at address 0, so now need to do a transparent
1143 * mapping of the top of memory space. Make it 0.5GByte for now,
1144 * so we can access on-board i/o areas.
1145 * Supervisor only access, so transparent mapping doesn't
1146 * clash with User code virtual address space.
1147 */
1149 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1151 jbra L(mmu_init_done)
1153 L(not6000):
1154 #endif /* CONFIG_BVME6000 */
1156 /*
1157 * mmu_init_mac
1159 * The Macintosh mappings are less clear.
1161 * Even as of this writing, it is unclear how the
1162 * Macintosh mappings will be done. However, as
1163 * the first author of this code I'm proposing the
1164 * following model:
1166 * Map the kernel (that's already done),
1167 * Map the I/O (on most machines that's the
1168 * 0x5000.0000 ... 0x5300.0000 range,
1169 * Map the video frame buffer using as few pages
1170 * as absolutely (this requirement mostly stems from
1171 * the fact that when the frame buffer is at
1172 * 0x0000.0000 then we know there is valid RAM just
1173 * above the screen that we don't want to waste!).
1175 * By the way, if the frame buffer is at 0x0000.0000
1176 * then the Macintosh is known as an RBV based Mac.
1178 * By the way 2, the code currently maps in a bunch of
1179 * regions. But I'd like to cut that out. (And move most
1180 * of the mappings up into the kernel proper ... or only
1181 * map what's necessary.)
1182 */
1184 #ifdef CONFIG_MAC
1186 L(mmu_init_mac):
1188 is_not_mac(L(mmu_init_not_mac))
1190 putc 'F'
1192 is_not_040_or_060(1f)
1194 moveq #_PAGE_NOCACHE_S,%d3
1195 jbra 2f
1196 1:
1197 moveq #_PAGE_NOCACHE030,%d3
1198 2:
1199 /*
1200 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1201 * we simply map the 4MB that contains the videomem
1202 */
1204 movel #VIDEOMEMMASK,%d0
1205 andl %pc@(L(mac_videobase)),%d0
1207 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1208 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1209 mmu_map_eq #0x40000000,#0x02000000,%d3
1210 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1211 mmu_map_eq #0x50000000,#0x03000000,%d3
1212 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1213 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3
1215 jbra L(mmu_init_done)
1217 L(mmu_init_not_mac):
1218 #endif
1220 #ifdef CONFIG_SUN3X
1221 is_not_sun3x(L(notsun3x))
1223 /* oh, the pain.. We're gonna want the prom code after
1224 * starting the MMU, so we copy the mappings, translating
1225 * from 8k -> 4k pages as we go.
1226 */
1228 /* copy maps from 0xfee00000 to 0xff000000 */
1229 movel #0xfee00000, %d0
1230 moveq #ROOT_INDEX_SHIFT, %d1
1231 lsrl %d1,%d0
1232 mmu_get_root_table_entry %d0
1234 movel #0xfee00000, %d0
1235 moveq #PTR_INDEX_SHIFT, %d1
1236 lsrl %d1,%d0
1237 andl #PTR_TABLE_SIZE-1, %d0
1238 mmu_get_ptr_table_entry %a0,%d0
1240 movel #0xfee00000, %d0
1241 moveq #PAGE_INDEX_SHIFT, %d1
1242 lsrl %d1,%d0
1243 andl #PAGE_TABLE_SIZE-1, %d0
1244 mmu_get_page_table_entry %a0,%d0
1246 /* this is where the prom page table lives */
1247 movel 0xfefe00d4, %a1
1248 movel %a1@, %a1
1250 movel #((0x200000 >> 13)-1), %d1
1252 1:
1253 movel %a1@+, %d3
1254 movel %d3,%a0@+
1255 addl #0x1000,%d3
1256 movel %d3,%a0@+
1258 dbra %d1,1b
1260 /* setup tt1 for I/O */
1261 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1262 jbra L(mmu_init_done)
1264 L(notsun3x):
1265 #endif
1267 #ifdef CONFIG_APOLLO
1268 is_not_apollo(L(notapollo))
1270 putc 'P'
1271 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1273 L(notapollo):
1274 jbra L(mmu_init_done)
1275 #endif
1277 L(mmu_init_done):
1279 putc 'G'
1280 leds 0x8
1282 /*
1283 * mmu_fixup
1285 * On the 040 class machines, all pages that are used for the
1286 * mmu have to be fixed up. According to Motorola, pages holding mmu
1287 * tables should be non-cacheable on a '040 and write-through on a
1288 * '060. But analysis of the reasons for this, and practical
1289 * experience, showed that write-through also works on a '040.
1291 * Allocated memory so far goes from kernel_end to memory_start that
1292 * is used for all kind of tables, for that the cache attributes
1293 * are now fixed.
1294 */
1295 L(mmu_fixup):
1297 is_not_040_or_060(L(mmu_fixup_done))
1299 #ifdef MMU_NOCACHE_KERNEL
1300 jbra L(mmu_fixup_done)
1301 #endif
1303 /* first fix the page at the start of the kernel, that
1304 * contains also kernel_pg_dir.
1305 */
1306 movel %pc@(L(phys_kernel_start)),%d0
1307 subl #PAGE_OFFSET,%d0
1308 lea %pc@(_stext),%a0
1309 subl %d0,%a0
1310 mmu_fixup_page_mmu_cache %a0
1312 movel %pc@(L(kernel_end)),%a0
1313 subl %d0,%a0
1314 movel %pc@(L(memory_start)),%a1
1315 subl %d0,%a1
1316 bra 2f
1317 1:
1318 mmu_fixup_page_mmu_cache %a0
1319 addw #PAGESIZE,%a0
1320 2:
1321 cmpl %a0,%a1
1322 jgt 1b
1324 L(mmu_fixup_done):
1326 #ifdef MMU_PRINT
1327 mmu_print
1328 #endif
1330 /*
1331 * mmu_engage
1333 * This chunk of code performs the gruesome task of engaging the MMU.
1334 * The reason its gruesome is because when the MMU becomes engaged it
1335 * maps logical addresses to physical addresses. The Program Counter
1336 * register is then passed through the MMU before the next instruction
1337 * is fetched (the instruction following the engage MMU instruction).
1338 * This may mean one of two things:
1339 * 1. The Program Counter falls within the logical address space of
1340 * the kernel of which there are two sub-possibilities:
1341 * A. The PC maps to the correct instruction (logical PC == physical
1342 * code location), or
1343 * B. The PC does not map through and the processor will read some
1344 * data (or instruction) which is not the logically next instr.
1345 * As you can imagine, A is good and B is bad.
1346 * Alternatively,
1347 * 2. The Program Counter does not map through the MMU. The processor
1348 * will take a Bus Error.
1349 * Clearly, 2 is bad.
1350 * It doesn't take a wiz kid to figure you want 1.A.
1351 * This code creates that possibility.
1352 * There are two possible 1.A. states (we now ignore the other above states):
1353 * A. The kernel is located at physical memory addressed the same as
1354 * the logical memory for the kernel, i.e., 0x01000.
1355 * B. The kernel is located some where else. e.g., 0x0400.0000
1357 * Under some conditions the Macintosh can look like A or B.
1358 * [A friend and I once noted that Apple hardware engineers should be
1359 * wacked twice each day: once when they show up at work (as in, Whack!,
1360 * "This is for the screwy hardware we know you're going to design today."),
1361 * and also at the end of the day (as in, Whack! "I don't know what
1362 * you designed today, but I'm sure it wasn't good."). -- rst]
1364 * This code works on the following premise:
1365 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1366 * then create a mapping for the kernel at logical 0x8000.0000 to
1367 * the physical location of the pc. And, create a transparent
1368 * translation register for the first 16 Meg. Then, after the MMU
1369 * is engaged, the PC can be moved up into the 0x8000.0000 range
1370 * and then the transparent translation can be turned off and then
1371 * the PC can jump to the correct logical location and it will be
1372 * home (finally). This is essentially the code that the Amiga used
1373 * to use. Now, it's generalized for all processors. Which means
1374 * that a fresh (but temporary) mapping has to be created. The mapping
1375 * is made in page 0 (an as of yet unused location -- except for the
1376 * stack!). This temporary mapping will only require 1 pointer table
1377 * and a single page table (it can map 256K).
1379 * OK, alternatively, imagine that the Program Counter is not within
1380 * the first 16 Meg. Then, just use Transparent Translation registers
1381 * to do the right thing.
1383 * Last, if _start is already at 0x01000, then there's nothing special
1384 * to do (in other words, in a degenerate case of the first case above,
1385 * do nothing).
1387 * Let's do it.
1390 */
1392 putc 'H'
1394 mmu_engage
1396 /*
1397 * After this point no new memory is allocated and
1398 * the start of available memory is stored in availmem.
1399 * (The bootmem allocator requires now the physicall address.)
1400 */
1402 movel L(memory_start),availmem
1404 #ifdef CONFIG_AMIGA
1405 is_not_amiga(1f)
1406 /* fixup the Amiga custom register location before printing */
1407 clrl L(custom)
1408 1:
1409 #endif
1411 #ifdef CONFIG_ATARI
1412 is_not_atari(1f)
1413 /* fixup the Atari iobase register location before printing */
1414 movel #0xff000000,L(iobase)
1415 1:
1416 #endif
1418 #ifdef CONFIG_MAC
1419 is_not_mac(1f)
1420 movel #~VIDEOMEMMASK,%d0
1421 andl L(mac_videobase),%d0
1422 addl #VIDEOMEMBASE,%d0
1423 movel %d0,L(mac_videobase)
1424 #if defined(CONSOLE)
1425 movel %pc@(L(phys_kernel_start)),%d0
1426 subl #PAGE_OFFSET,%d0
1427 subl %d0,L(console_font)
1428 subl %d0,L(console_font_data)
1429 #endif
1430 #ifdef MAC_SERIAL_DEBUG
1431 orl #0x50000000,L(mac_sccbase)
1432 #endif
1433 1:
1434 #endif
1436 #ifdef CONFIG_HP300
1437 is_not_hp300(1f)
1438 /*
1439 * Fix up the iobase register to point to the new location of the LEDs.
1440 */
1441 movel #0xf0000000,L(iobase)
1443 /*
1444 * Energise the FPU and caches.
1445 */
1446 is_040(1f)
1447 movel #0x60,0xf05f400c
1448 jbra 2f
1450 /*
1451 * 040: slightly different, apparently.
1452 */
1453 1: movew #0,0xf05f400e
1454 movew #0x64,0xf05f400e
1455 2:
1456 #endif
1458 #ifdef CONFIG_SUN3X
1459 is_not_sun3x(1f)
1461 /* enable copro */
1462 oriw #0x4000,0x61000000
1463 1:
1464 #endif
1466 #ifdef CONFIG_APOLLO
1467 is_not_apollo(1f)
1469 /*
1470 * Fix up the iobase before printing
1471 */
1472 movel #0x80000000,L(iobase)
1473 1:
1474 #endif
1476 putc 'I'
1477 leds 0x10
1479 /*
1480 * Enable caches
1481 */
1483 is_not_040_or_060(L(cache_not_680460))
1485 L(cache680460):
1486 .chip 68040
1487 nop
1488 cpusha %bc
1489 nop
1491 is_060(L(cache68060))
1493 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0
1494 /* MMU stuff works in copyback mode now, so enable the cache */
1495 movec %d0,%cacr
1496 jra L(cache_done)
1498 L(cache68060):
1499 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1500 /* MMU stuff works in copyback mode now, so enable the cache */
1501 movec %d0,%cacr
1502 /* enable superscalar dispatch in PCR */
1503 moveq #1,%d0
1504 .chip 68060
1505 movec %d0,%pcr
1507 jbra L(cache_done)
1508 L(cache_not_680460):
1509 L(cache68030):
1510 .chip 68030
1511 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1512 movec %d0,%cacr
1514 jra L(cache_done)
1515 .chip 68k
1516 L(cache_done):
1518 putc 'J'
1520 /*
1521 * Setup initial stack pointer
1522 */
1523 lea init_task,%curptr
1524 lea init_thread_union+THREAD_SIZE,%sp
1526 putc 'K'
1528 subl %a6,%a6 /* clear a6 for gdb */
1530 /*
1531 * The new 64bit printf support requires an early exception initialization.
1532 */
1533 jbsr base_trap_init
1535 /* jump to the kernel start */
1537 putc '\n'
1538 leds 0x55
1540 jbsr start_kernel
1542 /*
1543 * Find a tag record in the bootinfo structure
1544 * The bootinfo structure is located right after the kernel bss
1545 * Returns: d0: size (-1 if not found)
1546 * a0: data pointer (end-of-records if not found)
1547 */
1548 func_start get_bi_record,%d1
1550 movel ARG1,%d0
1551 lea %pc@(_end),%a0
1552 1: tstw %a0@(BIR_TAG)
1553 jeq 3f
1554 cmpw %a0@(BIR_TAG),%d0
1555 jeq 2f
1556 addw %a0@(BIR_SIZE),%a0
1557 jra 1b
1558 2: moveq #0,%d0
1559 movew %a0@(BIR_SIZE),%d0
1560 lea %a0@(BIR_DATA),%a0
1561 jra 4f
1562 3: moveq #-1,%d0
1563 lea %a0@(BIR_SIZE),%a0
1564 4:
1565 func_return get_bi_record
1568 /*
1569 * MMU Initialization Begins Here
1571 * The structure of the MMU tables on the 68k machines
1572 * is thus:
1573 * Root Table
1574 * Logical addresses are translated through
1575 * a hierarchical translation mechanism where the high-order
1576 * seven bits of the logical address (LA) are used as an
1577 * index into the "root table." Each entry in the root
1578 * table has a bit which specifies if it's a valid pointer to a
1579 * pointer table. Each entry defines a 32KMeg range of memory.
1580 * If an entry is invalid then that logical range of 32M is
1581 * invalid and references to that range of memory (when the MMU
1582 * is enabled) will fault. If the entry is valid, then it does
1583 * one of two things. On 040/060 class machines, it points to
1584 * a pointer table which then describes more finely the memory
1585 * within that 32M range. On 020/030 class machines, a technique
1586 * called "early terminating descriptors" are used. This technique
1587 * allows an entire 32Meg to be described by a single entry in the
1588 * root table. Thus, this entry in the root table, contains the
1589 * physical address of the memory or I/O at the logical address
1590 * which the entry represents and it also contains the necessary
1591 * cache bits for this region.
1593 * Pointer Tables
1594 * Per the Root Table, there will be one or more
1595 * pointer tables. Each pointer table defines a 32M range.
1596 * Not all of the 32M range need be defined. Again, the next
1597 * seven bits of the logical address are used an index into
1598 * the pointer table to point to page tables (if the pointer
1599 * is valid). There will undoubtedly be more than one
1600 * pointer table for the kernel because each pointer table
1601 * defines a range of only 32M. Valid pointer table entries
1602 * point to page tables, or are early terminating entries
1603 * themselves.
1605 * Page Tables
1606 * Per the Pointer Tables, each page table entry points
1607 * to the physical page in memory that supports the logical
1608 * address that translates to the particular index.
1610 * In short, the Logical Address gets translated as follows:
1611 * bits 31..26 - index into the Root Table
1612 * bits 25..18 - index into the Pointer Table
1613 * bits 17..12 - index into the Page Table
1614 * bits 11..0 - offset into a particular 4K page
1616 * The algorithms which follows do one thing: they abstract
1617 * the MMU hardware. For example, there are three kinds of
1618 * cache settings that are relevant. Either, memory is
1619 * being mapped in which case it is either Kernel Code (or
1620 * the RamDisk) or it is MMU data. On the 030, the MMU data
1621 * option also describes the kernel. Or, I/O is being mapped
1622 * in which case it has its own kind of cache bits. There
1623 * are constants which abstract these notions from the code that
1624 * actually makes the call to map some range of memory.
1628 */
1630 #ifdef MMU_PRINT
1631 /*
1632 * mmu_print
1634 * This algorithm will print out the current MMU mappings.
1636 * Input:
1637 * %a5 points to the root table. Everything else is calculated
1638 * from this.
1639 */
1641 #define mmu_next_valid 0
1642 #define mmu_start_logical 4
1643 #define mmu_next_logical 8
1644 #define mmu_start_physical 12
1645 #define mmu_next_physical 16
1647 #define MMU_PRINT_INVALID -1
1648 #define MMU_PRINT_VALID 1
1649 #define MMU_PRINT_UNINITED 0
1651 #define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1653 func_start mmu_print,%a0-%a6/%d0-%d7
1655 movel %pc@(L(kernel_pgdir_ptr)),%a5
1656 lea %pc@(L(mmu_print_data)),%a0
1657 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1659 is_not_040_or_060(mmu_030_print)
1661 mmu_040_print:
1662 puts "\nMMU040\n"
1663 puts "rp:"
1664 putn %a5
1665 putc '\n'
1666 #if 0
1667 /*
1668 * The following #if/#endif block is a tight algorithm for dumping the 040
1669 * MMU Map in gory detail. It really isn't that practical unless the
1670 * MMU Map algorithm appears to go awry and you need to debug it at the
1671 * entry per entry level.
1672 */
1673 movel #ROOT_TABLE_SIZE,%d5
1674 #if 0
1675 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings,
1676 subql #1,%d5 | they (might) work
1677 #endif
1678 1: tstl %d5
1679 jbeq mmu_print_done
1680 subq #1,%d5
1681 movel %a5@+,%d7
1682 btst #1,%d7
1683 jbeq 1b
1685 2: putn %d7
1686 andil #0xFFFFFE00,%d7
1687 movel %d7,%a4
1688 movel #PTR_TABLE_SIZE,%d4
1689 putc ' '
1690 3: tstl %d4
1691 jbeq 11f
1692 subq #1,%d4
1693 movel %a4@+,%d7
1694 btst #1,%d7
1695 jbeq 3b
1697 4: putn %d7
1698 andil #0xFFFFFF00,%d7
1699 movel %d7,%a3
1700 movel #PAGE_TABLE_SIZE,%d3
1701 5: movel #8,%d2
1702 6: tstl %d3
1703 jbeq 31f
1704 subq #1,%d3
1705 movel %a3@+,%d6
1706 btst #0,%d6
1707 jbeq 6b
1708 7: tstl %d2
1709 jbeq 8f
1710 subq #1,%d2
1711 putc ' '
1712 jbra 91f
1713 8: putc '\n'
1714 movel #8+1+8+1+1,%d2
1715 9: putc ' '
1716 dbra %d2,9b
1717 movel #7,%d2
1718 91: putn %d6
1719 jbra 6b
1721 31: putc '\n'
1722 movel #8+1,%d2
1723 32: putc ' '
1724 dbra %d2,32b
1725 jbra 3b
1727 11: putc '\n'
1728 jbra 1b
1729 #endif /* MMU 040 Dumping code that's gory and detailed */
1731 lea %pc@(kernel_pg_dir),%a5
1732 movel %a5,%a0 /* a0 has the address of the root table ptr */
1733 movel #0x00000000,%a4 /* logical address */
1734 moveql #0,%d0
1735 40:
1736 /* Increment the logical address and preserve in d5 */
1737 movel %a4,%d5
1738 addil #PAGESIZE<<13,%d5
1739 movel %a0@+,%d6
1740 btst #1,%d6
1741 jbne 41f
1742 jbsr mmu_print_tuple_invalidate
1743 jbra 48f
1744 41:
1745 movel #0,%d1
1746 andil #0xfffffe00,%d6
1747 movel %d6,%a1
1748 42:
1749 movel %a4,%d5
1750 addil #PAGESIZE<<6,%d5
1751 movel %a1@+,%d6
1752 btst #1,%d6
1753 jbne 43f
1754 jbsr mmu_print_tuple_invalidate
1755 jbra 47f
1756 43:
1757 movel #0,%d2
1758 andil #0xffffff00,%d6
1759 movel %d6,%a2
1760 44:
1761 movel %a4,%d5
1762 addil #PAGESIZE,%d5
1763 movel %a2@+,%d6
1764 btst #0,%d6
1765 jbne 45f
1766 jbsr mmu_print_tuple_invalidate
1767 jbra 46f
1768 45:
1769 moveml %d0-%d1,%sp@-
1770 movel %a4,%d0
1771 movel %d6,%d1
1772 andil #0xfffff4e0,%d1
1773 lea %pc@(mmu_040_print_flags),%a6
1774 jbsr mmu_print_tuple
1775 moveml %sp@+,%d0-%d1
1776 46:
1777 movel %d5,%a4
1778 addq #1,%d2
1779 cmpib #64,%d2
1780 jbne 44b
1781 47:
1782 movel %d5,%a4
1783 addq #1,%d1
1784 cmpib #128,%d1
1785 jbne 42b
1786 48:
1787 movel %d5,%a4 /* move to the next logical address */
1788 addq #1,%d0
1789 cmpib #128,%d0
1790 jbne 40b
1792 .chip 68040
1793 movec %dtt1,%d0
1794 movel %d0,%d1
1795 andiw #0x8000,%d1 /* is it valid ? */
1796 jbeq 1f /* No, bail out */
1798 movel %d0,%d1
1799 andil #0xff000000,%d1 /* Get the address */
1800 putn %d1
1801 puts "=="
1802 putn %d1
1804 movel %d0,%d6
1805 jbsr mmu_040_print_flags_tt
1806 1:
1807 movec %dtt0,%d0
1808 movel %d0,%d1
1809 andiw #0x8000,%d1 /* is it valid ? */
1810 jbeq 1f /* No, bail out */
1812 movel %d0,%d1
1813 andil #0xff000000,%d1 /* Get the address */
1814 putn %d1
1815 puts "=="
1816 putn %d1
1818 movel %d0,%d6
1819 jbsr mmu_040_print_flags_tt
1820 1:
1821 .chip 68k
1823 jbra mmu_print_done
1825 mmu_040_print_flags:
1826 btstl #10,%d6
1827 putZc(' ','G') /* global bit */
1828 btstl #7,%d6
1829 putZc(' ','S') /* supervisor bit */
1830 mmu_040_print_flags_tt:
1831 btstl #6,%d6
1832 jbne 3f
1833 putc 'C'
1834 btstl #5,%d6
1835 putZc('w','c') /* write through or copy-back */
1836 jbra 4f
1837 3:
1838 putc 'N'
1839 btstl #5,%d6
1840 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */
1841 4:
1842 rts
1844 mmu_030_print_flags:
1845 btstl #6,%d6
1846 putZc('C','I') /* write through or copy-back */
1847 rts
1849 mmu_030_print:
1850 puts "\nMMU030\n"
1851 puts "\nrp:"
1852 putn %a5
1853 putc '\n'
1854 movel %a5,%d0
1855 andil #0xfffffff0,%d0
1856 movel %d0,%a0
1857 movel #0x00000000,%a4 /* logical address */
1858 movel #0,%d0
1859 30:
1860 movel %a4,%d5
1861 addil #PAGESIZE<<13,%d5
1862 movel %a0@+,%d6
1863 btst #1,%d6 /* is it a table ptr? */
1864 jbne 31f /* yes */
1865 btst #0,%d6 /* is it early terminating? */
1866 jbeq 1f /* no */
1867 jbsr mmu_030_print_helper
1868 jbra 38f
1869 1:
1870 jbsr mmu_print_tuple_invalidate
1871 jbra 38f
1872 31:
1873 movel #0,%d1
1874 andil #0xfffffff0,%d6
1875 movel %d6,%a1
1876 32:
1877 movel %a4,%d5
1878 addil #PAGESIZE<<6,%d5
1879 movel %a1@+,%d6
1880 btst #1,%d6 /* is it a table ptr? */
1881 jbne 33f /* yes */
1882 btst #0,%d6 /* is it a page descriptor? */
1883 jbeq 1f /* no */
1884 jbsr mmu_030_print_helper
1885 jbra 37f
1886 1:
1887 jbsr mmu_print_tuple_invalidate
1888 jbra 37f
1889 33:
1890 movel #0,%d2
1891 andil #0xfffffff0,%d6
1892 movel %d6,%a2
1893 34:
1894 movel %a4,%d5
1895 addil #PAGESIZE,%d5
1896 movel %a2@+,%d6
1897 btst #0,%d6
1898 jbne 35f
1899 jbsr mmu_print_tuple_invalidate
1900 jbra 36f
1901 35:
1902 jbsr mmu_030_print_helper
1903 36:
1904 movel %d5,%a4
1905 addq #1,%d2
1906 cmpib #64,%d2
1907 jbne 34b
1908 37:
1909 movel %d5,%a4
1910 addq #1,%d1
1911 cmpib #128,%d1
1912 jbne 32b
1913 38:
1914 movel %d5,%a4 /* move to the next logical address */
1915 addq #1,%d0
1916 cmpib #128,%d0
1917 jbne 30b
1919 mmu_print_done:
1920 puts "\n\n"
1922 func_return mmu_print
1925 mmu_030_print_helper:
1926 moveml %d0-%d1,%sp@-
1927 movel %a4,%d0
1928 movel %d6,%d1
1929 lea %pc@(mmu_030_print_flags),%a6
1930 jbsr mmu_print_tuple
1931 moveml %sp@+,%d0-%d1
1932 rts
1934 mmu_print_tuple_invalidate:
1935 moveml %a0/%d7,%sp@-
1937 lea %pc@(L(mmu_print_data)),%a0
1938 tstl %a0@(mmu_next_valid)
1939 jbmi mmu_print_tuple_invalidate_exit
1941 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1943 putn %a4
1945 puts "##\n"
1947 mmu_print_tuple_invalidate_exit:
1948 moveml %sp@+,%a0/%d7
1949 rts
1952 mmu_print_tuple:
1953 moveml %d0-%d7/%a0,%sp@-
1955 lea %pc@(L(mmu_print_data)),%a0
1957 tstl %a0@(mmu_next_valid)
1958 jble mmu_print_tuple_print
1960 cmpl %a0@(mmu_next_physical),%d1
1961 jbeq mmu_print_tuple_increment
1963 mmu_print_tuple_print:
1964 putn %d0
1965 puts "->"
1966 putn %d1
1968 movel %d1,%d6
1969 jbsr %a6@
1971 mmu_print_tuple_record:
1972 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid)
1974 movel %d1,%a0@(mmu_next_physical)
1976 mmu_print_tuple_increment:
1977 movel %d5,%d7
1978 subl %a4,%d7
1979 addl %d7,%a0@(mmu_next_physical)
1981 mmu_print_tuple_exit:
1982 moveml %sp@+,%d0-%d7/%a0
1983 rts
1985 mmu_print_machine_cpu_types:
1986 puts "machine: "
1988 is_not_amiga(1f)
1989 puts "amiga"
1990 jbra 9f
1991 1:
1992 is_not_atari(2f)
1993 puts "atari"
1994 jbra 9f
1995 2:
1996 is_not_mac(3f)
1997 puts "macintosh"
1998 jbra 9f
1999 3: puts "unknown"
2000 9: putc '\n'
2002 puts "cputype: 0"
2003 is_not_060(1f)
2004 putc '6'
2005 jbra 9f
2006 1:
2007 is_not_040_or_060(2f)
2008 putc '4'
2009 jbra 9f
2010 2: putc '3'
2011 9: putc '0'
2012 putc '\n'
2014 rts
2015 #endif /* MMU_PRINT */
2017 /*
2018 * mmu_map_tt
2020 * This is a specific function which works on all 680x0 machines.
2021 * On 030, 040 & 060 it will attempt to use Transparent Translation
2022 * registers (tt1).
2023 * On 020 it will call the standard mmu_map which will use early
2024 * terminating descriptors.
2025 */
2026 func_start mmu_map_tt,%d0/%d1/%a0,4
2028 dputs "mmu_map_tt:"
2029 dputn ARG1
2030 dputn ARG2
2031 dputn ARG3
2032 dputn ARG4
2033 dputc '\n'
2035 is_020(L(do_map))
2037 /* Extract the highest bit set
2038 */
2039 bfffo ARG3{#0,#32},%d1
2040 cmpw #8,%d1
2041 jcc L(do_map)
2043 /* And get the mask
2044 */
2045 moveq #-1,%d0
2046 lsrl %d1,%d0
2047 lsrl #1,%d0
2049 /* Mask the address
2050 */
2051 movel %d0,%d1
2052 notl %d1
2053 andl ARG2,%d1
2055 /* Generate the upper 16bit of the tt register
2056 */
2057 lsrl #8,%d0
2058 orl %d0,%d1
2059 clrw %d1
2061 is_040_or_060(L(mmu_map_tt_040))
2063 /* set 030 specific bits (read/write access for supervisor mode
2064 * (highest function code set, lower two bits masked))
2065 */
2066 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2067 movel ARG4,%d0
2068 btst #6,%d0
2069 jeq 1f
2070 orw #TTR_CI,%d1
2072 1: lea STACK,%a0
2073 dputn %d1
2074 movel %d1,%a0@
2075 .chip 68030
2076 tstl ARG1
2077 jne 1f
2078 pmove %a0@,%tt0
2079 jra 2f
2080 1: pmove %a0@,%tt1
2081 2: .chip 68k
2082 jra L(mmu_map_tt_done)
2084 /* set 040 specific bits
2085 */
2086 L(mmu_map_tt_040):
2087 orw #TTR_ENABLE+TTR_KERNELMODE,%d1
2088 orl ARG4,%d1
2089 dputn %d1
2091 .chip 68040
2092 tstl ARG1
2093 jne 1f
2094 movec %d1,%itt0
2095 movec %d1,%dtt0
2096 jra 2f
2097 1: movec %d1,%itt1
2098 movec %d1,%dtt1
2099 2: .chip 68k
2101 jra L(mmu_map_tt_done)
2103 L(do_map):
2104 mmu_map_eq ARG2,ARG3,ARG4
2106 L(mmu_map_tt_done):
2108 func_return mmu_map_tt
2110 /*
2111 * mmu_map
2113 * This routine will map a range of memory using a pointer
2114 * table and allocating the pages on the fly from the kernel.
2115 * The pointer table does not have to be already linked into
2116 * the root table, this routine will do that if necessary.
2118 * NOTE
2119 * This routine will assert failure and use the serial_putc
2120 * routines in the case of a run-time error. For example,
2121 * if the address is already mapped.
2123 * NOTE-2
2124 * This routine will use early terminating descriptors
2125 * where possible for the 68020+68851 and 68030 type
2126 * processors.
2127 */
2128 func_start mmu_map,%d0-%d4/%a0-%a4
2130 dputs "\nmmu_map:"
2131 dputn ARG1
2132 dputn ARG2
2133 dputn ARG3
2134 dputn ARG4
2135 dputc '\n'
2137 /* Get logical address and round it down to 256KB
2138 */
2139 movel ARG1,%d0
2140 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2141 movel %d0,%a3
2143 /* Get the end address
2144 */
2145 movel ARG1,%a4
2146 addl ARG3,%a4
2147 subql #1,%a4
2149 /* Get physical address and round it down to 256KB
2150 */
2151 movel ARG2,%d0
2152 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2153 movel %d0,%a2
2155 /* Add page attributes to the physical address
2156 */
2157 movel ARG4,%d0
2158 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2159 addw %d0,%a2
2161 dputn %a2
2162 dputn %a3
2163 dputn %a4
2165 is_not_040_or_060(L(mmu_map_030))
2167 addw #_PAGE_GLOBAL040,%a2
2168 /*
2169 * MMU 040 & 060 Support
2171 * The MMU usage for the 040 and 060 is different enough from
2172 * the 030 and 68851 that there is separate code. This comment
2173 * block describes the data structures and algorithms built by
2174 * this code.
2176 * The 040 does not support early terminating descriptors, as
2177 * the 030 does. Therefore, a third level of table is needed
2178 * for the 040, and that would be the page table. In Linux,
2179 * page tables are allocated directly from the memory above the
2180 * kernel.
2182 */
2184 L(mmu_map_040):
2185 /* Calculate the offset into the root table
2186 */
2187 movel %a3,%d0
2188 moveq #ROOT_INDEX_SHIFT,%d1
2189 lsrl %d1,%d0
2190 mmu_get_root_table_entry %d0
2192 /* Calculate the offset into the pointer table
2193 */
2194 movel %a3,%d0
2195 moveq #PTR_INDEX_SHIFT,%d1
2196 lsrl %d1,%d0
2197 andl #PTR_TABLE_SIZE-1,%d0
2198 mmu_get_ptr_table_entry %a0,%d0
2200 /* Calculate the offset into the page table
2201 */
2202 movel %a3,%d0
2203 moveq #PAGE_INDEX_SHIFT,%d1
2204 lsrl %d1,%d0
2205 andl #PAGE_TABLE_SIZE-1,%d0
2206 mmu_get_page_table_entry %a0,%d0
2208 /* The page table entry must not no be busy
2209 */
2210 tstl %a0@
2211 jne L(mmu_map_error)
2213 /* Do the mapping and advance the pointers
2214 */
2215 movel %a2,%a0@
2216 2:
2217 addw #PAGESIZE,%a2
2218 addw #PAGESIZE,%a3
2220 /* Ready with mapping?
2221 */
2222 lea %a3@(-1),%a0
2223 cmpl %a0,%a4
2224 jhi L(mmu_map_040)
2225 jra L(mmu_map_done)
2227 L(mmu_map_030):
2228 /* Calculate the offset into the root table
2229 */
2230 movel %a3,%d0
2231 moveq #ROOT_INDEX_SHIFT,%d1
2232 lsrl %d1,%d0
2233 mmu_get_root_table_entry %d0
2235 /* Check if logical address 32MB aligned,
2236 * so we can try to map it once
2237 */
2238 movel %a3,%d0
2239 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2240 jne 1f
2242 /* Is there enough to map for 32MB at once
2243 */
2244 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2245 cmpl %a1,%a4
2246 jcs 1f
2248 addql #1,%a1
2250 /* The root table entry must not no be busy
2251 */
2252 tstl %a0@
2253 jne L(mmu_map_error)
2255 /* Do the mapping and advance the pointers
2256 */
2257 dputs "early term1"
2258 dputn %a2
2259 dputn %a3
2260 dputn %a1
2261 dputc '\n'
2262 movel %a2,%a0@
2264 movel %a1,%a3
2265 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2266 jra L(mmu_mapnext_030)
2267 1:
2268 /* Calculate the offset into the pointer table
2269 */
2270 movel %a3,%d0
2271 moveq #PTR_INDEX_SHIFT,%d1
2272 lsrl %d1,%d0
2273 andl #PTR_TABLE_SIZE-1,%d0
2274 mmu_get_ptr_table_entry %a0,%d0
2276 /* The pointer table entry must not no be busy
2277 */
2278 tstl %a0@
2279 jne L(mmu_map_error)
2281 /* Do the mapping and advance the pointers
2282 */
2283 dputs "early term2"
2284 dputn %a2
2285 dputn %a3
2286 dputc '\n'
2287 movel %a2,%a0@
2289 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2
2290 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3
2292 L(mmu_mapnext_030):
2293 /* Ready with mapping?
2294 */
2295 lea %a3@(-1),%a0
2296 cmpl %a0,%a4
2297 jhi L(mmu_map_030)
2298 jra L(mmu_map_done)
2300 L(mmu_map_error):
2302 dputs "mmu_map error:"
2303 dputn %a2
2304 dputn %a3
2305 dputc '\n'
2307 L(mmu_map_done):
2309 func_return mmu_map
2311 /*
2312 * mmu_fixup
2314 * On the 040 class machines, all pages that are used for the
2315 * mmu have to be fixed up.
2316 */
2318 func_start mmu_fixup_page_mmu_cache,%d0/%a0
2320 dputs "mmu_fixup_page_mmu_cache"
2321 dputn ARG1
2323 /* Calculate the offset into the root table
2324 */
2325 movel ARG1,%d0
2326 moveq #ROOT_INDEX_SHIFT,%d1
2327 lsrl %d1,%d0
2328 mmu_get_root_table_entry %d0
2330 /* Calculate the offset into the pointer table
2331 */
2332 movel ARG1,%d0
2333 moveq #PTR_INDEX_SHIFT,%d1
2334 lsrl %d1,%d0
2335 andl #PTR_TABLE_SIZE-1,%d0
2336 mmu_get_ptr_table_entry %a0,%d0
2338 /* Calculate the offset into the page table
2339 */
2340 movel ARG1,%d0
2341 moveq #PAGE_INDEX_SHIFT,%d1
2342 lsrl %d1,%d0
2343 andl #PAGE_TABLE_SIZE-1,%d0
2344 mmu_get_page_table_entry %a0,%d0
2346 movel %a0@,%d0
2347 andil #_CACHEMASK040,%d0
2348 orl %pc@(m68k_pgtable_cachemode),%d0
2349 movel %d0,%a0@
2351 dputc '\n'
2353 func_return mmu_fixup_page_mmu_cache
2355 /*
2356 * mmu_temp_map
2358 * create a temporary mapping to enable the mmu,
2359 * this we don't need any transparation translation tricks.
2360 */
2362 func_start mmu_temp_map,%d0/%d1/%a0/%a1
2364 dputs "mmu_temp_map"
2365 dputn ARG1
2366 dputn ARG2
2367 dputc '\n'
2369 lea %pc@(L(temp_mmap_mem)),%a1
2371 /* Calculate the offset in the root table
2372 */
2373 movel ARG2,%d0
2374 moveq #ROOT_INDEX_SHIFT,%d1
2375 lsrl %d1,%d0
2376 mmu_get_root_table_entry %d0
2378 /* Check if the table is temporary allocated, so we have to reuse it
2379 */
2380 movel %a0@,%d0
2381 cmpl %pc@(L(memory_start)),%d0
2382 jcc 1f
2384 /* Temporary allocate a ptr table and insert it into the root table
2385 */
2386 movel %a1@,%d0
2387 addl #PTR_TABLE_SIZE*4,%a1@
2388 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2389 movel %d0,%a0@
2390 dputs " (new)"
2391 1:
2392 dputn %d0
2393 /* Mask the root table entry for the ptr table
2394 */
2395 andw #-ROOT_TABLE_SIZE,%d0
2396 movel %d0,%a0
2398 /* Calculate the offset into the pointer table
2399 */
2400 movel ARG2,%d0
2401 moveq #PTR_INDEX_SHIFT,%d1
2402 lsrl %d1,%d0
2403 andl #PTR_TABLE_SIZE-1,%d0
2404 lea %a0@(%d0*4),%a0
2405 dputn %a0
2407 /* Check if a temporary page table is already allocated
2408 */
2409 movel %a0@,%d0
2410 jne 1f
2412 /* Temporary allocate a page table and insert it into the ptr table
2413 */
2414 movel %a1@,%d0
2415 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2416 alignment restriction for pointer tables on the '0[46]0. */
2417 addl #512,%a1@
2418 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2419 movel %d0,%a0@
2420 dputs " (new)"
2421 1:
2422 dputn %d0
2423 /* Mask the ptr table entry for the page table
2424 */
2425 andw #-PTR_TABLE_SIZE,%d0
2426 movel %d0,%a0
2428 /* Calculate the offset into the page table
2429 */
2430 movel ARG2,%d0
2431 moveq #PAGE_INDEX_SHIFT,%d1
2432 lsrl %d1,%d0
2433 andl #PAGE_TABLE_SIZE-1,%d0
2434 lea %a0@(%d0*4),%a0
2435 dputn %a0
2437 /* Insert the address into the page table
2438 */
2439 movel ARG1,%d0
2440 andw #-PAGESIZE,%d0
2441 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2442 movel %d0,%a0@
2443 dputn %d0
2445 dputc '\n'
2447 func_return mmu_temp_map
2449 func_start mmu_engage,%d0-%d2/%a0-%a3
2451 moveq #ROOT_TABLE_SIZE-1,%d0
2452 /* Temporarily use a different root table. */
2453 lea %pc@(L(kernel_pgdir_ptr)),%a0
2454 movel %a0@,%a2
2455 movel %pc@(L(memory_start)),%a1
2456 movel %a1,%a0@
2457 movel %a2,%a0
2458 1:
2459 movel %a0@+,%a1@+
2460 dbra %d0,1b
2462 lea %pc@(L(temp_mmap_mem)),%a0
2463 movel %a1,%a0@
2465 movew #PAGESIZE-1,%d0
2466 1:
2467 clrl %a1@+
2468 dbra %d0,1b
2470 lea %pc@(1b),%a0
2471 movel #1b,%a1
2472 /* Skip temp mappings if phys == virt */
2473 cmpl %a0,%a1
2474 jeq 1f
2476 mmu_temp_map %a0,%a0
2477 mmu_temp_map %a0,%a1
2479 addw #PAGESIZE,%a0
2480 addw #PAGESIZE,%a1
2481 mmu_temp_map %a0,%a0
2482 mmu_temp_map %a0,%a1
2483 1:
2484 movel %pc@(L(memory_start)),%a3
2485 movel %pc@(L(phys_kernel_start)),%d2
2487 is_not_040_or_060(L(mmu_engage_030))
2489 L(mmu_engage_040):
2490 .chip 68040
2491 nop
2492 cinva %bc
2493 nop
2494 pflusha
2495 nop
2496 movec %a3,%srp
2497 movel #TC_ENABLE+TC_PAGE4K,%d0
2498 movec %d0,%tc /* enable the MMU */
2499 jmp 1f:l
2500 1: nop
2501 movec %a2,%srp
2502 nop
2503 cinva %bc
2504 nop
2505 pflusha
2506 .chip 68k
2507 jra L(mmu_engage_cleanup)
2509 L(mmu_engage_030_temp):
2510 .space 12
2511 L(mmu_engage_030):
2512 .chip 68030
2513 lea %pc@(L(mmu_engage_030_temp)),%a0
2514 movel #0x80000002,%a0@
2515 movel %a3,%a0@(4)
2516 movel #0x0808,%d0
2517 movec %d0,%cacr
2518 pmove %a0@,%srp
2519 pflusha
2520 /*
2521 * enable,super root enable,4096 byte pages,7 bit root index,
2522 * 7 bit pointer index, 6 bit page table index.
2523 */
2524 movel #0x82c07760,%a0@(8)
2525 pmove %a0@(8),%tc /* enable the MMU */
2526 jmp 1f:l
2527 1: movel %a2,%a0@(4)
2528 movel #0x0808,%d0
2529 movec %d0,%cacr
2530 pmove %a0@,%srp
2531 pflusha
2532 .chip 68k
2534 L(mmu_engage_cleanup):
2535 subl #PAGE_OFFSET,%d2
2536 subl %d2,%a2
2537 movel %a2,L(kernel_pgdir_ptr)
2538 subl %d2,%fp
2539 subl %d2,%sp
2540 subl %d2,ARG0
2542 func_return mmu_engage
2544 func_start mmu_get_root_table_entry,%d0/%a1
2546 #if 0
2547 dputs "mmu_get_root_table_entry:"
2548 dputn ARG1
2549 dputs " ="
2550 #endif
2552 movel %pc@(L(kernel_pgdir_ptr)),%a0
2553 tstl %a0
2554 jne 2f
2556 dputs "\nmmu_init:"
2558 /* Find the start of free memory, get_bi_record does this for us,
2559 * as the bootinfo structure is located directly behind the kernel
2560 * and and we simply search for the last entry.
2561 */
2562 get_bi_record BI_LAST
2563 addw #PAGESIZE-1,%a0
2564 movel %a0,%d0
2565 andw #-PAGESIZE,%d0
2567 dputn %d0
2569 lea %pc@(L(memory_start)),%a0
2570 movel %d0,%a0@
2571 lea %pc@(L(kernel_end)),%a0
2572 movel %d0,%a0@
2574 /* we have to return the first page at _stext since the init code
2575 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2576 * page is used for further ptr tables in get_ptr_table.
2577 */
2578 lea %pc@(_stext),%a0
2579 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2580 movel %a0,%a1@
2581 addl #ROOT_TABLE_SIZE*4,%a1@
2583 lea %pc@(L(mmu_num_pointer_tables)),%a1
2584 addql #1,%a1@
2586 /* clear the page
2587 */
2588 movel %a0,%a1
2589 movew #PAGESIZE/4-1,%d0
2590 1:
2591 clrl %a1@+
2592 dbra %d0,1b
2594 lea %pc@(L(kernel_pgdir_ptr)),%a1
2595 movel %a0,%a1@
2597 dputn %a0
2598 dputc '\n'
2599 2:
2600 movel ARG1,%d0
2601 lea %a0@(%d0*4),%a0
2603 #if 0
2604 dputn %a0
2605 dputc '\n'
2606 #endif
2608 func_return mmu_get_root_table_entry
2612 func_start mmu_get_ptr_table_entry,%d0/%a1
2614 #if 0
2615 dputs "mmu_get_ptr_table_entry:"
2616 dputn ARG1
2617 dputn ARG2
2618 dputs " ="
2619 #endif
2621 movel ARG1,%a0
2622 movel %a0@,%d0
2623 jne 2f
2625 /* Keep track of the number of pointer tables we use
2626 */
2627 dputs "\nmmu_get_new_ptr_table:"
2628 lea %pc@(L(mmu_num_pointer_tables)),%a0
2629 movel %a0@,%d0
2630 addql #1,%a0@
2632 /* See if there is a free pointer table in our cache of pointer tables
2633 */
2634 lea %pc@(L(mmu_cached_pointer_tables)),%a1
2635 andw #7,%d0
2636 jne 1f
2638 /* Get a new pointer table page from above the kernel memory
2639 */
2640 get_new_page
2641 movel %a0,%a1@
2642 1:
2643 /* There is an unused pointer table in our cache... use it
2644 */
2645 movel %a1@,%d0
2646 addl #PTR_TABLE_SIZE*4,%a1@
2648 dputn %d0
2649 dputc '\n'
2651 /* Insert the new pointer table into the root table
2652 */
2653 movel ARG1,%a0
2654 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2655 movel %d0,%a0@
2656 2:
2657 /* Extract the pointer table entry
2658 */
2659 andw #-PTR_TABLE_SIZE,%d0
2660 movel %d0,%a0
2661 movel ARG2,%d0
2662 lea %a0@(%d0*4),%a0
2664 #if 0
2665 dputn %a0
2666 dputc '\n'
2667 #endif
2669 func_return mmu_get_ptr_table_entry
2672 func_start mmu_get_page_table_entry,%d0/%a1
2674 #if 0
2675 dputs "mmu_get_page_table_entry:"
2676 dputn ARG1
2677 dputn ARG2
2678 dputs " ="
2679 #endif
2681 movel ARG1,%a0
2682 movel %a0@,%d0
2683 jne 2f
2685 /* If the page table entry doesn't exist, we allocate a complete new
2686 * page and use it as one continues big page table which can cover
2687 * 4MB of memory, nearly almost all mappings have that alignment.
2688 */
2689 get_new_page
2690 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0
2692 /* align pointer table entry for a page of page tables
2693 */
2694 movel ARG1,%d0
2695 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2696 movel %d0,%a1
2698 /* Insert the page tables into the pointer entries
2699 */
2700 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
2701 1:
2702 movel %a0,%a1@+
2703 lea %a0@(PAGE_TABLE_SIZE*4),%a0
2704 dbra %d0,1b
2706 /* Now we can get the initialized pointer table entry
2707 */
2708 movel ARG1,%a0
2709 movel %a0@,%d0
2710 2:
2711 /* Extract the page table entry
2712 */
2713 andw #-PAGE_TABLE_SIZE,%d0
2714 movel %d0,%a0
2715 movel ARG2,%d0
2716 lea %a0@(%d0*4),%a0
2718 #if 0
2719 dputn %a0
2720 dputc '\n'
2721 #endif
2723 func_return mmu_get_page_table_entry
2725 /*
2726 * get_new_page
2728 * Return a new page from the memory start and clear it.
2729 */
2730 func_start get_new_page,%d0/%a1
2732 dputs "\nget_new_page:"
2734 /* allocate the page and adjust memory_start
2735 */
2736 lea %pc@(L(memory_start)),%a0
2737 movel %a0@,%a1
2738 addl #PAGESIZE,%a0@
2740 /* clear the new page
2741 */
2742 movel %a1,%a0
2743 movew #PAGESIZE/4-1,%d0
2744 1:
2745 clrl %a1@+
2746 dbra %d0,1b
2748 dputn %a0
2749 dputc '\n'
2751 func_return get_new_page
2755 /*
2756 * Debug output support
2757 * Atarians have a choice between the parallel port, the serial port
2758 * from the MFP or a serial port of the SCC
2759 */
2761 #ifdef CONFIG_MAC
2763 L(scc_initable_mac):
2764 .byte 9,12 /* Reset */
2765 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2766 .byte 3,0xc0 /* receiver: 8 bpc */
2767 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2768 .byte 9,0 /* no interrupts */
2769 .byte 10,0 /* NRZ */
2770 .byte 11,0x50 /* use baud rate generator */
2771 .byte 12,10,13,0 /* 9600 baud */
2772 .byte 14,1 /* Baud rate generator enable */
2773 .byte 3,0xc1 /* enable receiver */
2774 .byte 5,0xea /* enable transmitter */
2775 .byte -1
2776 .even
2777 #endif
2779 #ifdef CONFIG_ATARI
2780 /* #define USE_PRINTER */
2781 /* #define USE_SCC_B */
2782 /* #define USE_SCC_A */
2783 #define USE_MFP
2785 #if defined(USE_SCC_A) || defined(USE_SCC_B)
2786 #define USE_SCC
2787 /* Initialisation table for SCC */
2788 L(scc_initable):
2789 .byte 9,12 /* Reset */
2790 .byte 4,0x44 /* x16, 1 stopbit, no parity */
2791 .byte 3,0xc0 /* receiver: 8 bpc */
2792 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2793 .byte 9,0 /* no interrupts */
2794 .byte 10,0 /* NRZ */
2795 .byte 11,0x50 /* use baud rate generator */
2796 .byte 12,24,13,0 /* 9600 baud */
2797 .byte 14,2,14,3 /* use master clock for BRG, enable */
2798 .byte 3,0xc1 /* enable receiver */
2799 .byte 5,0xea /* enable transmitter */
2800 .byte -1
2801 .even
2802 #endif
2804 #ifdef USE_PRINTER
2806 LPSG_SELECT = 0xff8800
2807 LPSG_READ = 0xff8800
2808 LPSG_WRITE = 0xff8802
2809 LPSG_IO_A = 14
2810 LPSG_IO_B = 15
2811 LPSG_CONTROL = 7
2812 LSTMFP_GPIP = 0xfffa01
2813 LSTMFP_DDR = 0xfffa05
2814 LSTMFP_IERB = 0xfffa09
2816 #elif defined(USE_SCC_B)
2818 LSCC_CTRL = 0xff8c85
2819 LSCC_DATA = 0xff8c87
2821 #elif defined(USE_SCC_A)
2823 LSCC_CTRL = 0xff8c81
2824 LSCC_DATA = 0xff8c83
2826 #elif defined(USE_MFP)
2828 LMFP_UCR = 0xfffa29
2829 LMFP_TDCDR = 0xfffa1d
2830 LMFP_TDDR = 0xfffa25
2831 LMFP_TSR = 0xfffa2d
2832 LMFP_UDR = 0xfffa2f
2834 #endif
2835 #endif /* CONFIG_ATARI */
2837 /*
2838 * Serial port output support.
2839 */
2841 /*
2842 * Initialize serial port hardware for 9600/8/1
2843 */
2844 func_start serial_init,%d0/%d1/%a0/%a1
2845 /*
2846 * Some of the register usage that follows
2847 * CONFIG_AMIGA
2848 * a0 = pointer to boot info record
2849 * d0 = boot info offset
2850 * CONFIG_ATARI
2851 * a0 = address of SCC
2852 * a1 = Liobase address/address of scc_initable
2853 * d0 = init data for serial port
2854 * CONFIG_MAC
2855 * a0 = address of SCC
2856 * a1 = address of scc_initable_mac
2857 * d0 = init data for serial port
2858 */
2860 #ifdef CONFIG_AMIGA
2861 #define SERIAL_DTR 7
2862 #define SERIAL_CNTRL CIABBASE+C_PRA
2864 is_not_amiga(1f)
2865 lea %pc@(L(custom)),%a0
2866 movel #-ZTWOBASE,%a0@
2867 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2868 get_bi_record BI_AMIGA_SERPER
2869 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2870 | movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE
2871 1:
2872 #endif
2873 #ifdef CONFIG_ATARI
2874 is_not_atari(4f)
2875 movel %pc@(L(iobase)),%a1
2876 #if defined(USE_PRINTER)
2877 bclr #0,%a1@(LSTMFP_IERB)
2878 bclr #0,%a1@(LSTMFP_DDR)
2879 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT)
2880 moveb #0xff,%a1@(LPSG_WRITE)
2881 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
2882 clrb %a1@(LPSG_WRITE)
2883 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
2884 moveb %a1@(LPSG_READ),%d0
2885 bset #5,%d0
2886 moveb %d0,%a1@(LPSG_WRITE)
2887 #elif defined(USE_SCC)
2888 lea %a1@(LSCC_CTRL),%a0
2889 lea %pc@(L(scc_initable)),%a1
2890 2: moveb %a1@+,%d0
2891 jmi 3f
2892 moveb %d0,%a0@
2893 moveb %a1@+,%a0@
2894 jra 2b
2895 3: clrb %a0@
2896 #elif defined(USE_MFP)
2897 bclr #1,%a1@(LMFP_TSR)
2898 moveb #0x88,%a1@(LMFP_UCR)
2899 andb #0x70,%a1@(LMFP_TDCDR)
2900 moveb #2,%a1@(LMFP_TDDR)
2901 orb #1,%a1@(LMFP_TDCDR)
2902 bset #1,%a1@(LMFP_TSR)
2903 #endif
2904 jra L(serial_init_done)
2905 4:
2906 #endif
2907 #ifdef CONFIG_MAC
2908 is_not_mac(L(serial_init_not_mac))
2909 #ifdef MAC_SERIAL_DEBUG
2910 #if !defined(MAC_USE_SCC_A) && !defined(MAC_USE_SCC_B)
2911 #define MAC_USE_SCC_B
2912 #endif
2913 #define mac_scc_cha_b_ctrl_offset 0x0
2914 #define mac_scc_cha_a_ctrl_offset 0x2
2915 #define mac_scc_cha_b_data_offset 0x4
2916 #define mac_scc_cha_a_data_offset 0x6
2918 #ifdef MAC_USE_SCC_A
2919 /* Initialize channel A */
2920 movel %pc@(L(mac_sccbase)),%a0
2921 lea %pc@(L(scc_initable_mac)),%a1
2922 5: moveb %a1@+,%d0
2923 jmi 6f
2924 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset)
2925 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2926 jra 5b
2927 6:
2928 #endif /* MAC_USE_SCC_A */
2930 #ifdef MAC_USE_SCC_B
2931 /* Initialize channel B */
2932 #ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */
2933 movel %pc@(L(mac_sccbase)),%a0
2934 #endif /* MAC_USE_SCC_A */
2935 lea %pc@(L(scc_initable_mac)),%a1
2936 7: moveb %a1@+,%d0
2937 jmi 8f
2938 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset)
2939 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2940 jra 7b
2941 8:
2942 #endif /* MAC_USE_SCC_B */
2943 #endif /* MAC_SERIAL_DEBUG */
2945 jra L(serial_init_done)
2946 L(serial_init_not_mac):
2947 #endif /* CONFIG_MAC */
2949 #ifdef CONFIG_Q40
2950 is_not_q40(2f)
2951 /* debug output goes into SRAM, so we don't do it unless requested
2952 - check for '%LX$' signature in SRAM */
2953 lea %pc@(q40_mem_cptr),%a1
2954 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */
2955 move.l #0xff020000,%a1
2956 cmp.b #'%',%a1@
2957 bne 2f /*nodbg*/
2958 addq.w #4,%a1
2959 cmp.b #'L',%a1@
2960 bne 2f /*nodbg*/
2961 addq.w #4,%a1
2962 cmp.b #'X',%a1@
2963 bne 2f /*nodbg*/
2964 addq.w #4,%a1
2965 cmp.b #'$',%a1@
2966 bne 2f /*nodbg*/
2967 /* signature OK */
2968 lea %pc@(L(q40_do_debug)),%a1
2969 tas %a1@
2970 /*nodbg: q40_do_debug is 0 by default*/
2971 2:
2972 #endif
2974 #ifdef CONFIG_APOLLO
2975 /* We count on the PROM initializing SIO1 */
2976 #endif
2978 #ifdef CONFIG_HP300
2979 /* We count on the boot loader initialising the UART */
2980 #endif
2982 L(serial_init_done):
2983 func_return serial_init
2985 /*
2986 * Output character on serial port.
2987 */
2988 func_start serial_putc,%d0/%d1/%a0/%a1
2990 movel ARG1,%d0
2991 cmpib #'\n',%d0
2992 jbne 1f
2994 /* A little safe recursion is good for the soul */
2995 serial_putc #'\r'
2996 1:
2998 #ifdef CONFIG_AMIGA
2999 is_not_amiga(2f)
3000 andw #0x00ff,%d0
3001 oriw #0x0100,%d0
3002 movel %pc@(L(custom)),%a0
3003 movew %d0,%a0@(CUSTOMBASE+C_SERDAT)
3004 1: movew %a0@(CUSTOMBASE+C_SERDATR),%d0
3005 andw #0x2000,%d0
3006 jeq 1b
3007 jra L(serial_putc_done)
3008 2:
3009 #endif
3011 #ifdef CONFIG_MAC
3012 is_not_mac(5f)
3014 #ifdef MAC_SERIAL_DEBUG
3016 #ifdef MAC_USE_SCC_A
3017 movel %pc@(L(mac_sccbase)),%a1
3018 3: btst #2,%a1@(mac_scc_cha_a_ctrl_offset)
3019 jeq 3b
3020 moveb %d0,%a1@(mac_scc_cha_a_data_offset)
3021 #endif /* MAC_USE_SCC_A */
3023 #ifdef MAC_USE_SCC_B
3024 #ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */
3025 movel %pc@(L(mac_sccbase)),%a1
3026 #endif /* MAC_USE_SCC_A */
3027 4: btst #2,%a1@(mac_scc_cha_b_ctrl_offset)
3028 jeq 4b
3029 moveb %d0,%a1@(mac_scc_cha_b_data_offset)
3030 #endif /* MAC_USE_SCC_B */
3032 #endif /* MAC_SERIAL_DEBUG */
3034 jra L(serial_putc_done)
3035 5:
3036 #endif /* CONFIG_MAC */
3038 #ifdef CONFIG_ATARI
3039 is_not_atari(4f)
3040 movel %pc@(L(iobase)),%a1
3041 #if defined(USE_PRINTER)
3042 3: btst #0,%a1@(LSTMFP_GPIP)
3043 jne 3b
3044 moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
3045 moveb %d0,%a1@(LPSG_WRITE)
3046 moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
3047 moveb %a1@(LPSG_READ),%d0
3048 bclr #5,%d0
3049 moveb %d0,%a1@(LPSG_WRITE)
3050 nop
3051 nop
3052 bset #5,%d0
3053 moveb %d0,%a1@(LPSG_WRITE)
3054 #elif defined(USE_SCC)
3055 3: btst #2,%a1@(LSCC_CTRL)
3056 jeq 3b
3057 moveb %d0,%a1@(LSCC_DATA)
3058 #elif defined(USE_MFP)
3059 3: btst #7,%a1@(LMFP_TSR)
3060 jeq 3b
3061 moveb %d0,%a1@(LMFP_UDR)
3062 #endif
3063 jra L(serial_putc_done)
3064 4:
3065 #endif /* CONFIG_ATARI */
3067 #ifdef CONFIG_MVME147
3068 is_not_mvme147(2f)
3069 1: btst #2,M147_SCC_CTRL_A
3070 jeq 1b
3071 moveb %d0,M147_SCC_DATA_A
3072 jbra L(serial_putc_done)
3073 2:
3074 #endif
3076 #ifdef CONFIG_MVME16x
3077 is_not_mvme16x(2f)
3078 /*
3079 * If the loader gave us a board type then we can use that to
3080 * select an appropriate output routine; otherwise we just use
3081 * the Bug code. If we haev to use the Bug that means the Bug
3082 * workspace has to be valid, which means the Bug has to use
3083 * the SRAM, which is non-standard.
3084 */
3085 moveml %d0-%d7/%a2-%a6,%sp@-
3086 movel vme_brdtype,%d1
3087 jeq 1f | No tag - use the Bug
3088 cmpi #VME_TYPE_MVME162,%d1
3089 jeq 6f
3090 cmpi #VME_TYPE_MVME172,%d1
3091 jne 5f
3092 /* 162/172; it's an SCC */
3093 6: btst #2,M162_SCC_CTRL_A
3094 nop
3095 nop
3096 nop
3097 jeq 6b
3098 moveb #8,M162_SCC_CTRL_A
3099 nop
3100 nop
3101 nop
3102 moveb %d0,M162_SCC_CTRL_A
3103 jra 3f
3104 5:
3105 /* 166/167/177; it's a CD2401 */
3106 moveb #0,M167_CYCAR
3107 moveb M167_CYIER,%d2
3108 moveb #0x02,M167_CYIER
3109 7:
3110 btst #5,M167_PCSCCTICR
3111 jeq 7b
3112 moveb M167_PCTPIACKR,%d1
3113 moveb M167_CYLICR,%d1
3114 jeq 8f
3115 moveb #0x08,M167_CYTEOIR
3116 jra 7b
3117 8:
3118 moveb %d0,M167_CYTDR
3119 moveb #0,M167_CYTEOIR
3120 moveb %d2,M167_CYIER
3121 jra 3f
3122 1:
3123 moveb %d0,%sp@-
3124 trap #15
3125 .word 0x0020 /* TRAP 0x020 */
3126 3:
3127 moveml %sp@+,%d0-%d7/%a2-%a6
3128 jbra L(serial_putc_done)
3129 2:
3130 #endif /* CONFIG_MVME16x */
3132 #ifdef CONFIG_BVME6000
3133 is_not_bvme6000(2f)
3134 /*
3135 * The BVME6000 machine has a serial port ...
3136 */
3137 1: btst #2,BVME_SCC_CTRL_A
3138 jeq 1b
3139 moveb %d0,BVME_SCC_DATA_A
3140 jbra L(serial_putc_done)
3141 2:
3142 #endif
3144 #ifdef CONFIG_SUN3X
3145 is_not_sun3x(2f)
3146 movel %d0,-(%sp)
3147 movel 0xFEFE0018,%a1
3148 jbsr (%a1)
3149 addq #4,%sp
3150 jbra L(serial_putc_done)
3151 2:
3152 #endif
3154 #ifdef CONFIG_Q40
3155 is_not_q40(2f)
3156 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */
3157 beq 2f
3158 lea %pc@(q40_mem_cptr),%a1
3159 move.l %a1@,%a0
3160 move.b %d0,%a0@
3161 addq.l #4,%a0
3162 move.l %a0,%a1@
3163 jbra L(serial_putc_done)
3164 2:
3165 #endif
3167 #ifdef CONFIG_APOLLO
3168 is_not_apollo(2f)
3169 movl %pc@(L(iobase)),%a1
3170 moveb %d0,%a1@(LTHRB0)
3171 1: moveb %a1@(LSRB0),%d0
3172 andb #0x4,%d0
3173 beq 1b
3174 jbra L(serial_putc_done)
3175 2:
3176 #endif
3178 #ifdef CONFIG_HP300
3179 is_not_hp300(3f)
3180 movl %pc@(L(iobase)),%a1
3181 addl %pc@(L(uartbase)),%a1
3182 movel %pc@(L(uart_scode)),%d1 /* Check the scode */
3183 jmi 3f /* Unset? Exit */
3184 cmpi #256,%d1 /* APCI scode? */
3185 jeq 2f
3186 1: moveb %a1@(DCALSR),%d1 /* Output to DCA */
3187 andb #0x20,%d1
3188 beq 1b
3189 moveb %d0,%a1@(DCADATA)
3190 jbra L(serial_putc_done)
3191 2: moveb %a1@(APCILSR),%d1 /* Output to APCI */
3192 andb #0x20,%d1
3193 beq 2b
3194 moveb %d0,%a1@(APCIDATA)
3195 jbra L(serial_putc_done)
3196 3:
3197 #endif
3199 L(serial_putc_done):
3200 func_return serial_putc
3202 /*
3203 * Output a string.
3204 */
3205 func_start puts,%d0/%a0
3207 movel ARG1,%a0
3208 jra 2f
3209 1:
3210 #ifdef CONSOLE
3211 console_putc %d0
3212 #endif
3213 #ifdef SERIAL_DEBUG
3214 serial_putc %d0
3215 #endif
3216 2: moveb %a0@+,%d0
3217 jne 1b
3219 func_return puts
3221 /*
3222 * Output number in hex notation.
3223 */
3225 func_start putn,%d0-%d2
3227 putc ' '
3229 movel ARG1,%d0
3230 moveq #7,%d1
3231 1: roll #4,%d0
3232 move %d0,%d2
3233 andb #0x0f,%d2
3234 addb #'0',%d2
3235 cmpb #'9',%d2
3236 jls 2f
3237 addb #'A'-('9'+1),%d2
3238 2:
3239 #ifdef CONSOLE
3240 console_putc %d2
3241 #endif
3242 #ifdef SERIAL_DEBUG
3243 serial_putc %d2
3244 #endif
3245 dbra %d1,1b
3247 func_return putn
3249 #ifdef CONFIG_MAC
3250 /*
3251 * mac_serial_print
3253 * This routine takes its parameters on the stack. It then
3254 * turns around and calls the internal routine. This routine
3255 * is used until the Linux console driver initializes itself.
3257 * The calling parameters are:
3258 * void mac_serial_print(const char *str);
3260 * This routine does NOT understand variable arguments only
3261 * simple strings!
3262 */
3263 ENTRY(mac_serial_print)
3264 moveml %d0/%a0,%sp@-
3265 #if 1
3266 move %sr,%sp@-
3267 ori #0x0700,%sr
3268 #endif
3269 movel %sp@(10),%a0 /* fetch parameter */
3270 jra 2f
3271 1: serial_putc %d0
3272 2: moveb %a0@+,%d0
3273 jne 1b
3274 #if 1
3275 move %sp@+,%sr
3276 #endif
3277 moveml %sp@+,%d0/%a0
3278 rts
3279 #endif /* CONFIG_MAC */
3281 #if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3282 func_start set_leds,%d0/%a0
3283 movel ARG1,%d0
3284 #ifdef CONFIG_HP300
3285 is_not_hp300(1f)
3286 movel %pc@(L(iobase)),%a0
3287 moveb %d0,%a0@(0x1ffff)
3288 jra 2f
3289 #endif
3290 1:
3291 #ifdef CONFIG_APOLLO
3292 movel %pc@(L(iobase)),%a0
3293 lsll #8,%d0
3294 eorw #0xff00,%d0
3295 moveb %d0,%a0@(LCPUCTRL)
3296 #endif
3297 2:
3298 func_return set_leds
3299 #endif
3301 #ifdef CONSOLE
3302 /*
3303 * For continuity, see the data alignment
3304 * to which this structure is tied.
3305 */
3306 #define Lconsole_struct_cur_column 0
3307 #define Lconsole_struct_cur_row 4
3308 #define Lconsole_struct_num_columns 8
3309 #define Lconsole_struct_num_rows 12
3310 #define Lconsole_struct_left_edge 16
3311 #define Lconsole_struct_penguin_putc 20
3313 func_start console_init,%a0-%a4/%d0-%d7
3314 /*
3315 * Some of the register usage that follows
3316 * a0 = pointer to boot_info
3317 * a1 = pointer to screen
3318 * a2 = pointer to Lconsole_globals
3319 * d3 = pixel width of screen
3320 * d4 = pixel height of screen
3321 * (d3,d4) ~= (x,y) of a point just below
3322 * and to the right of the screen
3323 * NOT on the screen!
3324 * d5 = number of bytes per scan line
3325 * d6 = number of bytes on the entire screen
3326 */
3328 lea %pc@(L(console_globals)),%a2
3329 movel %pc@(L(mac_videobase)),%a1
3330 movel %pc@(L(mac_rowbytes)),%d5
3331 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */
3332 movel %d3,%d4
3333 swap %d4 /* -> high byte */
3334 andl #0xffff,%d3 /* d3 = screen width in pixels */
3335 andl #0xffff,%d4 /* d4 = screen height in pixels */
3337 movel %d5,%d6
3338 | subl #20,%d6
3339 mulul %d4,%d6 /* scan line bytes x num scan lines */
3340 divul #8,%d6 /* we'll clear 8 bytes at a time */
3341 moveq #-1,%d0 /* Mac_black */
3342 subq #1,%d6
3344 L(console_clear_loop):
3345 movel %d0,%a1@+
3346 movel %d0,%a1@+
3347 dbra %d6,L(console_clear_loop)
3349 /* Calculate font size */
3351 #if defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3352 lea %pc@(font_vga_8x8),%a0
3353 #elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3354 lea %pc@(font_vga_8x16),%a0
3355 #elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3356 lea %pc@(font_vga_6x11),%a0
3357 #elif defined(CONFIG_FONT_8x8) /* default */
3358 lea %pc@(font_vga_8x8),%a0
3359 #else /* no compiled-in font */
3360 lea 0,%a0
3361 #endif
3363 /*
3364 * At this point we make a shift in register usage
3365 * a1 = address of console_font pointer
3366 */
3367 lea %pc@(L(console_font)),%a1
3368 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */
3369 tstl %a0
3370 jeq 1f
3371 lea %pc@(L(console_font_data)),%a4
3372 movel %a0@(FONT_DESC_DATA),%d0
3373 subl #L(console_font),%a1
3374 addl %a1,%d0
3375 movel %d0,%a4@
3377 /*
3378 * Calculate global maxs
3379 * Note - we can use either an
3380 * 8 x 16 or 8 x 8 character font
3381 * 6 x 11 also supported
3382 */
3383 /* ASSERT: a0 = contents of Lconsole_font */
3384 movel %d3,%d0 /* screen width in pixels */
3385 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */
3387 movel %d4,%d1 /* screen height in pixels */
3388 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */
3390 movel %d0,%a2@(Lconsole_struct_num_columns)
3391 movel %d1,%a2@(Lconsole_struct_num_rows)
3393 /*
3394 * Clear the current row and column
3395 */
3396 clrl %a2@(Lconsole_struct_cur_column)
3397 clrl %a2@(Lconsole_struct_cur_row)
3398 clrl %a2@(Lconsole_struct_left_edge)
3400 /*
3401 * Initialization is complete
3402 */
3403 1:
3404 func_return console_init
3406 func_start console_put_stats,%a0/%d7
3407 /*
3408 * Some of the register usage that follows
3409 * a0 = pointer to boot_info
3410 * d7 = value of boot_info fields
3411 */
3412 puts "\nMacLinux\n\n"
3414 #ifdef SERIAL_DEBUG
3415 puts " vidaddr:"
3416 putn %pc@(L(mac_videobase)) /* video addr. */
3418 puts "\n _stext:"
3419 lea %pc@(_stext),%a0
3420 putn %a0
3422 puts "\nbootinfo:"
3423 lea %pc@(_end),%a0
3424 putn %a0
3426 puts "\ncpuid:"
3427 putn %pc@(L(cputype))
3428 putc '\n'
3430 #ifdef MAC_SERIAL_DEBUG
3431 putn %pc@(L(mac_sccbase))
3432 putc '\n'
3433 #endif
3434 # if defined(MMU_PRINT)
3435 jbsr mmu_print_machine_cpu_types
3436 # endif /* MMU_PRINT */
3437 #endif /* SERIAL_DEBUG */
3439 func_return console_put_stats
3441 #ifdef CONSOLE_PENGUIN
3442 func_start console_put_penguin,%a0-%a1/%d0-%d7
3443 /*
3444 * Get 'that_penguin' onto the screen in the upper right corner
3445 * penguin is 64 x 74 pixels, align against right edge of screen
3446 */
3447 lea %pc@(L(mac_dimensions)),%a0
3448 movel %a0@,%d0
3449 andil #0xffff,%d0
3450 subil #64,%d0 /* snug up against the right edge */
3451 clrl %d1 /* start at the top */
3452 movel #73,%d7
3453 lea %pc@(L(that_penguin)),%a1
3454 L(console_penguin_row):
3455 movel #31,%d6
3456 L(console_penguin_pixel_pair):
3457 moveb %a1@,%d2
3458 lsrb #4,%d2
3459 console_plot_pixel %d0,%d1,%d2
3460 addq #1,%d0
3461 moveb %a1@+,%d2
3462 console_plot_pixel %d0,%d1,%d2
3463 addq #1,%d0
3464 dbra %d6,L(console_penguin_pixel_pair)
3466 subil #64,%d0
3467 addq #1,%d1
3468 dbra %d7,L(console_penguin_row)
3470 func_return console_put_penguin
3472 /* include penguin bitmap */
3473 L(that_penguin):
3474 #include "../mac/mac_penguin.S"
3475 #endif
3477 /*
3478 * Calculate source and destination addresses
3479 * output a1 = dest
3480 * a2 = source
3481 */
3483 func_start console_scroll,%a0-%a4/%d0-%d7
3484 lea %pc@(L(mac_videobase)),%a0
3485 movel %a0@,%a1
3486 movel %a1,%a2
3487 lea %pc@(L(mac_rowbytes)),%a0
3488 movel %a0@,%d5
3489 movel %pc@(L(console_font)),%a0
3490 tstl %a0
3491 jeq 1f
3492 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */
3493 addal %d5,%a2
3495 /*
3496 * Get dimensions
3497 */
3498 lea %pc@(L(mac_dimensions)),%a0
3499 movel %a0@,%d3
3500 movel %d3,%d4
3501 swap %d4
3502 andl #0xffff,%d3 /* d3 = screen width in pixels */
3503 andl #0xffff,%d4 /* d4 = screen height in pixels */
3505 /*
3506 * Calculate number of bytes to move
3507 */
3508 lea %pc@(L(mac_rowbytes)),%a0
3509 movel %a0@,%d6
3510 movel %pc@(L(console_font)),%a0
3511 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */
3512 mulul %d4,%d6 /* scan line bytes x num scan lines */
3513 divul #32,%d6 /* we'll move 8 longs at a time */
3514 subq #1,%d6
3516 L(console_scroll_loop):
3517 movel %a2@+,%a1@+
3518 movel %a2@+,%a1@+
3519 movel %a2@+,%a1@+
3520 movel %a2@+,%a1@+
3521 movel %a2@+,%a1@+
3522 movel %a2@+,%a1@+
3523 movel %a2@+,%a1@+
3524 movel %a2@+,%a1@+
3525 dbra %d6,L(console_scroll_loop)
3527 lea %pc@(L(mac_rowbytes)),%a0
3528 movel %a0@,%d6
3529 movel %pc@(L(console_font)),%a0
3530 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */
3531 divul #32,%d6 /* we'll move 8 words at a time */
3532 subq #1,%d6
3534 moveq #-1,%d0
3535 L(console_scroll_clear_loop):
3536 movel %d0,%a1@+
3537 movel %d0,%a1@+
3538 movel %d0,%a1@+
3539 movel %d0,%a1@+
3540 movel %d0,%a1@+
3541 movel %d0,%a1@+
3542 movel %d0,%a1@+
3543 movel %d0,%a1@+
3544 dbra %d6,L(console_scroll_clear_loop)
3546 1:
3547 func_return console_scroll
3550 func_start console_putc,%a0/%a1/%d0-%d7
3552 is_not_mac(L(console_exit))
3553 tstl %pc@(L(console_font))
3554 jeq L(console_exit)
3556 /* Output character in d7 on console.
3557 */
3558 movel ARG1,%d7
3559 cmpib #'\n',%d7
3560 jbne 1f
3562 /* A little safe recursion is good for the soul */
3563 console_putc #'\r'
3564 1:
3565 lea %pc@(L(console_globals)),%a0
3567 cmpib #10,%d7
3568 jne L(console_not_lf)
3569 movel %a0@(Lconsole_struct_cur_row),%d0
3570 addil #1,%d0
3571 movel %d0,%a0@(Lconsole_struct_cur_row)
3572 movel %a0@(Lconsole_struct_num_rows),%d1
3573 cmpl %d1,%d0
3574 jcs 1f
3575 subil #1,%d0
3576 movel %d0,%a0@(Lconsole_struct_cur_row)
3577 console_scroll
3578 1:
3579 jra L(console_exit)
3581 L(console_not_lf):
3582 cmpib #13,%d7
3583 jne L(console_not_cr)
3584 clrl %a0@(Lconsole_struct_cur_column)
3585 jra L(console_exit)
3587 L(console_not_cr):
3588 cmpib #1,%d7
3589 jne L(console_not_home)
3590 clrl %a0@(Lconsole_struct_cur_row)
3591 clrl %a0@(Lconsole_struct_cur_column)
3592 jra L(console_exit)
3594 /*
3595 * At this point we know that the %d7 character is going to be
3596 * rendered on the screen. Register usage is -
3597 * a0 = pointer to console globals
3598 * a1 = font data
3599 * d0 = cursor column
3600 * d1 = cursor row to draw the character
3601 * d7 = character number
3602 */
3603 L(console_not_home):
3604 movel %a0@(Lconsole_struct_cur_column),%d0
3605 addql #1,%a0@(Lconsole_struct_cur_column)
3606 movel %a0@(Lconsole_struct_num_columns),%d1
3607 cmpl %d1,%d0
3608 jcs 1f
3609 console_putc #'\n' /* recursion is OK! */
3610 1:
3611 movel %a0@(Lconsole_struct_cur_row),%d1
3613 /*
3614 * At this point we make a shift in register usage
3615 * a0 = address of pointer to font data (fbcon_font_desc)
3616 */
3617 movel %pc@(L(console_font)),%a0
3618 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */
3619 andl #0x000000ff,%d7
3620 /* ASSERT: a0 = contents of Lconsole_font */
3621 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */
3622 addl %d7,%a1 /* a1 = points to char image */
3624 /*
3625 * At this point we make a shift in register usage
3626 * d0 = pixel coordinate, x
3627 * d1 = pixel coordinate, y
3628 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3629 * d3 = font scan line data (8 pixels)
3630 * d6 = count down for the font's pixel width (8)
3631 * d7 = count down for the font's pixel count in height
3632 */
3633 /* ASSERT: a0 = contents of Lconsole_font */
3634 mulul %a0@(FONT_DESC_WIDTH),%d0
3635 mulul %a0@(FONT_DESC_HEIGHT),%d1
3636 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */
3637 subq #1,%d7
3638 L(console_read_char_scanline):
3639 moveb %a1@+,%d3
3641 /* ASSERT: a0 = contents of Lconsole_font */
3642 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */
3643 subql #1,%d6
3645 L(console_do_font_scanline):
3646 lslb #1,%d3
3647 scsb %d2 /* convert 1 bit into a byte */
3648 console_plot_pixel %d0,%d1,%d2
3649 addq #1,%d0
3650 dbra %d6,L(console_do_font_scanline)
3652 /* ASSERT: a0 = contents of Lconsole_font */
3653 subl %a0@(FONT_DESC_WIDTH),%d0
3654 addq #1,%d1
3655 dbra %d7,L(console_read_char_scanline)
3657 L(console_exit):
3658 func_return console_putc
3660 /*
3661 * Input:
3662 * d0 = x coordinate
3663 * d1 = y coordinate
3664 * d2 = (bit 0) 1/0 for white/black (!)
3665 * All registers are preserved
3666 */
3667 func_start console_plot_pixel,%a0-%a1/%d0-%d4
3669 movel %pc@(L(mac_videobase)),%a1
3670 movel %pc@(L(mac_videodepth)),%d3
3671 movel ARG1,%d0
3672 movel ARG2,%d1
3673 mulul %pc@(L(mac_rowbytes)),%d1
3674 movel ARG3,%d2
3676 /*
3677 * Register usage:
3678 * d0 = x coord becomes byte offset into frame buffer
3679 * d1 = y coord
3680 * d2 = black or white (0/1)
3681 * d3 = video depth
3682 * d4 = temp of x (d0) for many bit depths
3683 */
3684 L(test_1bit):
3685 cmpb #1,%d3
3686 jbne L(test_2bit)
3687 movel %d0,%d4 /* we need the low order 3 bits! */
3688 divul #8,%d0
3689 addal %d0,%a1
3690 addal %d1,%a1
3691 andb #7,%d4
3692 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */
3693 andb #1,%d2
3694 jbne L(white_1)
3695 bsetb %d4,%a1@
3696 jbra L(console_plot_pixel_exit)
3697 L(white_1):
3698 bclrb %d4,%a1@
3699 jbra L(console_plot_pixel_exit)
3701 L(test_2bit):
3702 cmpb #2,%d3
3703 jbne L(test_4bit)
3704 movel %d0,%d4 /* we need the low order 2 bits! */
3705 divul #4,%d0
3706 addal %d0,%a1
3707 addal %d1,%a1
3708 andb #3,%d4
3709 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */
3710 lsll #1,%d4 /* ! */
3711 andb #1,%d2
3712 jbne L(white_2)
3713 bsetb %d4,%a1@
3714 addq #1,%d4
3715 bsetb %d4,%a1@
3716 jbra L(console_plot_pixel_exit)
3717 L(white_2):
3718 bclrb %d4,%a1@
3719 addq #1,%d4
3720 bclrb %d4,%a1@
3721 jbra L(console_plot_pixel_exit)
3723 L(test_4bit):
3724 cmpb #4,%d3
3725 jbne L(test_8bit)
3726 movel %d0,%d4 /* we need the low order bit! */
3727 divul #2,%d0
3728 addal %d0,%a1
3729 addal %d1,%a1
3730 andb #1,%d4
3731 eorb #1,%d4
3732 lsll #2,%d4 /* ! */
3733 andb #1,%d2
3734 jbne L(white_4)
3735 bsetb %d4,%a1@
3736 addq #1,%d4
3737 bsetb %d4,%a1@
3738 addq #1,%d4
3739 bsetb %d4,%a1@
3740 addq #1,%d4
3741 bsetb %d4,%a1@
3742 jbra L(console_plot_pixel_exit)
3743 L(white_4):
3744 bclrb %d4,%a1@
3745 addq #1,%d4
3746 bclrb %d4,%a1@
3747 addq #1,%d4
3748 bclrb %d4,%a1@
3749 addq #1,%d4
3750 bclrb %d4,%a1@
3751 jbra L(console_plot_pixel_exit)
3753 L(test_8bit):
3754 cmpb #8,%d3
3755 jbne L(test_16bit)
3756 addal %d0,%a1
3757 addal %d1,%a1
3758 andb #1,%d2
3759 jbne L(white_8)
3760 moveb #0xff,%a1@
3761 jbra L(console_plot_pixel_exit)
3762 L(white_8):
3763 clrb %a1@
3764 jbra L(console_plot_pixel_exit)
3766 L(test_16bit):
3767 cmpb #16,%d3
3768 jbne L(console_plot_pixel_exit)
3769 addal %d0,%a1
3770 addal %d0,%a1
3771 addal %d1,%a1
3772 andb #1,%d2
3773 jbne L(white_16)
3774 clrw %a1@
3775 jbra L(console_plot_pixel_exit)
3776 L(white_16):
3777 movew #0x0fff,%a1@
3778 jbra L(console_plot_pixel_exit)
3780 L(console_plot_pixel_exit):
3781 func_return console_plot_pixel
3782 #endif /* CONSOLE */
3784 #if 0
3785 /*
3786 * This is some old code lying around. I don't believe
3787 * it's used or important anymore. My guess is it contributed
3788 * to getting to this point, but it's done for now.
3789 * It was still in the 2.1.77 head.S, so it's still here.
3790 * (And still not used!)
3791 */
3792 L(showtest):
3793 moveml %a0/%d7,%sp@-
3794 puts "A="
3795 putn %a1
3797 .long 0xf0119f15 | ptestr #5,%a1@,#7,%a0
3799 puts "DA="
3800 putn %a0
3802 puts "D="
3803 putn %a0@
3805 puts "S="
3806 lea %pc@(L(mmu)),%a0
3807 .long 0xf0106200 | pmove %psr,%a0@
3808 clrl %d7
3809 movew %a0@,%d7
3810 putn %d7
3812 putc '\n'
3813 moveml %sp@+,%a0/%d7
3814 rts
3815 #endif /* 0 */
3817 __INITDATA
3818 .align 4
3820 #if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3821 defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3822 L(custom):
3823 L(iobase):
3824 .long 0
3825 #endif
3827 #if defined(CONSOLE)
3828 L(console_globals):
3829 .long 0 /* cursor column */
3830 .long 0 /* cursor row */
3831 .long 0 /* max num columns */
3832 .long 0 /* max num rows */
3833 .long 0 /* left edge */
3834 .long 0 /* mac putc */
3835 L(console_font):
3836 .long 0 /* pointer to console font (struct font_desc) */
3837 L(console_font_data):
3838 .long 0 /* pointer to console font data */
3839 #endif /* CONSOLE */
3841 #if defined(MMU_PRINT)
3842 L(mmu_print_data):
3843 .long 0 /* valid flag */
3844 .long 0 /* start logical */
3845 .long 0 /* next logical */
3846 .long 0 /* start physical */
3847 .long 0 /* next physical */
3848 #endif /* MMU_PRINT */
3850 L(cputype):
3851 .long 0
3852 L(mmu_cached_pointer_tables):
3853 .long 0
3854 L(mmu_num_pointer_tables):
3855 .long 0
3856 L(phys_kernel_start):
3857 .long 0
3858 L(kernel_end):
3859 .long 0
3860 L(memory_start):
3861 .long 0
3862 L(kernel_pgdir_ptr):
3863 .long 0
3864 L(temp_mmap_mem):
3865 .long 0
3867 #if defined (CONFIG_MVME147)
3868 M147_SCC_CTRL_A = 0xfffe3002
3869 M147_SCC_DATA_A = 0xfffe3003
3870 #endif
3872 #if defined (CONFIG_MVME16x)
3873 M162_SCC_CTRL_A = 0xfff45005
3874 M167_CYCAR = 0xfff450ee
3875 M167_CYIER = 0xfff45011
3876 M167_CYLICR = 0xfff45026
3877 M167_CYTEOIR = 0xfff45085
3878 M167_CYTDR = 0xfff450f8
3879 M167_PCSCCTICR = 0xfff4201e
3880 M167_PCTPIACKR = 0xfff42025
3881 #endif
3883 #if defined (CONFIG_BVME6000)
3884 BVME_SCC_CTRL_A = 0xffb0000b
3885 BVME_SCC_DATA_A = 0xffb0000f
3886 #endif
3888 #if defined(CONFIG_MAC)
3889 L(mac_booter_data):
3890 .long 0
3891 L(mac_videobase):
3892 .long 0
3893 L(mac_videodepth):
3894 .long 0
3895 L(mac_dimensions):
3896 .long 0
3897 L(mac_rowbytes):
3898 .long 0
3899 #ifdef MAC_SERIAL_DEBUG
3900 L(mac_sccbase):
3901 .long 0
3902 #endif /* MAC_SERIAL_DEBUG */
3903 #endif
3905 #if defined (CONFIG_APOLLO)
3906 LSRB0 = 0x10412
3907 LTHRB0 = 0x10416
3908 LCPUCTRL = 0x10100
3909 #endif
3911 #if defined(CONFIG_HP300)
3912 DCADATA = 0x11
3913 DCALSR = 0x1b
3914 APCIDATA = 0x00
3915 APCILSR = 0x14
3916 L(uartbase):
3917 .long 0
3918 L(uart_scode):
3919 .long -1
3920 #endif
3922 __FINIT
3923 .data
3924 .align 4
3926 availmem:
3927 .long 0
3928 m68k_pgtable_cachemode:
3929 .long 0
3930 m68k_supervisor_cachemode:
3931 .long 0
3932 #if defined(CONFIG_MVME16x)
3933 mvme_bdid:
3934 .long 0,0,0,0,0,0,0,0
3935 #endif
3936 #if defined(CONFIG_Q40)
3937 q40_mem_cptr:
3938 .long 0
3939 L(q40_do_debug):
3940 .long 0
3941 #endif