view Documentation/rt-mutex.txt @ 452:c7ed6fe5dca0

kexec: dont initialise regions in reserve_memory()

There is no need to initialise efi_memmap_res and boot_param_res in
reserve_memory() for the initial xen domain as it is done in
machine_kexec_setup_resources() using values from the kexec hypercall.

Signed-off-by: Simon Horman <horms@verge.net.au>
author Keir Fraser <keir.fraser@citrix.com>
date Thu Feb 28 10:55:18 2008 +0000 (2008-02-28)
parents 831230e53067
line source
1 RT-mutex subsystem with PI support
2 ----------------------------------
4 RT-mutexes with priority inheritance are used to support PI-futexes,
5 which enable pthread_mutex_t priority inheritance attributes
6 (PTHREAD_PRIO_INHERIT). [See Documentation/pi-futex.txt for more details
7 about PI-futexes.]
9 This technology was developed in the -rt tree and streamlined for
10 pthread_mutex support.
12 Basic principles:
13 -----------------
15 RT-mutexes extend the semantics of simple mutexes by the priority
16 inheritance protocol.
18 A low priority owner of a rt-mutex inherits the priority of a higher
19 priority waiter until the rt-mutex is released. If the temporarily
20 boosted owner blocks on a rt-mutex itself it propagates the priority
21 boosting to the owner of the other rt_mutex it gets blocked on. The
22 priority boosting is immediately removed once the rt_mutex has been
23 unlocked.
25 This approach allows us to shorten the block of high-prio tasks on
26 mutexes which protect shared resources. Priority inheritance is not a
27 magic bullet for poorly designed applications, but it allows
28 well-designed applications to use userspace locks in critical parts of
29 an high priority thread, without losing determinism.
31 The enqueueing of the waiters into the rtmutex waiter list is done in
32 priority order. For same priorities FIFO order is chosen. For each
33 rtmutex, only the top priority waiter is enqueued into the owner's
34 priority waiters list. This list too queues in priority order. Whenever
35 the top priority waiter of a task changes (for example it timed out or
36 got a signal), the priority of the owner task is readjusted. [The
37 priority enqueueing is handled by "plists", see include/linux/plist.h
38 for more details.]
40 RT-mutexes are optimized for fastpath operations and have no internal
41 locking overhead when locking an uncontended mutex or unlocking a mutex
42 without waiters. The optimized fastpath operations require cmpxchg
43 support. [If that is not available then the rt-mutex internal spinlock
44 is used]
46 The state of the rt-mutex is tracked via the owner field of the rt-mutex
47 structure:
49 rt_mutex->owner holds the task_struct pointer of the owner. Bit 0 and 1
50 are used to keep track of the "owner is pending" and "rtmutex has
51 waiters" state.
53 owner bit1 bit0
54 NULL 0 0 mutex is free (fast acquire possible)
55 NULL 0 1 invalid state
56 NULL 1 0 Transitional state*
57 NULL 1 1 invalid state
58 taskpointer 0 0 mutex is held (fast release possible)
59 taskpointer 0 1 task is pending owner
60 taskpointer 1 0 mutex is held and has waiters
61 taskpointer 1 1 task is pending owner and mutex has waiters
63 Pending-ownership handling is a performance optimization:
64 pending-ownership is assigned to the first (highest priority) waiter of
65 the mutex, when the mutex is released. The thread is woken up and once
66 it starts executing it can acquire the mutex. Until the mutex is taken
67 by it (bit 0 is cleared) a competing higher priority thread can "steal"
68 the mutex which puts the woken up thread back on the waiters list.
70 The pending-ownership optimization is especially important for the
71 uninterrupted workflow of high-prio tasks which repeatedly
72 takes/releases locks that have lower-prio waiters. Without this
73 optimization the higher-prio thread would ping-pong to the lower-prio
74 task [because at unlock time we always assign a new owner].
76 (*) The "mutex has waiters" bit gets set to take the lock. If the lock
77 doesn't already have an owner, this bit is quickly cleared if there are
78 no waiters. So this is a transitional state to synchronize with looking
79 at the owner field of the mutex and the mutex owner releasing the lock.