ia64/linux-2.6.18-xen.hg

view net/ieee80211/ieee80211_tx.c @ 871:9cbcc9008446

xen/x86: don't initialize cpu_data[]'s apicid field on generic code

Afaict, this is not only redundant with the intialization done in
drivers/xen/core/smpboot.c, but actually results - at least for
secondary CPUs - in the Xen-specific value written to be later
overwritten with whatever the generic code determines (with no
guarantee that the two values are identical).

Signed-off-by: Jan Beulich <jbeulich@novell.com>
author Keir Fraser <keir.fraser@citrix.com>
date Thu May 14 10:09:15 2009 +0100 (2009-05-14)
parents 831230e53067
children
line source
1 /******************************************************************************
3 Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 ******************************************************************************/
26 #include <linux/compiler.h>
27 #include <linux/errno.h>
28 #include <linux/if_arp.h>
29 #include <linux/in6.h>
30 #include <linux/in.h>
31 #include <linux/ip.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/netdevice.h>
35 #include <linux/proc_fs.h>
36 #include <linux/skbuff.h>
37 #include <linux/slab.h>
38 #include <linux/tcp.h>
39 #include <linux/types.h>
40 #include <linux/wireless.h>
41 #include <linux/etherdevice.h>
42 #include <asm/uaccess.h>
44 #include <net/ieee80211.h>
46 /*
48 802.11 Data Frame
50 ,-------------------------------------------------------------------.
51 Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
52 |------|------|---------|---------|---------|------|---------|------|
53 Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs |
54 | | tion | (BSSID) | | | ence | data | |
55 `--------------------------------------------------| |------'
56 Total: 28 non-data bytes `----.----'
57 |
58 .- 'Frame data' expands, if WEP enabled, to <----------'
59 |
60 V
61 ,-----------------------.
62 Bytes | 4 | 0-2296 | 4 |
63 |-----|-----------|-----|
64 Desc. | IV | Encrypted | ICV |
65 | | Packet | |
66 `-----| |-----'
67 `-----.-----'
68 |
69 .- 'Encrypted Packet' expands to
70 |
71 V
72 ,---------------------------------------------------.
73 Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 |
74 |------|------|---------|----------|------|---------|
75 Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP |
76 | DSAP | SSAP | | | | Packet |
77 | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | |
78 `----------------------------------------------------
79 Total: 8 non-data bytes
81 802.3 Ethernet Data Frame
83 ,-----------------------------------------.
84 Bytes | 6 | 6 | 2 | Variable | 4 |
85 |-------|-------|------|-----------|------|
86 Desc. | Dest. | Source| Type | IP Packet | fcs |
87 | MAC | MAC | | | |
88 `-----------------------------------------'
89 Total: 18 non-data bytes
91 In the event that fragmentation is required, the incoming payload is split into
92 N parts of size ieee->fts. The first fragment contains the SNAP header and the
93 remaining packets are just data.
95 If encryption is enabled, each fragment payload size is reduced by enough space
96 to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
97 So if you have 1500 bytes of payload with ieee->fts set to 500 without
98 encryption it will take 3 frames. With WEP it will take 4 frames as the
99 payload of each frame is reduced to 492 bytes.
101 * SKB visualization
102 *
103 * ,- skb->data
104 * |
105 * | ETHERNET HEADER ,-<-- PAYLOAD
106 * | | 14 bytes from skb->data
107 * | 2 bytes for Type --> ,T. | (sizeof ethhdr)
108 * | | | |
109 * |,-Dest.--. ,--Src.---. | | |
110 * | 6 bytes| | 6 bytes | | | |
111 * v | | | | | |
112 * 0 | v 1 | v | v 2
113 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
114 * ^ | ^ | ^ |
115 * | | | | | |
116 * | | | | `T' <---- 2 bytes for Type
117 * | | | |
118 * | | '---SNAP--' <-------- 6 bytes for SNAP
119 * | |
120 * `-IV--' <-------------------- 4 bytes for IV (WEP)
121 *
122 * SNAP HEADER
123 *
124 */
126 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
127 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
129 static int ieee80211_copy_snap(u8 * data, u16 h_proto)
130 {
131 struct ieee80211_snap_hdr *snap;
132 u8 *oui;
134 snap = (struct ieee80211_snap_hdr *)data;
135 snap->dsap = 0xaa;
136 snap->ssap = 0xaa;
137 snap->ctrl = 0x03;
139 if (h_proto == 0x8137 || h_proto == 0x80f3)
140 oui = P802_1H_OUI;
141 else
142 oui = RFC1042_OUI;
143 snap->oui[0] = oui[0];
144 snap->oui[1] = oui[1];
145 snap->oui[2] = oui[2];
147 *(u16 *) (data + SNAP_SIZE) = htons(h_proto);
149 return SNAP_SIZE + sizeof(u16);
150 }
152 static int ieee80211_encrypt_fragment(struct ieee80211_device *ieee,
153 struct sk_buff *frag, int hdr_len)
154 {
155 struct ieee80211_crypt_data *crypt = ieee->crypt[ieee->tx_keyidx];
156 int res;
158 if (crypt == NULL)
159 return -1;
161 /* To encrypt, frame format is:
162 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes) */
163 atomic_inc(&crypt->refcnt);
164 res = 0;
165 if (crypt->ops && crypt->ops->encrypt_mpdu)
166 res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
168 atomic_dec(&crypt->refcnt);
169 if (res < 0) {
170 printk(KERN_INFO "%s: Encryption failed: len=%d.\n",
171 ieee->dev->name, frag->len);
172 ieee->ieee_stats.tx_discards++;
173 return -1;
174 }
176 return 0;
177 }
179 void ieee80211_txb_free(struct ieee80211_txb *txb)
180 {
181 int i;
182 if (unlikely(!txb))
183 return;
184 for (i = 0; i < txb->nr_frags; i++)
185 if (txb->fragments[i])
186 dev_kfree_skb_any(txb->fragments[i]);
187 kfree(txb);
188 }
190 static struct ieee80211_txb *ieee80211_alloc_txb(int nr_frags, int txb_size,
191 int headroom, gfp_t gfp_mask)
192 {
193 struct ieee80211_txb *txb;
194 int i;
195 txb = kmalloc(sizeof(struct ieee80211_txb) + (sizeof(u8 *) * nr_frags),
196 gfp_mask);
197 if (!txb)
198 return NULL;
200 memset(txb, 0, sizeof(struct ieee80211_txb));
201 txb->nr_frags = nr_frags;
202 txb->frag_size = txb_size;
204 for (i = 0; i < nr_frags; i++) {
205 txb->fragments[i] = __dev_alloc_skb(txb_size + headroom,
206 gfp_mask);
207 if (unlikely(!txb->fragments[i])) {
208 i--;
209 break;
210 }
211 skb_reserve(txb->fragments[i], headroom);
212 }
213 if (unlikely(i != nr_frags)) {
214 while (i >= 0)
215 dev_kfree_skb_any(txb->fragments[i--]);
216 kfree(txb);
217 return NULL;
218 }
219 return txb;
220 }
222 static int ieee80211_classify(struct sk_buff *skb)
223 {
224 struct ethhdr *eth;
225 struct iphdr *ip;
227 eth = (struct ethhdr *)skb->data;
228 if (eth->h_proto != __constant_htons(ETH_P_IP))
229 return 0;
231 ip = skb->nh.iph;
232 switch (ip->tos & 0xfc) {
233 case 0x20:
234 return 2;
235 case 0x40:
236 return 1;
237 case 0x60:
238 return 3;
239 case 0x80:
240 return 4;
241 case 0xa0:
242 return 5;
243 case 0xc0:
244 return 6;
245 case 0xe0:
246 return 7;
247 default:
248 return 0;
249 }
250 }
252 /* Incoming skb is converted to a txb which consists of
253 * a block of 802.11 fragment packets (stored as skbs) */
254 int ieee80211_xmit(struct sk_buff *skb, struct net_device *dev)
255 {
256 struct ieee80211_device *ieee = netdev_priv(dev);
257 struct ieee80211_txb *txb = NULL;
258 struct ieee80211_hdr_3addrqos *frag_hdr;
259 int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size,
260 rts_required;
261 unsigned long flags;
262 struct net_device_stats *stats = &ieee->stats;
263 int ether_type, encrypt, host_encrypt, host_encrypt_msdu, host_build_iv;
264 int bytes, fc, hdr_len;
265 struct sk_buff *skb_frag;
266 struct ieee80211_hdr_3addrqos header = {/* Ensure zero initialized */
267 .duration_id = 0,
268 .seq_ctl = 0,
269 .qos_ctl = 0
270 };
271 u8 dest[ETH_ALEN], src[ETH_ALEN];
272 struct ieee80211_crypt_data *crypt;
273 int priority = skb->priority;
274 int snapped = 0;
276 if (ieee->is_queue_full && (*ieee->is_queue_full) (dev, priority))
277 return NETDEV_TX_BUSY;
279 spin_lock_irqsave(&ieee->lock, flags);
281 /* If there is no driver handler to take the TXB, dont' bother
282 * creating it... */
283 if (!ieee->hard_start_xmit) {
284 printk(KERN_WARNING "%s: No xmit handler.\n", ieee->dev->name);
285 goto success;
286 }
288 if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
289 printk(KERN_WARNING "%s: skb too small (%d).\n",
290 ieee->dev->name, skb->len);
291 goto success;
292 }
294 ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
296 crypt = ieee->crypt[ieee->tx_keyidx];
298 encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
299 ieee->sec.encrypt;
301 host_encrypt = ieee->host_encrypt && encrypt && crypt;
302 host_encrypt_msdu = ieee->host_encrypt_msdu && encrypt && crypt;
303 host_build_iv = ieee->host_build_iv && encrypt && crypt;
305 if (!encrypt && ieee->ieee802_1x &&
306 ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
307 stats->tx_dropped++;
308 goto success;
309 }
311 /* Save source and destination addresses */
312 memcpy(dest, skb->data, ETH_ALEN);
313 memcpy(src, skb->data + ETH_ALEN, ETH_ALEN);
315 if (host_encrypt || host_build_iv)
316 fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA |
317 IEEE80211_FCTL_PROTECTED;
318 else
319 fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA;
321 if (ieee->iw_mode == IW_MODE_INFRA) {
322 fc |= IEEE80211_FCTL_TODS;
323 /* To DS: Addr1 = BSSID, Addr2 = SA, Addr3 = DA */
324 memcpy(header.addr1, ieee->bssid, ETH_ALEN);
325 memcpy(header.addr2, src, ETH_ALEN);
326 memcpy(header.addr3, dest, ETH_ALEN);
327 } else if (ieee->iw_mode == IW_MODE_ADHOC) {
328 /* not From/To DS: Addr1 = DA, Addr2 = SA, Addr3 = BSSID */
329 memcpy(header.addr1, dest, ETH_ALEN);
330 memcpy(header.addr2, src, ETH_ALEN);
331 memcpy(header.addr3, ieee->bssid, ETH_ALEN);
332 }
333 hdr_len = IEEE80211_3ADDR_LEN;
335 if (ieee->is_qos_active && ieee->is_qos_active(dev, skb)) {
336 fc |= IEEE80211_STYPE_QOS_DATA;
337 hdr_len += 2;
339 skb->priority = ieee80211_classify(skb);
340 header.qos_ctl |= skb->priority & IEEE80211_QCTL_TID;
341 }
342 header.frame_ctl = cpu_to_le16(fc);
344 /* Advance the SKB to the start of the payload */
345 skb_pull(skb, sizeof(struct ethhdr));
347 /* Determine total amount of storage required for TXB packets */
348 bytes = skb->len + SNAP_SIZE + sizeof(u16);
350 /* Encrypt msdu first on the whole data packet. */
351 if ((host_encrypt || host_encrypt_msdu) &&
352 crypt && crypt->ops && crypt->ops->encrypt_msdu) {
353 int res = 0;
354 int len = bytes + hdr_len + crypt->ops->extra_msdu_prefix_len +
355 crypt->ops->extra_msdu_postfix_len;
356 struct sk_buff *skb_new = dev_alloc_skb(len);
358 if (unlikely(!skb_new))
359 goto failed;
361 skb_reserve(skb_new, crypt->ops->extra_msdu_prefix_len);
362 memcpy(skb_put(skb_new, hdr_len), &header, hdr_len);
363 snapped = 1;
364 ieee80211_copy_snap(skb_put(skb_new, SNAP_SIZE + sizeof(u16)),
365 ether_type);
366 memcpy(skb_put(skb_new, skb->len), skb->data, skb->len);
367 res = crypt->ops->encrypt_msdu(skb_new, hdr_len, crypt->priv);
368 if (res < 0) {
369 IEEE80211_ERROR("msdu encryption failed\n");
370 dev_kfree_skb_any(skb_new);
371 goto failed;
372 }
373 dev_kfree_skb_any(skb);
374 skb = skb_new;
375 bytes += crypt->ops->extra_msdu_prefix_len +
376 crypt->ops->extra_msdu_postfix_len;
377 skb_pull(skb, hdr_len);
378 }
380 if (host_encrypt || ieee->host_open_frag) {
381 /* Determine fragmentation size based on destination (multicast
382 * and broadcast are not fragmented) */
383 if (is_multicast_ether_addr(dest) ||
384 is_broadcast_ether_addr(dest))
385 frag_size = MAX_FRAG_THRESHOLD;
386 else
387 frag_size = ieee->fts;
389 /* Determine amount of payload per fragment. Regardless of if
390 * this stack is providing the full 802.11 header, one will
391 * eventually be affixed to this fragment -- so we must account
392 * for it when determining the amount of payload space. */
393 bytes_per_frag = frag_size - IEEE80211_3ADDR_LEN;
394 if (ieee->config &
395 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
396 bytes_per_frag -= IEEE80211_FCS_LEN;
398 /* Each fragment may need to have room for encryptiong
399 * pre/postfix */
400 if (host_encrypt)
401 bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len +
402 crypt->ops->extra_mpdu_postfix_len;
404 /* Number of fragments is the total
405 * bytes_per_frag / payload_per_fragment */
406 nr_frags = bytes / bytes_per_frag;
407 bytes_last_frag = bytes % bytes_per_frag;
408 if (bytes_last_frag)
409 nr_frags++;
410 else
411 bytes_last_frag = bytes_per_frag;
412 } else {
413 nr_frags = 1;
414 bytes_per_frag = bytes_last_frag = bytes;
415 frag_size = bytes + IEEE80211_3ADDR_LEN;
416 }
418 rts_required = (frag_size > ieee->rts
419 && ieee->config & CFG_IEEE80211_RTS);
420 if (rts_required)
421 nr_frags++;
423 /* When we allocate the TXB we allocate enough space for the reserve
424 * and full fragment bytes (bytes_per_frag doesn't include prefix,
425 * postfix, header, FCS, etc.) */
426 txb = ieee80211_alloc_txb(nr_frags, frag_size,
427 ieee->tx_headroom, GFP_ATOMIC);
428 if (unlikely(!txb)) {
429 printk(KERN_WARNING "%s: Could not allocate TXB\n",
430 ieee->dev->name);
431 goto failed;
432 }
433 txb->encrypted = encrypt;
434 if (host_encrypt)
435 txb->payload_size = frag_size * (nr_frags - 1) +
436 bytes_last_frag;
437 else
438 txb->payload_size = bytes;
440 if (rts_required) {
441 skb_frag = txb->fragments[0];
442 frag_hdr =
443 (struct ieee80211_hdr_3addrqos *)skb_put(skb_frag, hdr_len);
445 /*
446 * Set header frame_ctl to the RTS.
447 */
448 header.frame_ctl =
449 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
450 memcpy(frag_hdr, &header, hdr_len);
452 /*
453 * Restore header frame_ctl to the original data setting.
454 */
455 header.frame_ctl = cpu_to_le16(fc);
457 if (ieee->config &
458 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
459 skb_put(skb_frag, 4);
461 txb->rts_included = 1;
462 i = 1;
463 } else
464 i = 0;
466 for (; i < nr_frags; i++) {
467 skb_frag = txb->fragments[i];
469 if (host_encrypt || host_build_iv)
470 skb_reserve(skb_frag,
471 crypt->ops->extra_mpdu_prefix_len);
473 frag_hdr =
474 (struct ieee80211_hdr_3addrqos *)skb_put(skb_frag, hdr_len);
475 memcpy(frag_hdr, &header, hdr_len);
477 /* If this is not the last fragment, then add the MOREFRAGS
478 * bit to the frame control */
479 if (i != nr_frags - 1) {
480 frag_hdr->frame_ctl =
481 cpu_to_le16(fc | IEEE80211_FCTL_MOREFRAGS);
482 bytes = bytes_per_frag;
483 } else {
484 /* The last fragment takes the remaining length */
485 bytes = bytes_last_frag;
486 }
488 if (i == 0 && !snapped) {
489 ieee80211_copy_snap(skb_put
490 (skb_frag, SNAP_SIZE + sizeof(u16)),
491 ether_type);
492 bytes -= SNAP_SIZE + sizeof(u16);
493 }
495 memcpy(skb_put(skb_frag, bytes), skb->data, bytes);
497 /* Advance the SKB... */
498 skb_pull(skb, bytes);
500 /* Encryption routine will move the header forward in order
501 * to insert the IV between the header and the payload */
502 if (host_encrypt)
503 ieee80211_encrypt_fragment(ieee, skb_frag, hdr_len);
504 else if (host_build_iv) {
505 struct ieee80211_crypt_data *crypt;
507 crypt = ieee->crypt[ieee->tx_keyidx];
508 atomic_inc(&crypt->refcnt);
509 if (crypt->ops->build_iv)
510 crypt->ops->build_iv(skb_frag, hdr_len,
511 ieee->sec.keys[ieee->sec.active_key],
512 ieee->sec.key_sizes[ieee->sec.active_key],
513 crypt->priv);
514 atomic_dec(&crypt->refcnt);
515 }
517 if (ieee->config &
518 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
519 skb_put(skb_frag, 4);
520 }
522 success:
523 spin_unlock_irqrestore(&ieee->lock, flags);
525 dev_kfree_skb_any(skb);
527 if (txb) {
528 int ret = (*ieee->hard_start_xmit) (txb, dev, priority);
529 if (ret == 0) {
530 stats->tx_packets++;
531 stats->tx_bytes += txb->payload_size;
532 return 0;
533 }
535 if (ret == NETDEV_TX_BUSY) {
536 printk(KERN_ERR "%s: NETDEV_TX_BUSY returned; "
537 "driver should report queue full via "
538 "ieee_device->is_queue_full.\n",
539 ieee->dev->name);
540 }
542 ieee80211_txb_free(txb);
543 }
545 return 0;
547 failed:
548 spin_unlock_irqrestore(&ieee->lock, flags);
549 netif_stop_queue(dev);
550 stats->tx_errors++;
551 return 1;
552 }
554 /* Incoming 802.11 strucure is converted to a TXB
555 * a block of 802.11 fragment packets (stored as skbs) */
556 int ieee80211_tx_frame(struct ieee80211_device *ieee,
557 struct ieee80211_hdr *frame, int hdr_len, int total_len,
558 int encrypt_mpdu)
559 {
560 struct ieee80211_txb *txb = NULL;
561 unsigned long flags;
562 struct net_device_stats *stats = &ieee->stats;
563 struct sk_buff *skb_frag;
564 int priority = -1;
565 int fraglen = total_len;
566 int headroom = ieee->tx_headroom;
567 struct ieee80211_crypt_data *crypt = ieee->crypt[ieee->tx_keyidx];
569 spin_lock_irqsave(&ieee->lock, flags);
571 if (encrypt_mpdu && (!ieee->sec.encrypt || !crypt))
572 encrypt_mpdu = 0;
574 /* If there is no driver handler to take the TXB, dont' bother
575 * creating it... */
576 if (!ieee->hard_start_xmit) {
577 printk(KERN_WARNING "%s: No xmit handler.\n", ieee->dev->name);
578 goto success;
579 }
581 if (unlikely(total_len < 24)) {
582 printk(KERN_WARNING "%s: skb too small (%d).\n",
583 ieee->dev->name, total_len);
584 goto success;
585 }
587 if (encrypt_mpdu) {
588 frame->frame_ctl |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
589 fraglen += crypt->ops->extra_mpdu_prefix_len +
590 crypt->ops->extra_mpdu_postfix_len;
591 headroom += crypt->ops->extra_mpdu_prefix_len;
592 }
594 /* When we allocate the TXB we allocate enough space for the reserve
595 * and full fragment bytes (bytes_per_frag doesn't include prefix,
596 * postfix, header, FCS, etc.) */
597 txb = ieee80211_alloc_txb(1, fraglen, headroom, GFP_ATOMIC);
598 if (unlikely(!txb)) {
599 printk(KERN_WARNING "%s: Could not allocate TXB\n",
600 ieee->dev->name);
601 goto failed;
602 }
603 txb->encrypted = 0;
604 txb->payload_size = fraglen;
606 skb_frag = txb->fragments[0];
608 memcpy(skb_put(skb_frag, total_len), frame, total_len);
610 if (ieee->config &
611 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
612 skb_put(skb_frag, 4);
614 /* To avoid overcomplicating things, we do the corner-case frame
615 * encryption in software. The only real situation where encryption is
616 * needed here is during software-based shared key authentication. */
617 if (encrypt_mpdu)
618 ieee80211_encrypt_fragment(ieee, skb_frag, hdr_len);
620 success:
621 spin_unlock_irqrestore(&ieee->lock, flags);
623 if (txb) {
624 if ((*ieee->hard_start_xmit) (txb, ieee->dev, priority) == 0) {
625 stats->tx_packets++;
626 stats->tx_bytes += txb->payload_size;
627 return 0;
628 }
629 ieee80211_txb_free(txb);
630 }
631 return 0;
633 failed:
634 spin_unlock_irqrestore(&ieee->lock, flags);
635 stats->tx_errors++;
636 return 1;
637 }
639 EXPORT_SYMBOL(ieee80211_tx_frame);
640 EXPORT_SYMBOL(ieee80211_txb_free);