ia64/linux-2.6.18-xen.hg

view sound/i2c/other/ak4xxx-adda.c @ 782:9ab1c319531f

merge with linux-2.6.18-xen.hg
author Isaku Yamahata <yamahata@valinux.co.jp>
date Wed Jan 28 13:07:23 2009 +0900 (2009-01-28)
parents 831230e53067
children
line source
1 /*
2 * ALSA driver for AK4524 / AK4528 / AK4529 / AK4355 / AK4358 / AK4381
3 * AD and DA converters
4 *
5 * Copyright (c) 2000-2004 Jaroslav Kysela <perex@suse.cz>,
6 * Takashi Iwai <tiwai@suse.de>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
24 #include <sound/driver.h>
25 #include <asm/io.h>
26 #include <linux/delay.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <sound/core.h>
30 #include <sound/control.h>
31 #include <sound/ak4xxx-adda.h>
33 MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>, Takashi Iwai <tiwai@suse.de>");
34 MODULE_DESCRIPTION("Routines for control of AK452x / AK43xx AD/DA converters");
35 MODULE_LICENSE("GPL");
37 void snd_akm4xxx_write(struct snd_akm4xxx *ak, int chip, unsigned char reg,
38 unsigned char val)
39 {
40 ak->ops.lock(ak, chip);
41 ak->ops.write(ak, chip, reg, val);
43 /* save the data */
44 if (ak->type == SND_AK4524 || ak->type == SND_AK4528) {
45 if ((reg != 0x04 && reg != 0x05) || (val & 0x80) == 0)
46 snd_akm4xxx_set(ak, chip, reg, val);
47 else
48 snd_akm4xxx_set_ipga(ak, chip, reg, val);
49 } else {
50 /* AK4529, or else */
51 snd_akm4xxx_set(ak, chip, reg, val);
52 }
53 ak->ops.unlock(ak, chip);
54 }
56 EXPORT_SYMBOL(snd_akm4xxx_write);
58 /* reset procedure for AK4524 and AK4528 */
59 static void ak4524_reset(struct snd_akm4xxx *ak, int state)
60 {
61 unsigned int chip;
62 unsigned char reg, maxreg;
64 if (ak->type == SND_AK4528)
65 maxreg = 0x06;
66 else
67 maxreg = 0x08;
68 for (chip = 0; chip < ak->num_dacs/2; chip++) {
69 snd_akm4xxx_write(ak, chip, 0x01, state ? 0x00 : 0x03);
70 if (state)
71 continue;
72 /* DAC volumes */
73 for (reg = 0x04; reg < maxreg; reg++)
74 snd_akm4xxx_write(ak, chip, reg,
75 snd_akm4xxx_get(ak, chip, reg));
76 if (ak->type == SND_AK4528)
77 continue;
78 /* IPGA */
79 for (reg = 0x04; reg < 0x06; reg++)
80 snd_akm4xxx_write(ak, chip, reg,
81 snd_akm4xxx_get_ipga(ak, chip, reg));
82 }
83 }
85 /* reset procedure for AK4355 and AK4358 */
86 static void ak4355_reset(struct snd_akm4xxx *ak, int state)
87 {
88 unsigned char reg;
90 if (state) {
91 snd_akm4xxx_write(ak, 0, 0x01, 0x02); /* reset and soft-mute */
92 return;
93 }
94 for (reg = 0x00; reg < 0x0b; reg++)
95 if (reg != 0x01)
96 snd_akm4xxx_write(ak, 0, reg,
97 snd_akm4xxx_get(ak, 0, reg));
98 snd_akm4xxx_write(ak, 0, 0x01, 0x01); /* un-reset, unmute */
99 }
101 /* reset procedure for AK4381 */
102 static void ak4381_reset(struct snd_akm4xxx *ak, int state)
103 {
104 unsigned int chip;
105 unsigned char reg;
107 for (chip = 0; chip < ak->num_dacs/2; chip++) {
108 snd_akm4xxx_write(ak, chip, 0x00, state ? 0x0c : 0x0f);
109 if (state)
110 continue;
111 for (reg = 0x01; reg < 0x05; reg++)
112 snd_akm4xxx_write(ak, chip, reg,
113 snd_akm4xxx_get(ak, chip, reg));
114 }
115 }
117 /*
118 * reset the AKM codecs
119 * @state: 1 = reset codec, 0 = restore the registers
120 *
121 * assert the reset operation and restores the register values to the chips.
122 */
123 void snd_akm4xxx_reset(struct snd_akm4xxx *ak, int state)
124 {
125 switch (ak->type) {
126 case SND_AK4524:
127 case SND_AK4528:
128 ak4524_reset(ak, state);
129 break;
130 case SND_AK4529:
131 /* FIXME: needed for ak4529? */
132 break;
133 case SND_AK4355:
134 case SND_AK4358:
135 ak4355_reset(ak, state);
136 break;
137 case SND_AK4381:
138 ak4381_reset(ak, state);
139 break;
140 }
141 }
143 EXPORT_SYMBOL(snd_akm4xxx_reset);
145 /*
146 * initialize all the ak4xxx chips
147 */
148 void snd_akm4xxx_init(struct snd_akm4xxx *ak)
149 {
150 static unsigned char inits_ak4524[] = {
151 0x00, 0x07, /* 0: all power up */
152 0x01, 0x00, /* 1: ADC/DAC reset */
153 0x02, 0x60, /* 2: 24bit I2S */
154 0x03, 0x19, /* 3: deemphasis off */
155 0x01, 0x03, /* 1: ADC/DAC enable */
156 0x04, 0x00, /* 4: ADC left muted */
157 0x05, 0x00, /* 5: ADC right muted */
158 0x04, 0x80, /* 4: ADC IPGA gain 0dB */
159 0x05, 0x80, /* 5: ADC IPGA gain 0dB */
160 0x06, 0x00, /* 6: DAC left muted */
161 0x07, 0x00, /* 7: DAC right muted */
162 0xff, 0xff
163 };
164 static unsigned char inits_ak4528[] = {
165 0x00, 0x07, /* 0: all power up */
166 0x01, 0x00, /* 1: ADC/DAC reset */
167 0x02, 0x60, /* 2: 24bit I2S */
168 0x03, 0x0d, /* 3: deemphasis off, turn LR highpass filters on */
169 0x01, 0x03, /* 1: ADC/DAC enable */
170 0x04, 0x00, /* 4: ADC left muted */
171 0x05, 0x00, /* 5: ADC right muted */
172 0xff, 0xff
173 };
174 static unsigned char inits_ak4529[] = {
175 0x09, 0x01, /* 9: ATS=0, RSTN=1 */
176 0x0a, 0x3f, /* A: all power up, no zero/overflow detection */
177 0x00, 0x0c, /* 0: TDM=0, 24bit I2S, SMUTE=0 */
178 0x01, 0x00, /* 1: ACKS=0, ADC, loop off */
179 0x02, 0xff, /* 2: LOUT1 muted */
180 0x03, 0xff, /* 3: ROUT1 muted */
181 0x04, 0xff, /* 4: LOUT2 muted */
182 0x05, 0xff, /* 5: ROUT2 muted */
183 0x06, 0xff, /* 6: LOUT3 muted */
184 0x07, 0xff, /* 7: ROUT3 muted */
185 0x0b, 0xff, /* B: LOUT4 muted */
186 0x0c, 0xff, /* C: ROUT4 muted */
187 0x08, 0x55, /* 8: deemphasis all off */
188 0xff, 0xff
189 };
190 static unsigned char inits_ak4355[] = {
191 0x01, 0x02, /* 1: reset and soft-mute */
192 0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect,
193 * disable DZF, sharp roll-off, RSTN#=0 */
194 0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */
195 // 0x02, 0x2e, /* quad speed */
196 0x03, 0x01, /* 3: de-emphasis off */
197 0x04, 0x00, /* 4: LOUT1 volume muted */
198 0x05, 0x00, /* 5: ROUT1 volume muted */
199 0x06, 0x00, /* 6: LOUT2 volume muted */
200 0x07, 0x00, /* 7: ROUT2 volume muted */
201 0x08, 0x00, /* 8: LOUT3 volume muted */
202 0x09, 0x00, /* 9: ROUT3 volume muted */
203 0x0a, 0x00, /* a: DATT speed=0, ignore DZF */
204 0x01, 0x01, /* 1: un-reset, unmute */
205 0xff, 0xff
206 };
207 static unsigned char inits_ak4358[] = {
208 0x01, 0x02, /* 1: reset and soft-mute */
209 0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect,
210 * disable DZF, sharp roll-off, RSTN#=0 */
211 0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */
212 // 0x02, 0x2e, /* quad speed */
213 0x03, 0x01, /* 3: de-emphasis off */
214 0x04, 0x00, /* 4: LOUT1 volume muted */
215 0x05, 0x00, /* 5: ROUT1 volume muted */
216 0x06, 0x00, /* 6: LOUT2 volume muted */
217 0x07, 0x00, /* 7: ROUT2 volume muted */
218 0x08, 0x00, /* 8: LOUT3 volume muted */
219 0x09, 0x00, /* 9: ROUT3 volume muted */
220 0x0b, 0x00, /* b: LOUT4 volume muted */
221 0x0c, 0x00, /* c: ROUT4 volume muted */
222 0x0a, 0x00, /* a: DATT speed=0, ignore DZF */
223 0x01, 0x01, /* 1: un-reset, unmute */
224 0xff, 0xff
225 };
226 static unsigned char inits_ak4381[] = {
227 0x00, 0x0c, /* 0: mode3(i2s), disable auto-clock detect */
228 0x01, 0x02, /* 1: de-emphasis off, normal speed,
229 * sharp roll-off, DZF off */
230 // 0x01, 0x12, /* quad speed */
231 0x02, 0x00, /* 2: DZF disabled */
232 0x03, 0x00, /* 3: LATT 0 */
233 0x04, 0x00, /* 4: RATT 0 */
234 0x00, 0x0f, /* 0: power-up, un-reset */
235 0xff, 0xff
236 };
238 int chip, num_chips;
239 unsigned char *ptr, reg, data, *inits;
241 switch (ak->type) {
242 case SND_AK4524:
243 inits = inits_ak4524;
244 num_chips = ak->num_dacs / 2;
245 break;
246 case SND_AK4528:
247 inits = inits_ak4528;
248 num_chips = ak->num_dacs / 2;
249 break;
250 case SND_AK4529:
251 inits = inits_ak4529;
252 num_chips = 1;
253 break;
254 case SND_AK4355:
255 inits = inits_ak4355;
256 num_chips = 1;
257 break;
258 case SND_AK4358:
259 inits = inits_ak4358;
260 num_chips = 1;
261 break;
262 case SND_AK4381:
263 inits = inits_ak4381;
264 num_chips = ak->num_dacs / 2;
265 break;
266 default:
267 snd_BUG();
268 return;
269 }
271 for (chip = 0; chip < num_chips; chip++) {
272 ptr = inits;
273 while (*ptr != 0xff) {
274 reg = *ptr++;
275 data = *ptr++;
276 snd_akm4xxx_write(ak, chip, reg, data);
277 }
278 }
279 }
281 EXPORT_SYMBOL(snd_akm4xxx_init);
283 #define AK_GET_CHIP(val) (((val) >> 8) & 0xff)
284 #define AK_GET_ADDR(val) ((val) & 0xff)
285 #define AK_GET_SHIFT(val) (((val) >> 16) & 0x7f)
286 #define AK_GET_INVERT(val) (((val) >> 23) & 1)
287 #define AK_GET_MASK(val) (((val) >> 24) & 0xff)
288 #define AK_COMPOSE(chip,addr,shift,mask) \
289 (((chip) << 8) | (addr) | ((shift) << 16) | ((mask) << 24))
290 #define AK_INVERT (1<<23)
292 static int snd_akm4xxx_volume_info(struct snd_kcontrol *kcontrol,
293 struct snd_ctl_elem_info *uinfo)
294 {
295 unsigned int mask = AK_GET_MASK(kcontrol->private_value);
297 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
298 uinfo->count = 1;
299 uinfo->value.integer.min = 0;
300 uinfo->value.integer.max = mask;
301 return 0;
302 }
304 static int snd_akm4xxx_volume_get(struct snd_kcontrol *kcontrol,
305 struct snd_ctl_elem_value *ucontrol)
306 {
307 struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
308 int chip = AK_GET_CHIP(kcontrol->private_value);
309 int addr = AK_GET_ADDR(kcontrol->private_value);
310 int invert = AK_GET_INVERT(kcontrol->private_value);
311 unsigned int mask = AK_GET_MASK(kcontrol->private_value);
312 unsigned char val = snd_akm4xxx_get(ak, chip, addr);
314 ucontrol->value.integer.value[0] = invert ? mask - val : val;
315 return 0;
316 }
318 static int snd_akm4xxx_volume_put(struct snd_kcontrol *kcontrol,
319 struct snd_ctl_elem_value *ucontrol)
320 {
321 struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
322 int chip = AK_GET_CHIP(kcontrol->private_value);
323 int addr = AK_GET_ADDR(kcontrol->private_value);
324 int invert = AK_GET_INVERT(kcontrol->private_value);
325 unsigned int mask = AK_GET_MASK(kcontrol->private_value);
326 unsigned char nval = ucontrol->value.integer.value[0] % (mask+1);
327 int change;
329 if (invert)
330 nval = mask - nval;
331 change = snd_akm4xxx_get(ak, chip, addr) != nval;
332 if (change)
333 snd_akm4xxx_write(ak, chip, addr, nval);
334 return change;
335 }
337 static int snd_akm4xxx_stereo_volume_info(struct snd_kcontrol *kcontrol,
338 struct snd_ctl_elem_info *uinfo)
339 {
340 unsigned int mask = AK_GET_MASK(kcontrol->private_value);
342 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
343 uinfo->count = 2;
344 uinfo->value.integer.min = 0;
345 uinfo->value.integer.max = mask;
346 return 0;
347 }
349 static int snd_akm4xxx_stereo_volume_get(struct snd_kcontrol *kcontrol,
350 struct snd_ctl_elem_value *ucontrol)
351 {
352 struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
353 int chip = AK_GET_CHIP(kcontrol->private_value);
354 int addr = AK_GET_ADDR(kcontrol->private_value);
355 int invert = AK_GET_INVERT(kcontrol->private_value);
356 unsigned int mask = AK_GET_MASK(kcontrol->private_value);
357 unsigned char val = snd_akm4xxx_get(ak, chip, addr);
359 ucontrol->value.integer.value[0] = invert ? mask - val : val;
361 val = snd_akm4xxx_get(ak, chip, addr+1);
362 ucontrol->value.integer.value[1] = invert ? mask - val : val;
364 return 0;
365 }
367 static int snd_akm4xxx_stereo_volume_put(struct snd_kcontrol *kcontrol,
368 struct snd_ctl_elem_value *ucontrol)
369 {
370 struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
371 int chip = AK_GET_CHIP(kcontrol->private_value);
372 int addr = AK_GET_ADDR(kcontrol->private_value);
373 int invert = AK_GET_INVERT(kcontrol->private_value);
374 unsigned int mask = AK_GET_MASK(kcontrol->private_value);
375 unsigned char nval = ucontrol->value.integer.value[0] % (mask+1);
376 int change0, change1;
378 if (invert)
379 nval = mask - nval;
380 change0 = snd_akm4xxx_get(ak, chip, addr) != nval;
381 if (change0)
382 snd_akm4xxx_write(ak, chip, addr, nval);
384 nval = ucontrol->value.integer.value[1] % (mask+1);
385 if (invert)
386 nval = mask - nval;
387 change1 = snd_akm4xxx_get(ak, chip, addr+1) != nval;
388 if (change1)
389 snd_akm4xxx_write(ak, chip, addr+1, nval);
392 return change0 || change1;
393 }
395 static int snd_akm4xxx_ipga_gain_info(struct snd_kcontrol *kcontrol,
396 struct snd_ctl_elem_info *uinfo)
397 {
398 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
399 uinfo->count = 1;
400 uinfo->value.integer.min = 0;
401 uinfo->value.integer.max = 36;
402 return 0;
403 }
405 static int snd_akm4xxx_ipga_gain_get(struct snd_kcontrol *kcontrol,
406 struct snd_ctl_elem_value *ucontrol)
407 {
408 struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
409 int chip = AK_GET_CHIP(kcontrol->private_value);
410 int addr = AK_GET_ADDR(kcontrol->private_value);
411 ucontrol->value.integer.value[0] =
412 snd_akm4xxx_get_ipga(ak, chip, addr) & 0x7f;
413 return 0;
414 }
416 static int snd_akm4xxx_ipga_gain_put(struct snd_kcontrol *kcontrol,
417 struct snd_ctl_elem_value *ucontrol)
418 {
419 struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
420 int chip = AK_GET_CHIP(kcontrol->private_value);
421 int addr = AK_GET_ADDR(kcontrol->private_value);
422 unsigned char nval = (ucontrol->value.integer.value[0] % 37) | 0x80;
423 int change = snd_akm4xxx_get_ipga(ak, chip, addr) != nval;
424 if (change)
425 snd_akm4xxx_write(ak, chip, addr, nval);
426 return change;
427 }
429 static int snd_akm4xxx_deemphasis_info(struct snd_kcontrol *kcontrol,
430 struct snd_ctl_elem_info *uinfo)
431 {
432 static char *texts[4] = {
433 "44.1kHz", "Off", "48kHz", "32kHz",
434 };
435 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
436 uinfo->count = 1;
437 uinfo->value.enumerated.items = 4;
438 if (uinfo->value.enumerated.item >= 4)
439 uinfo->value.enumerated.item = 3;
440 strcpy(uinfo->value.enumerated.name,
441 texts[uinfo->value.enumerated.item]);
442 return 0;
443 }
445 static int snd_akm4xxx_deemphasis_get(struct snd_kcontrol *kcontrol,
446 struct snd_ctl_elem_value *ucontrol)
447 {
448 struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
449 int chip = AK_GET_CHIP(kcontrol->private_value);
450 int addr = AK_GET_ADDR(kcontrol->private_value);
451 int shift = AK_GET_SHIFT(kcontrol->private_value);
452 ucontrol->value.enumerated.item[0] =
453 (snd_akm4xxx_get(ak, chip, addr) >> shift) & 3;
454 return 0;
455 }
457 static int snd_akm4xxx_deemphasis_put(struct snd_kcontrol *kcontrol,
458 struct snd_ctl_elem_value *ucontrol)
459 {
460 struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
461 int chip = AK_GET_CHIP(kcontrol->private_value);
462 int addr = AK_GET_ADDR(kcontrol->private_value);
463 int shift = AK_GET_SHIFT(kcontrol->private_value);
464 unsigned char nval = ucontrol->value.enumerated.item[0] & 3;
465 int change;
467 nval = (nval << shift) |
468 (snd_akm4xxx_get(ak, chip, addr) & ~(3 << shift));
469 change = snd_akm4xxx_get(ak, chip, addr) != nval;
470 if (change)
471 snd_akm4xxx_write(ak, chip, addr, nval);
472 return change;
473 }
475 /*
476 * build AK4xxx controls
477 */
479 int snd_akm4xxx_build_controls(struct snd_akm4xxx *ak)
480 {
481 unsigned int idx, num_emphs;
482 struct snd_kcontrol *ctl;
483 int err;
484 int mixer_ch = 0;
485 int num_stereo;
487 ctl = kmalloc(sizeof(*ctl), GFP_KERNEL);
488 if (! ctl)
489 return -ENOMEM;
491 for (idx = 0; idx < ak->num_dacs; ) {
492 memset(ctl, 0, sizeof(*ctl));
493 if (ak->channel_names == NULL) {
494 strcpy(ctl->id.name, "DAC Volume");
495 num_stereo = 1;
496 ctl->id.index = mixer_ch + ak->idx_offset * 2;
497 } else {
498 strcpy(ctl->id.name, ak->channel_names[mixer_ch]);
499 num_stereo = ak->num_stereo[mixer_ch];
500 ctl->id.index = 0;
501 }
502 ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
503 ctl->count = 1;
504 if (num_stereo == 2) {
505 ctl->info = snd_akm4xxx_stereo_volume_info;
506 ctl->get = snd_akm4xxx_stereo_volume_get;
507 ctl->put = snd_akm4xxx_stereo_volume_put;
508 } else {
509 ctl->info = snd_akm4xxx_volume_info;
510 ctl->get = snd_akm4xxx_volume_get;
511 ctl->put = snd_akm4xxx_volume_put;
512 }
513 switch (ak->type) {
514 case SND_AK4524:
515 /* register 6 & 7 */
516 ctl->private_value =
517 AK_COMPOSE(idx/2, (idx%2) + 6, 0, 127);
518 break;
519 case SND_AK4528:
520 /* register 4 & 5 */
521 ctl->private_value =
522 AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127);
523 break;
524 case SND_AK4529: {
525 /* registers 2-7 and b,c */
526 int val = idx < 6 ? idx + 2 : (idx - 6) + 0xb;
527 ctl->private_value =
528 AK_COMPOSE(0, val, 0, 255) | AK_INVERT;
529 break;
530 }
531 case SND_AK4355:
532 /* register 4-9, chip #0 only */
533 ctl->private_value = AK_COMPOSE(0, idx + 4, 0, 255);
534 break;
535 case SND_AK4358:
536 if (idx >= 6)
537 /* register 4-9, chip #0 only */
538 ctl->private_value =
539 AK_COMPOSE(0, idx + 5, 0, 255);
540 else
541 /* register 4-9, chip #0 only */
542 ctl->private_value =
543 AK_COMPOSE(0, idx + 4, 0, 255);
544 break;
545 case SND_AK4381:
546 /* register 3 & 4 */
547 ctl->private_value =
548 AK_COMPOSE(idx/2, (idx%2) + 3, 0, 255);
549 break;
550 default:
551 err = -EINVAL;
552 goto __error;
553 }
555 ctl->private_data = ak;
556 err = snd_ctl_add(ak->card,
557 snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|
558 SNDRV_CTL_ELEM_ACCESS_WRITE));
559 if (err < 0)
560 goto __error;
562 idx += num_stereo;
563 mixer_ch++;
564 }
565 for (idx = 0; idx < ak->num_adcs && ak->type == SND_AK4524; ++idx) {
566 memset(ctl, 0, sizeof(*ctl));
567 strcpy(ctl->id.name, "ADC Volume");
568 ctl->id.index = idx + ak->idx_offset * 2;
569 ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
570 ctl->count = 1;
571 ctl->info = snd_akm4xxx_volume_info;
572 ctl->get = snd_akm4xxx_volume_get;
573 ctl->put = snd_akm4xxx_volume_put;
574 /* register 4 & 5 */
575 ctl->private_value =
576 AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127);
577 ctl->private_data = ak;
578 err = snd_ctl_add(ak->card,
579 snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|
580 SNDRV_CTL_ELEM_ACCESS_WRITE));
581 if (err < 0)
582 goto __error;
584 memset(ctl, 0, sizeof(*ctl));
585 strcpy(ctl->id.name, "IPGA Analog Capture Volume");
586 ctl->id.index = idx + ak->idx_offset * 2;
587 ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
588 ctl->count = 1;
589 ctl->info = snd_akm4xxx_ipga_gain_info;
590 ctl->get = snd_akm4xxx_ipga_gain_get;
591 ctl->put = snd_akm4xxx_ipga_gain_put;
592 /* register 4 & 5 */
593 ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 0);
594 ctl->private_data = ak;
595 err = snd_ctl_add(ak->card,
596 snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|
597 SNDRV_CTL_ELEM_ACCESS_WRITE));
598 if (err < 0)
599 goto __error;
600 }
601 if (ak->type == SND_AK4355 || ak->type == SND_AK4358)
602 num_emphs = 1;
603 else
604 num_emphs = ak->num_dacs / 2;
605 for (idx = 0; idx < num_emphs; idx++) {
606 memset(ctl, 0, sizeof(*ctl));
607 strcpy(ctl->id.name, "Deemphasis");
608 ctl->id.index = idx + ak->idx_offset;
609 ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
610 ctl->count = 1;
611 ctl->info = snd_akm4xxx_deemphasis_info;
612 ctl->get = snd_akm4xxx_deemphasis_get;
613 ctl->put = snd_akm4xxx_deemphasis_put;
614 switch (ak->type) {
615 case SND_AK4524:
616 case SND_AK4528:
617 /* register 3 */
618 ctl->private_value = AK_COMPOSE(idx, 3, 0, 0);
619 break;
620 case SND_AK4529: {
621 int shift = idx == 3 ? 6 : (2 - idx) * 2;
622 /* register 8 with shift */
623 ctl->private_value = AK_COMPOSE(0, 8, shift, 0);
624 break;
625 }
626 case SND_AK4355:
627 case SND_AK4358:
628 ctl->private_value = AK_COMPOSE(idx, 3, 0, 0);
629 break;
630 case SND_AK4381:
631 ctl->private_value = AK_COMPOSE(idx, 1, 1, 0);
632 break;
633 }
634 ctl->private_data = ak;
635 err = snd_ctl_add(ak->card,
636 snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ|
637 SNDRV_CTL_ELEM_ACCESS_WRITE));
638 if (err < 0)
639 goto __error;
640 }
641 err = 0;
643 __error:
644 kfree(ctl);
645 return err;
646 }
648 EXPORT_SYMBOL(snd_akm4xxx_build_controls);
650 static int __init alsa_akm4xxx_module_init(void)
651 {
652 return 0;
653 }
655 static void __exit alsa_akm4xxx_module_exit(void)
656 {
657 }
659 module_init(alsa_akm4xxx_module_init)
660 module_exit(alsa_akm4xxx_module_exit)