ia64/linux-2.6.18-xen.hg

view drivers/net/au1000_eth.c @ 0:831230e53067

Import 2.6.18 from kernel.org tarball.
author Ian Campbell <ian.campbell@xensource.com>
date Wed Apr 11 14:15:44 2007 +0100 (2007-04-11)
parents
children
line source
1 /*
2 *
3 * Alchemy Au1x00 ethernet driver
4 *
5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 * converted to use linux-2.6.x's PHY framework
14 *
15 * Author: MontaVista Software, Inc.
16 * ppopov@mvista.com or source@mvista.com
17 *
18 * ########################################################################
19 *
20 * This program is free software; you can distribute it and/or modify it
21 * under the terms of the GNU General Public License (Version 2) as
22 * published by the Free Software Foundation.
23 *
24 * This program is distributed in the hope it will be useful, but WITHOUT
25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
27 * for more details.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
32 *
33 * ########################################################################
34 *
35 *
36 */
38 #include <linux/module.h>
39 #include <linux/kernel.h>
40 #include <linux/sched.h>
41 #include <linux/string.h>
42 #include <linux/timer.h>
43 #include <linux/errno.h>
44 #include <linux/in.h>
45 #include <linux/ioport.h>
46 #include <linux/bitops.h>
47 #include <linux/slab.h>
48 #include <linux/interrupt.h>
49 #include <linux/pci.h>
50 #include <linux/init.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include <linux/ethtool.h>
54 #include <linux/mii.h>
55 #include <linux/skbuff.h>
56 #include <linux/delay.h>
57 #include <linux/crc32.h>
58 #include <linux/phy.h>
59 #include <asm/mipsregs.h>
60 #include <asm/irq.h>
61 #include <asm/io.h>
62 #include <asm/processor.h>
64 #include <asm/mach-au1x00/au1000.h>
65 #include <asm/cpu.h>
66 #include "au1000_eth.h"
68 #ifdef AU1000_ETH_DEBUG
69 static int au1000_debug = 5;
70 #else
71 static int au1000_debug = 3;
72 #endif
74 #define DRV_NAME "au1000_eth"
75 #define DRV_VERSION "1.5"
76 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
77 #define DRV_DESC "Au1xxx on-chip Ethernet driver"
79 MODULE_AUTHOR(DRV_AUTHOR);
80 MODULE_DESCRIPTION(DRV_DESC);
81 MODULE_LICENSE("GPL");
83 // prototypes
84 static void hard_stop(struct net_device *);
85 static void enable_rx_tx(struct net_device *dev);
86 static struct net_device * au1000_probe(int port_num);
87 static int au1000_init(struct net_device *);
88 static int au1000_open(struct net_device *);
89 static int au1000_close(struct net_device *);
90 static int au1000_tx(struct sk_buff *, struct net_device *);
91 static int au1000_rx(struct net_device *);
92 static irqreturn_t au1000_interrupt(int, void *, struct pt_regs *);
93 static void au1000_tx_timeout(struct net_device *);
94 static void set_rx_mode(struct net_device *);
95 static struct net_device_stats *au1000_get_stats(struct net_device *);
96 static int au1000_ioctl(struct net_device *, struct ifreq *, int);
97 static int mdio_read(struct net_device *, int, int);
98 static void mdio_write(struct net_device *, int, int, u16);
99 static void au1000_adjust_link(struct net_device *);
100 static void enable_mac(struct net_device *, int);
102 // externs
103 extern int get_ethernet_addr(char *ethernet_addr);
104 extern void str2eaddr(unsigned char *ea, unsigned char *str);
105 extern char * __init prom_getcmdline(void);
107 /*
108 * Theory of operation
109 *
110 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
111 * There are four receive and four transmit descriptors. These
112 * descriptors are not in memory; rather, they are just a set of
113 * hardware registers.
114 *
115 * Since the Au1000 has a coherent data cache, the receive and
116 * transmit buffers are allocated from the KSEG0 segment. The
117 * hardware registers, however, are still mapped at KSEG1 to
118 * make sure there's no out-of-order writes, and that all writes
119 * complete immediately.
120 */
122 /* These addresses are only used if yamon doesn't tell us what
123 * the mac address is, and the mac address is not passed on the
124 * command line.
125 */
126 static unsigned char au1000_mac_addr[6] __devinitdata = {
127 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
128 };
130 struct au1000_private *au_macs[NUM_ETH_INTERFACES];
132 /*
133 * board-specific configurations
134 *
135 * PHY detection algorithm
136 *
137 * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is
138 * autodetected:
139 *
140 * mii_probe() first searches the current MAC's MII bus for a PHY,
141 * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is
142 * defined) PHY address not already claimed by another netdev.
143 *
144 * If nothing was found that way when searching for the 2nd ethernet
145 * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then
146 * the first MII bus is searched as well for an unclaimed PHY; this is
147 * needed in case of a dual-PHY accessible only through the MAC0's MII
148 * bus.
149 *
150 * Finally, if no PHY is found, then the corresponding ethernet
151 * controller is not registered to the network subsystem.
152 */
154 /* autodetection defaults */
155 #undef AU1XXX_PHY_SEARCH_HIGHEST_ADDR
156 #define AU1XXX_PHY1_SEARCH_ON_MAC0
158 /* static PHY setup
159 *
160 * most boards PHY setup should be detectable properly with the
161 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
162 * you have a switch attached, or want to use the PHY's interrupt
163 * notification capabilities) you can provide a static PHY
164 * configuration here
165 *
166 * IRQs may only be set, if a PHY address was configured
167 * If a PHY address is given, also a bus id is required to be set
168 *
169 * ps: make sure the used irqs are configured properly in the board
170 * specific irq-map
171 */
173 #if defined(CONFIG_MIPS_BOSPORUS)
174 /*
175 * Micrel/Kendin 5 port switch attached to MAC0,
176 * MAC0 is associated with PHY address 5 (== WAN port)
177 * MAC1 is not associated with any PHY, since it's connected directly
178 * to the switch.
179 * no interrupts are used
180 */
181 # define AU1XXX_PHY_STATIC_CONFIG
183 # define AU1XXX_PHY0_ADDR 5
184 # define AU1XXX_PHY0_BUSID 0
185 # undef AU1XXX_PHY0_IRQ
187 # undef AU1XXX_PHY1_ADDR
188 # undef AU1XXX_PHY1_BUSID
189 # undef AU1XXX_PHY1_IRQ
190 #endif
192 #if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0)
193 # error MAC0-associated PHY attached 2nd MACs MII bus not supported yet
194 #endif
196 /*
197 * MII operations
198 */
199 static int mdio_read(struct net_device *dev, int phy_addr, int reg)
200 {
201 struct au1000_private *aup = (struct au1000_private *) dev->priv;
202 volatile u32 *const mii_control_reg = &aup->mac->mii_control;
203 volatile u32 *const mii_data_reg = &aup->mac->mii_data;
204 u32 timedout = 20;
205 u32 mii_control;
207 while (*mii_control_reg & MAC_MII_BUSY) {
208 mdelay(1);
209 if (--timedout == 0) {
210 printk(KERN_ERR "%s: read_MII busy timeout!!\n",
211 dev->name);
212 return -1;
213 }
214 }
216 mii_control = MAC_SET_MII_SELECT_REG(reg) |
217 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
219 *mii_control_reg = mii_control;
221 timedout = 20;
222 while (*mii_control_reg & MAC_MII_BUSY) {
223 mdelay(1);
224 if (--timedout == 0) {
225 printk(KERN_ERR "%s: mdio_read busy timeout!!\n",
226 dev->name);
227 return -1;
228 }
229 }
230 return (int)*mii_data_reg;
231 }
233 static void mdio_write(struct net_device *dev, int phy_addr, int reg, u16 value)
234 {
235 struct au1000_private *aup = (struct au1000_private *) dev->priv;
236 volatile u32 *const mii_control_reg = &aup->mac->mii_control;
237 volatile u32 *const mii_data_reg = &aup->mac->mii_data;
238 u32 timedout = 20;
239 u32 mii_control;
241 while (*mii_control_reg & MAC_MII_BUSY) {
242 mdelay(1);
243 if (--timedout == 0) {
244 printk(KERN_ERR "%s: mdio_write busy timeout!!\n",
245 dev->name);
246 return;
247 }
248 }
250 mii_control = MAC_SET_MII_SELECT_REG(reg) |
251 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
253 *mii_data_reg = value;
254 *mii_control_reg = mii_control;
255 }
257 static int mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
258 {
259 /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
260 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
261 struct net_device *const dev = bus->priv;
263 enable_mac(dev, 0); /* make sure the MAC associated with this
264 * mii_bus is enabled */
265 return mdio_read(dev, phy_addr, regnum);
266 }
268 static int mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
269 u16 value)
270 {
271 struct net_device *const dev = bus->priv;
273 enable_mac(dev, 0); /* make sure the MAC associated with this
274 * mii_bus is enabled */
275 mdio_write(dev, phy_addr, regnum, value);
276 return 0;
277 }
279 static int mdiobus_reset(struct mii_bus *bus)
280 {
281 struct net_device *const dev = bus->priv;
283 enable_mac(dev, 0); /* make sure the MAC associated with this
284 * mii_bus is enabled */
285 return 0;
286 }
288 static int mii_probe (struct net_device *dev)
289 {
290 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
291 struct phy_device *phydev = NULL;
293 #if defined(AU1XXX_PHY_STATIC_CONFIG)
294 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
296 if(aup->mac_id == 0) { /* get PHY0 */
297 # if defined(AU1XXX_PHY0_ADDR)
298 phydev = au_macs[AU1XXX_PHY0_BUSID]->mii_bus.phy_map[AU1XXX_PHY0_ADDR];
299 # else
300 printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
301 dev->name);
302 return 0;
303 # endif /* defined(AU1XXX_PHY0_ADDR) */
304 } else if (aup->mac_id == 1) { /* get PHY1 */
305 # if defined(AU1XXX_PHY1_ADDR)
306 phydev = au_macs[AU1XXX_PHY1_BUSID]->mii_bus.phy_map[AU1XXX_PHY1_ADDR];
307 # else
308 printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
309 dev->name);
310 return 0;
311 # endif /* defined(AU1XXX_PHY1_ADDR) */
312 }
314 #else /* defined(AU1XXX_PHY_STATIC_CONFIG) */
315 int phy_addr;
317 /* find the first (lowest address) PHY on the current MAC's MII bus */
318 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
319 if (aup->mii_bus.phy_map[phy_addr]) {
320 phydev = aup->mii_bus.phy_map[phy_addr];
321 # if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR)
322 break; /* break out with first one found */
323 # endif
324 }
326 # if defined(AU1XXX_PHY1_SEARCH_ON_MAC0)
327 /* try harder to find a PHY */
328 if (!phydev && (aup->mac_id == 1)) {
329 /* no PHY found, maybe we have a dual PHY? */
330 printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, "
331 "let's see if it's attached to MAC0...\n");
333 BUG_ON(!au_macs[0]);
335 /* find the first (lowest address) non-attached PHY on
336 * the MAC0 MII bus */
337 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
338 struct phy_device *const tmp_phydev =
339 au_macs[0]->mii_bus.phy_map[phy_addr];
341 if (!tmp_phydev)
342 continue; /* no PHY here... */
344 if (tmp_phydev->attached_dev)
345 continue; /* already claimed by MAC0 */
347 phydev = tmp_phydev;
348 break; /* found it */
349 }
350 }
351 # endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */
353 #endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */
354 if (!phydev) {
355 printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name);
356 return -1;
357 }
359 /* now we are supposed to have a proper phydev, to attach to... */
360 BUG_ON(!phydev);
361 BUG_ON(phydev->attached_dev);
363 phydev = phy_connect(dev, phydev->dev.bus_id, &au1000_adjust_link, 0);
365 if (IS_ERR(phydev)) {
366 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
367 return PTR_ERR(phydev);
368 }
370 /* mask with MAC supported features */
371 phydev->supported &= (SUPPORTED_10baseT_Half
372 | SUPPORTED_10baseT_Full
373 | SUPPORTED_100baseT_Half
374 | SUPPORTED_100baseT_Full
375 | SUPPORTED_Autoneg
376 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
377 | SUPPORTED_MII
378 | SUPPORTED_TP);
380 phydev->advertising = phydev->supported;
382 aup->old_link = 0;
383 aup->old_speed = 0;
384 aup->old_duplex = -1;
385 aup->phy_dev = phydev;
387 printk(KERN_INFO "%s: attached PHY driver [%s] "
388 "(mii_bus:phy_addr=%s, irq=%d)\n",
389 dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq);
391 return 0;
392 }
395 /*
396 * Buffer allocation/deallocation routines. The buffer descriptor returned
397 * has the virtual and dma address of a buffer suitable for
398 * both, receive and transmit operations.
399 */
400 static db_dest_t *GetFreeDB(struct au1000_private *aup)
401 {
402 db_dest_t *pDB;
403 pDB = aup->pDBfree;
405 if (pDB) {
406 aup->pDBfree = pDB->pnext;
407 }
408 return pDB;
409 }
411 void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
412 {
413 db_dest_t *pDBfree = aup->pDBfree;
414 if (pDBfree)
415 pDBfree->pnext = pDB;
416 aup->pDBfree = pDB;
417 }
419 static void enable_rx_tx(struct net_device *dev)
420 {
421 struct au1000_private *aup = (struct au1000_private *) dev->priv;
423 if (au1000_debug > 4)
424 printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);
426 aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
427 au_sync_delay(10);
428 }
430 static void hard_stop(struct net_device *dev)
431 {
432 struct au1000_private *aup = (struct au1000_private *) dev->priv;
434 if (au1000_debug > 4)
435 printk(KERN_INFO "%s: hard stop\n", dev->name);
437 aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
438 au_sync_delay(10);
439 }
441 static void enable_mac(struct net_device *dev, int force_reset)
442 {
443 unsigned long flags;
444 struct au1000_private *aup = (struct au1000_private *) dev->priv;
446 spin_lock_irqsave(&aup->lock, flags);
448 if(force_reset || (!aup->mac_enabled)) {
449 *aup->enable = MAC_EN_CLOCK_ENABLE;
450 au_sync_delay(2);
451 *aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
452 | MAC_EN_CLOCK_ENABLE);
453 au_sync_delay(2);
455 aup->mac_enabled = 1;
456 }
458 spin_unlock_irqrestore(&aup->lock, flags);
459 }
461 static void reset_mac_unlocked(struct net_device *dev)
462 {
463 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
464 int i;
466 hard_stop(dev);
468 *aup->enable = MAC_EN_CLOCK_ENABLE;
469 au_sync_delay(2);
470 *aup->enable = 0;
471 au_sync_delay(2);
473 aup->tx_full = 0;
474 for (i = 0; i < NUM_RX_DMA; i++) {
475 /* reset control bits */
476 aup->rx_dma_ring[i]->buff_stat &= ~0xf;
477 }
478 for (i = 0; i < NUM_TX_DMA; i++) {
479 /* reset control bits */
480 aup->tx_dma_ring[i]->buff_stat &= ~0xf;
481 }
483 aup->mac_enabled = 0;
485 }
487 static void reset_mac(struct net_device *dev)
488 {
489 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
490 unsigned long flags;
492 if (au1000_debug > 4)
493 printk(KERN_INFO "%s: reset mac, aup %x\n",
494 dev->name, (unsigned)aup);
496 spin_lock_irqsave(&aup->lock, flags);
498 reset_mac_unlocked (dev);
500 spin_unlock_irqrestore(&aup->lock, flags);
501 }
503 /*
504 * Setup the receive and transmit "rings". These pointers are the addresses
505 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
506 * these are not descriptors sitting in memory.
507 */
508 static void
509 setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
510 {
511 int i;
513 for (i = 0; i < NUM_RX_DMA; i++) {
514 aup->rx_dma_ring[i] =
515 (volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
516 }
517 for (i = 0; i < NUM_TX_DMA; i++) {
518 aup->tx_dma_ring[i] =
519 (volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
520 }
521 }
523 static struct {
524 u32 base_addr;
525 u32 macen_addr;
526 int irq;
527 struct net_device *dev;
528 } iflist[2] = {
529 #ifdef CONFIG_SOC_AU1000
530 {AU1000_ETH0_BASE, AU1000_MAC0_ENABLE, AU1000_MAC0_DMA_INT},
531 {AU1000_ETH1_BASE, AU1000_MAC1_ENABLE, AU1000_MAC1_DMA_INT}
532 #endif
533 #ifdef CONFIG_SOC_AU1100
534 {AU1100_ETH0_BASE, AU1100_MAC0_ENABLE, AU1100_MAC0_DMA_INT}
535 #endif
536 #ifdef CONFIG_SOC_AU1500
537 {AU1500_ETH0_BASE, AU1500_MAC0_ENABLE, AU1500_MAC0_DMA_INT},
538 {AU1500_ETH1_BASE, AU1500_MAC1_ENABLE, AU1500_MAC1_DMA_INT}
539 #endif
540 #ifdef CONFIG_SOC_AU1550
541 {AU1550_ETH0_BASE, AU1550_MAC0_ENABLE, AU1550_MAC0_DMA_INT},
542 {AU1550_ETH1_BASE, AU1550_MAC1_ENABLE, AU1550_MAC1_DMA_INT}
543 #endif
544 };
546 static int num_ifs;
548 /*
549 * Setup the base address and interupt of the Au1xxx ethernet macs
550 * based on cpu type and whether the interface is enabled in sys_pinfunc
551 * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
552 */
553 static int __init au1000_init_module(void)
554 {
555 int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4);
556 struct net_device *dev;
557 int i, found_one = 0;
559 num_ifs = NUM_ETH_INTERFACES - ni;
561 for(i = 0; i < num_ifs; i++) {
562 dev = au1000_probe(i);
563 iflist[i].dev = dev;
564 if (dev)
565 found_one++;
566 }
567 if (!found_one)
568 return -ENODEV;
569 return 0;
570 }
572 /*
573 * ethtool operations
574 */
576 static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
577 {
578 struct au1000_private *aup = (struct au1000_private *)dev->priv;
580 if (aup->phy_dev)
581 return phy_ethtool_gset(aup->phy_dev, cmd);
583 return -EINVAL;
584 }
586 static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
587 {
588 struct au1000_private *aup = (struct au1000_private *)dev->priv;
590 if (!capable(CAP_NET_ADMIN))
591 return -EPERM;
593 if (aup->phy_dev)
594 return phy_ethtool_sset(aup->phy_dev, cmd);
596 return -EINVAL;
597 }
599 static void
600 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
601 {
602 struct au1000_private *aup = (struct au1000_private *)dev->priv;
604 strcpy(info->driver, DRV_NAME);
605 strcpy(info->version, DRV_VERSION);
606 info->fw_version[0] = '\0';
607 sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
608 info->regdump_len = 0;
609 }
611 static struct ethtool_ops au1000_ethtool_ops = {
612 .get_settings = au1000_get_settings,
613 .set_settings = au1000_set_settings,
614 .get_drvinfo = au1000_get_drvinfo,
615 .get_link = ethtool_op_get_link,
616 };
618 static struct net_device * au1000_probe(int port_num)
619 {
620 static unsigned version_printed = 0;
621 struct au1000_private *aup = NULL;
622 struct net_device *dev = NULL;
623 db_dest_t *pDB, *pDBfree;
624 char *pmac, *argptr;
625 char ethaddr[6];
626 int irq, i, err;
627 u32 base, macen;
629 if (port_num >= NUM_ETH_INTERFACES)
630 return NULL;
632 base = CPHYSADDR(iflist[port_num].base_addr );
633 macen = CPHYSADDR(iflist[port_num].macen_addr);
634 irq = iflist[port_num].irq;
636 if (!request_mem_region( base, MAC_IOSIZE, "Au1x00 ENET") ||
637 !request_mem_region(macen, 4, "Au1x00 ENET"))
638 return NULL;
640 if (version_printed++ == 0)
641 printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
643 dev = alloc_etherdev(sizeof(struct au1000_private));
644 if (!dev) {
645 printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME);
646 return NULL;
647 }
649 if ((err = register_netdev(dev)) != 0) {
650 printk(KERN_ERR "%s: Cannot register net device, error %d\n",
651 DRV_NAME, err);
652 free_netdev(dev);
653 return NULL;
654 }
656 printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n",
657 dev->name, base, irq);
659 aup = dev->priv;
661 /* Allocate the data buffers */
662 /* Snooping works fine with eth on all au1xxx */
663 aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
664 (NUM_TX_BUFFS + NUM_RX_BUFFS),
665 &aup->dma_addr, 0);
666 if (!aup->vaddr) {
667 free_netdev(dev);
668 release_mem_region( base, MAC_IOSIZE);
669 release_mem_region(macen, 4);
670 return NULL;
671 }
673 /* aup->mac is the base address of the MAC's registers */
674 aup->mac = (volatile mac_reg_t *)iflist[port_num].base_addr;
676 /* Setup some variables for quick register address access */
677 aup->enable = (volatile u32 *)iflist[port_num].macen_addr;
678 aup->mac_id = port_num;
679 au_macs[port_num] = aup;
681 if (port_num == 0) {
682 /* Check the environment variables first */
683 if (get_ethernet_addr(ethaddr) == 0)
684 memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
685 else {
686 /* Check command line */
687 argptr = prom_getcmdline();
688 if ((pmac = strstr(argptr, "ethaddr=")) == NULL)
689 printk(KERN_INFO "%s: No MAC address found\n",
690 dev->name);
691 /* Use the hard coded MAC addresses */
692 else {
693 str2eaddr(ethaddr, pmac + strlen("ethaddr="));
694 memcpy(au1000_mac_addr, ethaddr,
695 sizeof(au1000_mac_addr));
696 }
697 }
699 setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
700 } else if (port_num == 1)
701 setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
703 /*
704 * Assign to the Ethernet ports two consecutive MAC addresses
705 * to match those that are printed on their stickers
706 */
707 memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
708 dev->dev_addr[5] += port_num;
710 *aup->enable = 0;
711 aup->mac_enabled = 0;
713 aup->mii_bus.priv = dev;
714 aup->mii_bus.read = mdiobus_read;
715 aup->mii_bus.write = mdiobus_write;
716 aup->mii_bus.reset = mdiobus_reset;
717 aup->mii_bus.name = "au1000_eth_mii";
718 aup->mii_bus.id = aup->mac_id;
719 aup->mii_bus.irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
720 for(i = 0; i < PHY_MAX_ADDR; ++i)
721 aup->mii_bus.irq[i] = PHY_POLL;
723 /* if known, set corresponding PHY IRQs */
724 #if defined(AU1XXX_PHY_STATIC_CONFIG)
725 # if defined(AU1XXX_PHY0_IRQ)
726 if (AU1XXX_PHY0_BUSID == aup->mii_bus.id)
727 aup->mii_bus.irq[AU1XXX_PHY0_ADDR] = AU1XXX_PHY0_IRQ;
728 # endif
729 # if defined(AU1XXX_PHY1_IRQ)
730 if (AU1XXX_PHY1_BUSID == aup->mii_bus.id)
731 aup->mii_bus.irq[AU1XXX_PHY1_ADDR] = AU1XXX_PHY1_IRQ;
732 # endif
733 #endif
734 mdiobus_register(&aup->mii_bus);
736 if (mii_probe(dev) != 0) {
737 goto err_out;
738 }
740 pDBfree = NULL;
741 /* setup the data buffer descriptors and attach a buffer to each one */
742 pDB = aup->db;
743 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
744 pDB->pnext = pDBfree;
745 pDBfree = pDB;
746 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
747 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
748 pDB++;
749 }
750 aup->pDBfree = pDBfree;
752 for (i = 0; i < NUM_RX_DMA; i++) {
753 pDB = GetFreeDB(aup);
754 if (!pDB) {
755 goto err_out;
756 }
757 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
758 aup->rx_db_inuse[i] = pDB;
759 }
760 for (i = 0; i < NUM_TX_DMA; i++) {
761 pDB = GetFreeDB(aup);
762 if (!pDB) {
763 goto err_out;
764 }
765 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
766 aup->tx_dma_ring[i]->len = 0;
767 aup->tx_db_inuse[i] = pDB;
768 }
770 spin_lock_init(&aup->lock);
771 dev->base_addr = base;
772 dev->irq = irq;
773 dev->open = au1000_open;
774 dev->hard_start_xmit = au1000_tx;
775 dev->stop = au1000_close;
776 dev->get_stats = au1000_get_stats;
777 dev->set_multicast_list = &set_rx_mode;
778 dev->do_ioctl = &au1000_ioctl;
779 SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
780 dev->tx_timeout = au1000_tx_timeout;
781 dev->watchdog_timeo = ETH_TX_TIMEOUT;
783 /*
784 * The boot code uses the ethernet controller, so reset it to start
785 * fresh. au1000_init() expects that the device is in reset state.
786 */
787 reset_mac(dev);
789 return dev;
791 err_out:
792 /* here we should have a valid dev plus aup-> register addresses
793 * so we can reset the mac properly.*/
794 reset_mac(dev);
796 for (i = 0; i < NUM_RX_DMA; i++) {
797 if (aup->rx_db_inuse[i])
798 ReleaseDB(aup, aup->rx_db_inuse[i]);
799 }
800 for (i = 0; i < NUM_TX_DMA; i++) {
801 if (aup->tx_db_inuse[i])
802 ReleaseDB(aup, aup->tx_db_inuse[i]);
803 }
804 dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
805 (void *)aup->vaddr, aup->dma_addr);
806 unregister_netdev(dev);
807 free_netdev(dev);
808 release_mem_region( base, MAC_IOSIZE);
809 release_mem_region(macen, 4);
810 return NULL;
811 }
813 /*
814 * Initialize the interface.
815 *
816 * When the device powers up, the clocks are disabled and the
817 * mac is in reset state. When the interface is closed, we
818 * do the same -- reset the device and disable the clocks to
819 * conserve power. Thus, whenever au1000_init() is called,
820 * the device should already be in reset state.
821 */
822 static int au1000_init(struct net_device *dev)
823 {
824 struct au1000_private *aup = (struct au1000_private *) dev->priv;
825 u32 flags;
826 int i;
827 u32 control;
829 if (au1000_debug > 4)
830 printk("%s: au1000_init\n", dev->name);
832 /* bring the device out of reset */
833 enable_mac(dev, 1);
835 spin_lock_irqsave(&aup->lock, flags);
837 aup->mac->control = 0;
838 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
839 aup->tx_tail = aup->tx_head;
840 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
842 aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
843 aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
844 dev->dev_addr[1]<<8 | dev->dev_addr[0];
846 for (i = 0; i < NUM_RX_DMA; i++) {
847 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
848 }
849 au_sync();
851 control = MAC_RX_ENABLE | MAC_TX_ENABLE;
852 #ifndef CONFIG_CPU_LITTLE_ENDIAN
853 control |= MAC_BIG_ENDIAN;
854 #endif
855 if (aup->phy_dev) {
856 if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
857 control |= MAC_FULL_DUPLEX;
858 else
859 control |= MAC_DISABLE_RX_OWN;
860 } else { /* PHY-less op, assume full-duplex */
861 control |= MAC_FULL_DUPLEX;
862 }
864 aup->mac->control = control;
865 aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
866 au_sync();
868 spin_unlock_irqrestore(&aup->lock, flags);
869 return 0;
870 }
872 static void
873 au1000_adjust_link(struct net_device *dev)
874 {
875 struct au1000_private *aup = (struct au1000_private *) dev->priv;
876 struct phy_device *phydev = aup->phy_dev;
877 unsigned long flags;
879 int status_change = 0;
881 BUG_ON(!aup->phy_dev);
883 spin_lock_irqsave(&aup->lock, flags);
885 if (phydev->link && (aup->old_speed != phydev->speed)) {
886 // speed changed
888 switch(phydev->speed) {
889 case SPEED_10:
890 case SPEED_100:
891 break;
892 default:
893 printk(KERN_WARNING
894 "%s: Speed (%d) is not 10/100 ???\n",
895 dev->name, phydev->speed);
896 break;
897 }
899 aup->old_speed = phydev->speed;
901 status_change = 1;
902 }
904 if (phydev->link && (aup->old_duplex != phydev->duplex)) {
905 // duplex mode changed
907 /* switching duplex mode requires to disable rx and tx! */
908 hard_stop(dev);
910 if (DUPLEX_FULL == phydev->duplex)
911 aup->mac->control = ((aup->mac->control
912 | MAC_FULL_DUPLEX)
913 & ~MAC_DISABLE_RX_OWN);
914 else
915 aup->mac->control = ((aup->mac->control
916 & ~MAC_FULL_DUPLEX)
917 | MAC_DISABLE_RX_OWN);
918 au_sync_delay(1);
920 enable_rx_tx(dev);
921 aup->old_duplex = phydev->duplex;
923 status_change = 1;
924 }
926 if(phydev->link != aup->old_link) {
927 // link state changed
929 if (phydev->link) // link went up
930 netif_schedule(dev);
931 else { // link went down
932 aup->old_speed = 0;
933 aup->old_duplex = -1;
934 }
936 aup->old_link = phydev->link;
937 status_change = 1;
938 }
940 spin_unlock_irqrestore(&aup->lock, flags);
942 if (status_change) {
943 if (phydev->link)
944 printk(KERN_INFO "%s: link up (%d/%s)\n",
945 dev->name, phydev->speed,
946 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
947 else
948 printk(KERN_INFO "%s: link down\n", dev->name);
949 }
950 }
952 static int au1000_open(struct net_device *dev)
953 {
954 int retval;
955 struct au1000_private *aup = (struct au1000_private *) dev->priv;
957 if (au1000_debug > 4)
958 printk("%s: open: dev=%p\n", dev->name, dev);
960 if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,
961 dev->name, dev))) {
962 printk(KERN_ERR "%s: unable to get IRQ %d\n",
963 dev->name, dev->irq);
964 return retval;
965 }
967 if ((retval = au1000_init(dev))) {
968 printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
969 free_irq(dev->irq, dev);
970 return retval;
971 }
973 if (aup->phy_dev) {
974 /* cause the PHY state machine to schedule a link state check */
975 aup->phy_dev->state = PHY_CHANGELINK;
976 phy_start(aup->phy_dev);
977 }
979 netif_start_queue(dev);
981 if (au1000_debug > 4)
982 printk("%s: open: Initialization done.\n", dev->name);
984 return 0;
985 }
987 static int au1000_close(struct net_device *dev)
988 {
989 unsigned long flags;
990 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
992 if (au1000_debug > 4)
993 printk("%s: close: dev=%p\n", dev->name, dev);
995 if (aup->phy_dev)
996 phy_stop(aup->phy_dev);
998 spin_lock_irqsave(&aup->lock, flags);
1000 reset_mac_unlocked (dev);
1002 /* stop the device */
1003 netif_stop_queue(dev);
1005 /* disable the interrupt */
1006 free_irq(dev->irq, dev);
1007 spin_unlock_irqrestore(&aup->lock, flags);
1009 return 0;
1012 static void __exit au1000_cleanup_module(void)
1014 int i, j;
1015 struct net_device *dev;
1016 struct au1000_private *aup;
1018 for (i = 0; i < num_ifs; i++) {
1019 dev = iflist[i].dev;
1020 if (dev) {
1021 aup = (struct au1000_private *) dev->priv;
1022 unregister_netdev(dev);
1023 for (j = 0; j < NUM_RX_DMA; j++)
1024 if (aup->rx_db_inuse[j])
1025 ReleaseDB(aup, aup->rx_db_inuse[j]);
1026 for (j = 0; j < NUM_TX_DMA; j++)
1027 if (aup->tx_db_inuse[j])
1028 ReleaseDB(aup, aup->tx_db_inuse[j]);
1029 dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1030 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1031 (void *)aup->vaddr, aup->dma_addr);
1032 release_mem_region(dev->base_addr, MAC_IOSIZE);
1033 release_mem_region(CPHYSADDR(iflist[i].macen_addr), 4);
1034 free_netdev(dev);
1039 static void update_tx_stats(struct net_device *dev, u32 status)
1041 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1042 struct net_device_stats *ps = &aup->stats;
1044 if (status & TX_FRAME_ABORTED) {
1045 if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
1046 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
1047 /* any other tx errors are only valid
1048 * in half duplex mode */
1049 ps->tx_errors++;
1050 ps->tx_aborted_errors++;
1053 else {
1054 ps->tx_errors++;
1055 ps->tx_aborted_errors++;
1056 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
1057 ps->tx_carrier_errors++;
1063 /*
1064 * Called from the interrupt service routine to acknowledge
1065 * the TX DONE bits. This is a must if the irq is setup as
1066 * edge triggered.
1067 */
1068 static void au1000_tx_ack(struct net_device *dev)
1070 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1071 volatile tx_dma_t *ptxd;
1073 ptxd = aup->tx_dma_ring[aup->tx_tail];
1075 while (ptxd->buff_stat & TX_T_DONE) {
1076 update_tx_stats(dev, ptxd->status);
1077 ptxd->buff_stat &= ~TX_T_DONE;
1078 ptxd->len = 0;
1079 au_sync();
1081 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
1082 ptxd = aup->tx_dma_ring[aup->tx_tail];
1084 if (aup->tx_full) {
1085 aup->tx_full = 0;
1086 netif_wake_queue(dev);
1092 /*
1093 * Au1000 transmit routine.
1094 */
1095 static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
1097 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1098 struct net_device_stats *ps = &aup->stats;
1099 volatile tx_dma_t *ptxd;
1100 u32 buff_stat;
1101 db_dest_t *pDB;
1102 int i;
1104 if (au1000_debug > 5)
1105 printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
1106 dev->name, (unsigned)aup, skb->len,
1107 skb->data, aup->tx_head);
1109 ptxd = aup->tx_dma_ring[aup->tx_head];
1110 buff_stat = ptxd->buff_stat;
1111 if (buff_stat & TX_DMA_ENABLE) {
1112 /* We've wrapped around and the transmitter is still busy */
1113 netif_stop_queue(dev);
1114 aup->tx_full = 1;
1115 return 1;
1117 else if (buff_stat & TX_T_DONE) {
1118 update_tx_stats(dev, ptxd->status);
1119 ptxd->len = 0;
1122 if (aup->tx_full) {
1123 aup->tx_full = 0;
1124 netif_wake_queue(dev);
1127 pDB = aup->tx_db_inuse[aup->tx_head];
1128 memcpy((void *)pDB->vaddr, skb->data, skb->len);
1129 if (skb->len < ETH_ZLEN) {
1130 for (i=skb->len; i<ETH_ZLEN; i++) {
1131 ((char *)pDB->vaddr)[i] = 0;
1133 ptxd->len = ETH_ZLEN;
1135 else
1136 ptxd->len = skb->len;
1138 ps->tx_packets++;
1139 ps->tx_bytes += ptxd->len;
1141 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1142 au_sync();
1143 dev_kfree_skb(skb);
1144 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1145 dev->trans_start = jiffies;
1146 return 0;
1149 static inline void update_rx_stats(struct net_device *dev, u32 status)
1151 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1152 struct net_device_stats *ps = &aup->stats;
1154 ps->rx_packets++;
1155 if (status & RX_MCAST_FRAME)
1156 ps->multicast++;
1158 if (status & RX_ERROR) {
1159 ps->rx_errors++;
1160 if (status & RX_MISSED_FRAME)
1161 ps->rx_missed_errors++;
1162 if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR))
1163 ps->rx_length_errors++;
1164 if (status & RX_CRC_ERROR)
1165 ps->rx_crc_errors++;
1166 if (status & RX_COLL)
1167 ps->collisions++;
1169 else
1170 ps->rx_bytes += status & RX_FRAME_LEN_MASK;
1174 /*
1175 * Au1000 receive routine.
1176 */
1177 static int au1000_rx(struct net_device *dev)
1179 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1180 struct sk_buff *skb;
1181 volatile rx_dma_t *prxd;
1182 u32 buff_stat, status;
1183 db_dest_t *pDB;
1184 u32 frmlen;
1186 if (au1000_debug > 5)
1187 printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);
1189 prxd = aup->rx_dma_ring[aup->rx_head];
1190 buff_stat = prxd->buff_stat;
1191 while (buff_stat & RX_T_DONE) {
1192 status = prxd->status;
1193 pDB = aup->rx_db_inuse[aup->rx_head];
1194 update_rx_stats(dev, status);
1195 if (!(status & RX_ERROR)) {
1197 /* good frame */
1198 frmlen = (status & RX_FRAME_LEN_MASK);
1199 frmlen -= 4; /* Remove FCS */
1200 skb = dev_alloc_skb(frmlen + 2);
1201 if (skb == NULL) {
1202 printk(KERN_ERR
1203 "%s: Memory squeeze, dropping packet.\n",
1204 dev->name);
1205 aup->stats.rx_dropped++;
1206 continue;
1208 skb->dev = dev;
1209 skb_reserve(skb, 2); /* 16 byte IP header align */
1210 eth_copy_and_sum(skb,
1211 (unsigned char *)pDB->vaddr, frmlen, 0);
1212 skb_put(skb, frmlen);
1213 skb->protocol = eth_type_trans(skb, dev);
1214 netif_rx(skb); /* pass the packet to upper layers */
1216 else {
1217 if (au1000_debug > 4) {
1218 if (status & RX_MISSED_FRAME)
1219 printk("rx miss\n");
1220 if (status & RX_WDOG_TIMER)
1221 printk("rx wdog\n");
1222 if (status & RX_RUNT)
1223 printk("rx runt\n");
1224 if (status & RX_OVERLEN)
1225 printk("rx overlen\n");
1226 if (status & RX_COLL)
1227 printk("rx coll\n");
1228 if (status & RX_MII_ERROR)
1229 printk("rx mii error\n");
1230 if (status & RX_CRC_ERROR)
1231 printk("rx crc error\n");
1232 if (status & RX_LEN_ERROR)
1233 printk("rx len error\n");
1234 if (status & RX_U_CNTRL_FRAME)
1235 printk("rx u control frame\n");
1236 if (status & RX_MISSED_FRAME)
1237 printk("rx miss\n");
1240 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
1241 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
1242 au_sync();
1244 /* next descriptor */
1245 prxd = aup->rx_dma_ring[aup->rx_head];
1246 buff_stat = prxd->buff_stat;
1247 dev->last_rx = jiffies;
1249 return 0;
1253 /*
1254 * Au1000 interrupt service routine.
1255 */
1256 static irqreturn_t au1000_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1258 struct net_device *dev = (struct net_device *) dev_id;
1260 if (dev == NULL) {
1261 printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
1262 return IRQ_RETVAL(1);
1265 /* Handle RX interrupts first to minimize chance of overrun */
1267 au1000_rx(dev);
1268 au1000_tx_ack(dev);
1269 return IRQ_RETVAL(1);
1273 /*
1274 * The Tx ring has been full longer than the watchdog timeout
1275 * value. The transmitter must be hung?
1276 */
1277 static void au1000_tx_timeout(struct net_device *dev)
1279 printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
1280 reset_mac(dev);
1281 au1000_init(dev);
1282 dev->trans_start = jiffies;
1283 netif_wake_queue(dev);
1286 static void set_rx_mode(struct net_device *dev)
1288 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1290 if (au1000_debug > 4)
1291 printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags);
1293 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1294 aup->mac->control |= MAC_PROMISCUOUS;
1295 printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
1296 } else if ((dev->flags & IFF_ALLMULTI) ||
1297 dev->mc_count > MULTICAST_FILTER_LIMIT) {
1298 aup->mac->control |= MAC_PASS_ALL_MULTI;
1299 aup->mac->control &= ~MAC_PROMISCUOUS;
1300 printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
1301 } else {
1302 int i;
1303 struct dev_mc_list *mclist;
1304 u32 mc_filter[2]; /* Multicast hash filter */
1306 mc_filter[1] = mc_filter[0] = 0;
1307 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1308 i++, mclist = mclist->next) {
1309 set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26,
1310 (long *)mc_filter);
1312 aup->mac->multi_hash_high = mc_filter[1];
1313 aup->mac->multi_hash_low = mc_filter[0];
1314 aup->mac->control &= ~MAC_PROMISCUOUS;
1315 aup->mac->control |= MAC_HASH_MODE;
1319 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1321 struct au1000_private *aup = (struct au1000_private *)dev->priv;
1323 if (!netif_running(dev)) return -EINVAL;
1325 if (!aup->phy_dev) return -EINVAL; // PHY not controllable
1327 return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd);
1330 static struct net_device_stats *au1000_get_stats(struct net_device *dev)
1332 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1334 if (au1000_debug > 4)
1335 printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev);
1337 if (netif_device_present(dev)) {
1338 return &aup->stats;
1340 return 0;
1343 module_init(au1000_init_module);
1344 module_exit(au1000_cleanup_module);