ia64/linux-2.6.18-xen.hg

view fs/ufs/inode.c @ 524:7f8b544237bf

netfront: Allow netfront in domain 0.

This is useful if your physical network device is in a utility domain.

Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
author Keir Fraser <keir.fraser@citrix.com>
date Tue Apr 15 15:18:58 2008 +0100 (2008-04-15)
parents 831230e53067
children
line source
1 /*
2 * linux/fs/ufs/inode.c
3 *
4 * Copyright (C) 1998
5 * Daniel Pirkl <daniel.pirkl@email.cz>
6 * Charles University, Faculty of Mathematics and Physics
7 *
8 * from
9 *
10 * linux/fs/ext2/inode.c
11 *
12 * Copyright (C) 1992, 1993, 1994, 1995
13 * Remy Card (card@masi.ibp.fr)
14 * Laboratoire MASI - Institut Blaise Pascal
15 * Universite Pierre et Marie Curie (Paris VI)
16 *
17 * from
18 *
19 * linux/fs/minix/inode.c
20 *
21 * Copyright (C) 1991, 1992 Linus Torvalds
22 *
23 * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
24 * Big-endian to little-endian byte-swapping/bitmaps by
25 * David S. Miller (davem@caip.rutgers.edu), 1995
26 */
28 #include <asm/uaccess.h>
29 #include <asm/system.h>
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/ufs_fs.h>
34 #include <linux/time.h>
35 #include <linux/stat.h>
36 #include <linux/string.h>
37 #include <linux/mm.h>
38 #include <linux/smp_lock.h>
39 #include <linux/buffer_head.h>
41 #include "swab.h"
42 #include "util.h"
44 static u64 ufs_frag_map(struct inode *inode, sector_t frag);
46 static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4])
47 {
48 struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
49 int ptrs = uspi->s_apb;
50 int ptrs_bits = uspi->s_apbshift;
51 const long direct_blocks = UFS_NDADDR,
52 indirect_blocks = ptrs,
53 double_blocks = (1 << (ptrs_bits * 2));
54 int n = 0;
57 UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
58 if (i_block < 0) {
59 ufs_warning(inode->i_sb, "ufs_block_to_path", "block < 0");
60 } else if (i_block < direct_blocks) {
61 offsets[n++] = i_block;
62 } else if ((i_block -= direct_blocks) < indirect_blocks) {
63 offsets[n++] = UFS_IND_BLOCK;
64 offsets[n++] = i_block;
65 } else if ((i_block -= indirect_blocks) < double_blocks) {
66 offsets[n++] = UFS_DIND_BLOCK;
67 offsets[n++] = i_block >> ptrs_bits;
68 offsets[n++] = i_block & (ptrs - 1);
69 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
70 offsets[n++] = UFS_TIND_BLOCK;
71 offsets[n++] = i_block >> (ptrs_bits * 2);
72 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
73 offsets[n++] = i_block & (ptrs - 1);
74 } else {
75 ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
76 }
77 return n;
78 }
80 /*
81 * Returns the location of the fragment from
82 * the begining of the filesystem.
83 */
85 static u64 ufs_frag_map(struct inode *inode, sector_t frag)
86 {
87 struct ufs_inode_info *ufsi = UFS_I(inode);
88 struct super_block *sb = inode->i_sb;
89 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
90 u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
91 int shift = uspi->s_apbshift-uspi->s_fpbshift;
92 sector_t offsets[4], *p;
93 int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
94 u64 ret = 0L;
95 __fs32 block;
96 __fs64 u2_block = 0L;
97 unsigned flags = UFS_SB(sb)->s_flags;
98 u64 temp = 0L;
100 UFSD(": frag = %llu depth = %d\n", (unsigned long long)frag, depth);
101 UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
102 uspi->s_fpbshift, uspi->s_apbmask,
103 (unsigned long long)mask);
105 if (depth == 0)
106 return 0;
108 p = offsets;
110 lock_kernel();
111 if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
112 goto ufs2;
114 block = ufsi->i_u1.i_data[*p++];
115 if (!block)
116 goto out;
117 while (--depth) {
118 struct buffer_head *bh;
119 sector_t n = *p++;
121 bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift));
122 if (!bh)
123 goto out;
124 block = ((__fs32 *) bh->b_data)[n & mask];
125 brelse (bh);
126 if (!block)
127 goto out;
128 }
129 ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask));
130 goto out;
131 ufs2:
132 u2_block = ufsi->i_u1.u2_i_data[*p++];
133 if (!u2_block)
134 goto out;
137 while (--depth) {
138 struct buffer_head *bh;
139 sector_t n = *p++;
142 temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block);
143 bh = sb_bread(sb, temp +(u64) (n>>shift));
144 if (!bh)
145 goto out;
146 u2_block = ((__fs64 *)bh->b_data)[n & mask];
147 brelse(bh);
148 if (!u2_block)
149 goto out;
150 }
151 temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block);
152 ret = temp + (u64) (frag & uspi->s_fpbmask);
154 out:
155 unlock_kernel();
156 return ret;
157 }
159 static void ufs_clear_frag(struct inode *inode, struct buffer_head *bh)
160 {
161 lock_buffer(bh);
162 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
163 set_buffer_uptodate(bh);
164 mark_buffer_dirty(bh);
165 unlock_buffer(bh);
166 if (IS_SYNC(inode))
167 sync_dirty_buffer(bh);
168 }
170 static struct buffer_head *
171 ufs_clear_frags(struct inode *inode, sector_t beg,
172 unsigned int n, sector_t want)
173 {
174 struct buffer_head *res = NULL, *bh;
175 sector_t end = beg + n;
177 for (; beg < end; ++beg) {
178 bh = sb_getblk(inode->i_sb, beg);
179 ufs_clear_frag(inode, bh);
180 if (want != beg)
181 brelse(bh);
182 else
183 res = bh;
184 }
185 BUG_ON(!res);
186 return res;
187 }
189 /**
190 * ufs_inode_getfrag() - allocate new fragment(s)
191 * @inode - pointer to inode
192 * @fragment - number of `fragment' which hold pointer
193 * to new allocated fragment(s)
194 * @new_fragment - number of new allocated fragment(s)
195 * @required - how many fragment(s) we require
196 * @err - we set it if something wrong
197 * @phys - pointer to where we save physical number of new allocated fragments,
198 * NULL if we allocate not data(indirect blocks for example).
199 * @new - we set it if we allocate new block
200 * @locked_page - for ufs_new_fragments()
201 */
202 static struct buffer_head *
203 ufs_inode_getfrag(struct inode *inode, unsigned int fragment,
204 sector_t new_fragment, unsigned int required, int *err,
205 long *phys, int *new, struct page *locked_page)
206 {
207 struct ufs_inode_info *ufsi = UFS_I(inode);
208 struct super_block *sb = inode->i_sb;
209 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
210 struct buffer_head * result;
211 unsigned block, blockoff, lastfrag, lastblock, lastblockoff;
212 unsigned tmp, goal;
213 __fs32 * p, * p2;
215 UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, required %u, "
216 "metadata %d\n", inode->i_ino, fragment,
217 (unsigned long long)new_fragment, required, !phys);
219 /* TODO : to be done for write support
220 if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
221 goto ufs2;
222 */
224 block = ufs_fragstoblks (fragment);
225 blockoff = ufs_fragnum (fragment);
226 p = ufsi->i_u1.i_data + block;
227 goal = 0;
229 repeat:
230 tmp = fs32_to_cpu(sb, *p);
231 lastfrag = ufsi->i_lastfrag;
232 if (tmp && fragment < lastfrag) {
233 if (!phys) {
234 result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
235 if (tmp == fs32_to_cpu(sb, *p)) {
236 UFSD("EXIT, result %u\n", tmp + blockoff);
237 return result;
238 }
239 brelse (result);
240 goto repeat;
241 } else {
242 *phys = tmp + blockoff;
243 return NULL;
244 }
245 }
247 lastblock = ufs_fragstoblks (lastfrag);
248 lastblockoff = ufs_fragnum (lastfrag);
249 /*
250 * We will extend file into new block beyond last allocated block
251 */
252 if (lastblock < block) {
253 /*
254 * We must reallocate last allocated block
255 */
256 if (lastblockoff) {
257 p2 = ufsi->i_u1.i_data + lastblock;
258 tmp = ufs_new_fragments (inode, p2, lastfrag,
259 fs32_to_cpu(sb, *p2), uspi->s_fpb - lastblockoff,
260 err, locked_page);
261 if (!tmp) {
262 if (lastfrag != ufsi->i_lastfrag)
263 goto repeat;
264 else
265 return NULL;
266 }
267 lastfrag = ufsi->i_lastfrag;
269 }
270 tmp = fs32_to_cpu(sb, ufsi->i_u1.i_data[lastblock]);
271 if (tmp)
272 goal = tmp + uspi->s_fpb;
273 tmp = ufs_new_fragments (inode, p, fragment - blockoff,
274 goal, required + blockoff,
275 err, locked_page);
276 }
277 /*
278 * We will extend last allocated block
279 */
280 else if (lastblock == block) {
281 tmp = ufs_new_fragments(inode, p, fragment - (blockoff - lastblockoff),
282 fs32_to_cpu(sb, *p), required + (blockoff - lastblockoff),
283 err, locked_page);
284 } else /* (lastblock > block) */ {
285 /*
286 * We will allocate new block before last allocated block
287 */
288 if (block) {
289 tmp = fs32_to_cpu(sb, ufsi->i_u1.i_data[block-1]);
290 if (tmp)
291 goal = tmp + uspi->s_fpb;
292 }
293 tmp = ufs_new_fragments(inode, p, fragment - blockoff,
294 goal, uspi->s_fpb, err, locked_page);
295 }
296 if (!tmp) {
297 if ((!blockoff && *p) ||
298 (blockoff && lastfrag != ufsi->i_lastfrag))
299 goto repeat;
300 *err = -ENOSPC;
301 return NULL;
302 }
304 if (!phys) {
305 result = ufs_clear_frags(inode, tmp, required, tmp + blockoff);
306 } else {
307 *phys = tmp + blockoff;
308 result = NULL;
309 *err = 0;
310 *new = 1;
311 }
313 inode->i_ctime = CURRENT_TIME_SEC;
314 if (IS_SYNC(inode))
315 ufs_sync_inode (inode);
316 mark_inode_dirty(inode);
317 UFSD("EXIT, result %u\n", tmp + blockoff);
318 return result;
320 /* This part : To be implemented ....
321 Required only for writing, not required for READ-ONLY.
322 ufs2:
324 u2_block = ufs_fragstoblks(fragment);
325 u2_blockoff = ufs_fragnum(fragment);
326 p = ufsi->i_u1.u2_i_data + block;
327 goal = 0;
329 repeat2:
330 tmp = fs32_to_cpu(sb, *p);
331 lastfrag = ufsi->i_lastfrag;
333 */
334 }
336 /**
337 * ufs_inode_getblock() - allocate new block
338 * @inode - pointer to inode
339 * @bh - pointer to block which hold "pointer" to new allocated block
340 * @fragment - number of `fragment' which hold pointer
341 * to new allocated block
342 * @new_fragment - number of new allocated fragment
343 * (block will hold this fragment and also uspi->s_fpb-1)
344 * @err - see ufs_inode_getfrag()
345 * @phys - see ufs_inode_getfrag()
346 * @new - see ufs_inode_getfrag()
347 * @locked_page - see ufs_inode_getfrag()
348 */
349 static struct buffer_head *
350 ufs_inode_getblock(struct inode *inode, struct buffer_head *bh,
351 unsigned int fragment, sector_t new_fragment, int *err,
352 long *phys, int *new, struct page *locked_page)
353 {
354 struct super_block *sb = inode->i_sb;
355 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
356 struct buffer_head * result;
357 unsigned tmp, goal, block, blockoff;
358 __fs32 * p;
360 block = ufs_fragstoblks (fragment);
361 blockoff = ufs_fragnum (fragment);
363 UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, metadata %d\n",
364 inode->i_ino, fragment, (unsigned long long)new_fragment, !phys);
366 result = NULL;
367 if (!bh)
368 goto out;
369 if (!buffer_uptodate(bh)) {
370 ll_rw_block (READ, 1, &bh);
371 wait_on_buffer (bh);
372 if (!buffer_uptodate(bh))
373 goto out;
374 }
376 p = (__fs32 *) bh->b_data + block;
377 repeat:
378 tmp = fs32_to_cpu(sb, *p);
379 if (tmp) {
380 if (!phys) {
381 result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
382 if (tmp == fs32_to_cpu(sb, *p))
383 goto out;
384 brelse (result);
385 goto repeat;
386 } else {
387 *phys = tmp + blockoff;
388 goto out;
389 }
390 }
392 if (block && (tmp = fs32_to_cpu(sb, ((__fs32*)bh->b_data)[block-1])))
393 goal = tmp + uspi->s_fpb;
394 else
395 goal = bh->b_blocknr + uspi->s_fpb;
396 tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
397 uspi->s_fpb, err, locked_page);
398 if (!tmp) {
399 if (fs32_to_cpu(sb, *p))
400 goto repeat;
401 goto out;
402 }
405 if (!phys) {
406 result = ufs_clear_frags(inode, tmp, uspi->s_fpb,
407 tmp + blockoff);
408 } else {
409 *phys = tmp + blockoff;
410 *new = 1;
411 }
413 mark_buffer_dirty(bh);
414 if (IS_SYNC(inode))
415 sync_dirty_buffer(bh);
416 inode->i_ctime = CURRENT_TIME_SEC;
417 mark_inode_dirty(inode);
418 UFSD("result %u\n", tmp + blockoff);
419 out:
420 brelse (bh);
421 UFSD("EXIT\n");
422 return result;
423 }
425 /**
426 * ufs_getfrag_bloc() - `get_block_t' function, interface between UFS and
427 * readpage, writepage and so on
428 */
430 int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
431 {
432 struct super_block * sb = inode->i_sb;
433 struct ufs_sb_private_info * uspi = UFS_SB(sb)->s_uspi;
434 struct buffer_head * bh;
435 int ret, err, new;
436 unsigned long ptr,phys;
437 u64 phys64 = 0;
439 if (!create) {
440 phys64 = ufs_frag_map(inode, fragment);
441 UFSD("phys64 = %llu\n", (unsigned long long)phys64);
442 if (phys64)
443 map_bh(bh_result, sb, phys64);
444 return 0;
445 }
447 /* This code entered only while writing ....? */
449 err = -EIO;
450 new = 0;
451 ret = 0;
452 bh = NULL;
454 lock_kernel();
456 UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
457 if (fragment < 0)
458 goto abort_negative;
459 if (fragment >
460 ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
461 << uspi->s_fpbshift))
462 goto abort_too_big;
464 err = 0;
465 ptr = fragment;
467 /*
468 * ok, these macros clean the logic up a bit and make
469 * it much more readable:
470 */
471 #define GET_INODE_DATABLOCK(x) \
472 ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new, bh_result->b_page)
473 #define GET_INODE_PTR(x) \
474 ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL, bh_result->b_page)
475 #define GET_INDIRECT_DATABLOCK(x) \
476 ufs_inode_getblock(inode, bh, x, fragment, \
477 &err, &phys, &new, bh_result->b_page);
478 #define GET_INDIRECT_PTR(x) \
479 ufs_inode_getblock(inode, bh, x, fragment, \
480 &err, NULL, NULL, bh_result->b_page);
482 if (ptr < UFS_NDIR_FRAGMENT) {
483 bh = GET_INODE_DATABLOCK(ptr);
484 goto out;
485 }
486 ptr -= UFS_NDIR_FRAGMENT;
487 if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
488 bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
489 goto get_indirect;
490 }
491 ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
492 if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
493 bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
494 goto get_double;
495 }
496 ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
497 bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
498 bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
499 get_double:
500 bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
501 get_indirect:
502 bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
504 #undef GET_INODE_DATABLOCK
505 #undef GET_INODE_PTR
506 #undef GET_INDIRECT_DATABLOCK
507 #undef GET_INDIRECT_PTR
509 out:
510 if (err)
511 goto abort;
512 if (new)
513 set_buffer_new(bh_result);
514 map_bh(bh_result, sb, phys);
515 abort:
516 unlock_kernel();
517 return err;
519 abort_negative:
520 ufs_warning(sb, "ufs_get_block", "block < 0");
521 goto abort;
523 abort_too_big:
524 ufs_warning(sb, "ufs_get_block", "block > big");
525 goto abort;
526 }
528 static struct buffer_head *ufs_getfrag(struct inode *inode,
529 unsigned int fragment,
530 int create, int *err)
531 {
532 struct buffer_head dummy;
533 int error;
535 dummy.b_state = 0;
536 dummy.b_blocknr = -1000;
537 error = ufs_getfrag_block(inode, fragment, &dummy, create);
538 *err = error;
539 if (!error && buffer_mapped(&dummy)) {
540 struct buffer_head *bh;
541 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
542 if (buffer_new(&dummy)) {
543 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
544 set_buffer_uptodate(bh);
545 mark_buffer_dirty(bh);
546 }
547 return bh;
548 }
549 return NULL;
550 }
552 struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
553 int create, int * err)
554 {
555 struct buffer_head * bh;
557 UFSD("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment);
558 bh = ufs_getfrag (inode, fragment, create, err);
559 if (!bh || buffer_uptodate(bh))
560 return bh;
561 ll_rw_block (READ, 1, &bh);
562 wait_on_buffer (bh);
563 if (buffer_uptodate(bh))
564 return bh;
565 brelse (bh);
566 *err = -EIO;
567 return NULL;
568 }
570 static int ufs_writepage(struct page *page, struct writeback_control *wbc)
571 {
572 return block_write_full_page(page,ufs_getfrag_block,wbc);
573 }
574 static int ufs_readpage(struct file *file, struct page *page)
575 {
576 return block_read_full_page(page,ufs_getfrag_block);
577 }
578 static int ufs_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)
579 {
580 return block_prepare_write(page,from,to,ufs_getfrag_block);
581 }
582 static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
583 {
584 return generic_block_bmap(mapping,block,ufs_getfrag_block);
585 }
586 const struct address_space_operations ufs_aops = {
587 .readpage = ufs_readpage,
588 .writepage = ufs_writepage,
589 .sync_page = block_sync_page,
590 .prepare_write = ufs_prepare_write,
591 .commit_write = generic_commit_write,
592 .bmap = ufs_bmap
593 };
595 static void ufs_set_inode_ops(struct inode *inode)
596 {
597 if (S_ISREG(inode->i_mode)) {
598 inode->i_op = &ufs_file_inode_operations;
599 inode->i_fop = &ufs_file_operations;
600 inode->i_mapping->a_ops = &ufs_aops;
601 } else if (S_ISDIR(inode->i_mode)) {
602 inode->i_op = &ufs_dir_inode_operations;
603 inode->i_fop = &ufs_dir_operations;
604 inode->i_mapping->a_ops = &ufs_aops;
605 } else if (S_ISLNK(inode->i_mode)) {
606 if (!inode->i_blocks)
607 inode->i_op = &ufs_fast_symlink_inode_operations;
608 else {
609 inode->i_op = &page_symlink_inode_operations;
610 inode->i_mapping->a_ops = &ufs_aops;
611 }
612 } else
613 init_special_inode(inode, inode->i_mode,
614 ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
615 }
617 static void ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
618 {
619 struct ufs_inode_info *ufsi = UFS_I(inode);
620 struct super_block *sb = inode->i_sb;
621 mode_t mode;
622 unsigned i;
624 /*
625 * Copy data to the in-core inode.
626 */
627 inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
628 inode->i_nlink = fs16_to_cpu(sb, ufs_inode->ui_nlink);
629 if (inode->i_nlink == 0)
630 ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
632 /*
633 * Linux now has 32-bit uid and gid, so we can support EFT.
634 */
635 inode->i_uid = ufs_get_inode_uid(sb, ufs_inode);
636 inode->i_gid = ufs_get_inode_gid(sb, ufs_inode);
638 inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
639 inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
640 inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
641 inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
642 inode->i_mtime.tv_nsec = 0;
643 inode->i_atime.tv_nsec = 0;
644 inode->i_ctime.tv_nsec = 0;
645 inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
646 ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
647 ufsi->i_gen = fs32_to_cpu(sb, ufs_inode->ui_gen);
648 ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
649 ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
652 if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
653 for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
654 ufsi->i_u1.i_data[i] = ufs_inode->ui_u2.ui_addr.ui_db[i];
655 } else {
656 for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
657 ufsi->i_u1.i_symlink[i] = ufs_inode->ui_u2.ui_symlink[i];
658 }
659 }
661 static void ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
662 {
663 struct ufs_inode_info *ufsi = UFS_I(inode);
664 struct super_block *sb = inode->i_sb;
665 mode_t mode;
666 unsigned i;
668 UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
669 /*
670 * Copy data to the in-core inode.
671 */
672 inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
673 inode->i_nlink = fs16_to_cpu(sb, ufs2_inode->ui_nlink);
674 if (inode->i_nlink == 0)
675 ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
677 /*
678 * Linux now has 32-bit uid and gid, so we can support EFT.
679 */
680 inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid);
681 inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid);
683 inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
684 inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_atime.tv_sec);
685 inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_ctime.tv_sec);
686 inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_mtime.tv_sec);
687 inode->i_mtime.tv_nsec = 0;
688 inode->i_atime.tv_nsec = 0;
689 inode->i_ctime.tv_nsec = 0;
690 inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
691 ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
692 ufsi->i_gen = fs32_to_cpu(sb, ufs2_inode->ui_gen);
693 /*
694 ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
695 ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
696 */
698 if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
699 for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
700 ufsi->i_u1.u2_i_data[i] =
701 ufs2_inode->ui_u2.ui_addr.ui_db[i];
702 } else {
703 for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
704 ufsi->i_u1.i_symlink[i] = ufs2_inode->ui_u2.ui_symlink[i];
705 }
706 }
708 void ufs_read_inode(struct inode * inode)
709 {
710 struct ufs_inode_info *ufsi = UFS_I(inode);
711 struct super_block * sb;
712 struct ufs_sb_private_info * uspi;
713 struct buffer_head * bh;
715 UFSD("ENTER, ino %lu\n", inode->i_ino);
717 sb = inode->i_sb;
718 uspi = UFS_SB(sb)->s_uspi;
720 if (inode->i_ino < UFS_ROOTINO ||
721 inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
722 ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
723 inode->i_ino);
724 goto bad_inode;
725 }
727 bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
728 if (!bh) {
729 ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
730 inode->i_ino);
731 goto bad_inode;
732 }
733 if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
734 struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
736 ufs2_read_inode(inode,
737 ufs2_inode + ufs_inotofsbo(inode->i_ino));
738 } else {
739 struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
741 ufs1_read_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
742 }
744 inode->i_blksize = PAGE_SIZE;/*This is the optimal IO size (for stat)*/
745 inode->i_version++;
746 ufsi->i_lastfrag =
747 (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
748 ufsi->i_dir_start_lookup = 0;
749 ufsi->i_osync = 0;
751 ufs_set_inode_ops(inode);
753 brelse(bh);
755 UFSD("EXIT\n");
756 return;
758 bad_inode:
759 make_bad_inode(inode);
760 }
762 static int ufs_update_inode(struct inode * inode, int do_sync)
763 {
764 struct ufs_inode_info *ufsi = UFS_I(inode);
765 struct super_block * sb;
766 struct ufs_sb_private_info * uspi;
767 struct buffer_head * bh;
768 struct ufs_inode * ufs_inode;
769 unsigned i;
770 unsigned flags;
772 UFSD("ENTER, ino %lu\n", inode->i_ino);
774 sb = inode->i_sb;
775 uspi = UFS_SB(sb)->s_uspi;
776 flags = UFS_SB(sb)->s_flags;
778 if (inode->i_ino < UFS_ROOTINO ||
779 inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
780 ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
781 return -1;
782 }
784 bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
785 if (!bh) {
786 ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
787 return -1;
788 }
789 ufs_inode = (struct ufs_inode *) (bh->b_data + ufs_inotofsbo(inode->i_ino) * sizeof(struct ufs_inode));
791 ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
792 ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
794 ufs_set_inode_uid(sb, ufs_inode, inode->i_uid);
795 ufs_set_inode_gid(sb, ufs_inode, inode->i_gid);
797 ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
798 ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
799 ufs_inode->ui_atime.tv_usec = 0;
800 ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
801 ufs_inode->ui_ctime.tv_usec = 0;
802 ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
803 ufs_inode->ui_mtime.tv_usec = 0;
804 ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
805 ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
806 ufs_inode->ui_gen = cpu_to_fs32(sb, ufsi->i_gen);
808 if ((flags & UFS_UID_MASK) == UFS_UID_EFT) {
809 ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
810 ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
811 }
813 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
814 /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
815 ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
816 } else if (inode->i_blocks) {
817 for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
818 ufs_inode->ui_u2.ui_addr.ui_db[i] = ufsi->i_u1.i_data[i];
819 }
820 else {
821 for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
822 ufs_inode->ui_u2.ui_symlink[i] = ufsi->i_u1.i_symlink[i];
823 }
825 if (!inode->i_nlink)
826 memset (ufs_inode, 0, sizeof(struct ufs_inode));
828 mark_buffer_dirty(bh);
829 if (do_sync)
830 sync_dirty_buffer(bh);
831 brelse (bh);
833 UFSD("EXIT\n");
834 return 0;
835 }
837 int ufs_write_inode (struct inode * inode, int wait)
838 {
839 int ret;
840 lock_kernel();
841 ret = ufs_update_inode (inode, wait);
842 unlock_kernel();
843 return ret;
844 }
846 int ufs_sync_inode (struct inode *inode)
847 {
848 return ufs_update_inode (inode, 1);
849 }
851 void ufs_delete_inode (struct inode * inode)
852 {
853 loff_t old_i_size;
855 truncate_inode_pages(&inode->i_data, 0);
856 /*UFS_I(inode)->i_dtime = CURRENT_TIME;*/
857 lock_kernel();
858 mark_inode_dirty(inode);
859 ufs_update_inode(inode, IS_SYNC(inode));
860 old_i_size = inode->i_size;
861 inode->i_size = 0;
862 if (inode->i_blocks && ufs_truncate(inode, old_i_size))
863 ufs_warning(inode->i_sb, __FUNCTION__, "ufs_truncate failed\n");
864 ufs_free_inode (inode);
865 unlock_kernel();
866 }