ia64/linux-2.6.18-xen.hg

view fs/jfs/jfs_logmgr.c @ 524:7f8b544237bf

netfront: Allow netfront in domain 0.

This is useful if your physical network device is in a utility domain.

Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
author Keir Fraser <keir.fraser@citrix.com>
date Tue Apr 15 15:18:58 2008 +0100 (2008-04-15)
parents 831230e53067
children
line source
1 /*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 * Portions Copyright (C) Christoph Hellwig, 2001-2002
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
20 /*
21 * jfs_logmgr.c: log manager
22 *
23 * for related information, see transaction manager (jfs_txnmgr.c), and
24 * recovery manager (jfs_logredo.c).
25 *
26 * note: for detail, RTFS.
27 *
28 * log buffer manager:
29 * special purpose buffer manager supporting log i/o requirements.
30 * per log serial pageout of logpage
31 * queuing i/o requests and redrive i/o at iodone
32 * maintain current logpage buffer
33 * no caching since append only
34 * appropriate jfs buffer cache buffers as needed
35 *
36 * group commit:
37 * transactions which wrote COMMIT records in the same in-memory
38 * log page during the pageout of previous/current log page(s) are
39 * committed together by the pageout of the page.
40 *
41 * TBD lazy commit:
42 * transactions are committed asynchronously when the log page
43 * containing it COMMIT is paged out when it becomes full;
44 *
45 * serialization:
46 * . a per log lock serialize log write.
47 * . a per log lock serialize group commit.
48 * . a per log lock serialize log open/close;
49 *
50 * TBD log integrity:
51 * careful-write (ping-pong) of last logpage to recover from crash
52 * in overwrite.
53 * detection of split (out-of-order) write of physical sectors
54 * of last logpage via timestamp at end of each sector
55 * with its mirror data array at trailer).
56 *
57 * alternatives:
58 * lsn - 64-bit monotonically increasing integer vs
59 * 32-bit lspn and page eor.
60 */
62 #include <linux/fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/interrupt.h>
65 #include <linux/smp_lock.h>
66 #include <linux/completion.h>
67 #include <linux/kthread.h>
68 #include <linux/buffer_head.h> /* for sync_blockdev() */
69 #include <linux/bio.h>
70 #include <linux/suspend.h>
71 #include <linux/delay.h>
72 #include <linux/mutex.h>
73 #include "jfs_incore.h"
74 #include "jfs_filsys.h"
75 #include "jfs_metapage.h"
76 #include "jfs_superblock.h"
77 #include "jfs_txnmgr.h"
78 #include "jfs_debug.h"
81 /*
82 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
83 */
84 static struct lbuf *log_redrive_list;
85 static DEFINE_SPINLOCK(log_redrive_lock);
88 /*
89 * log read/write serialization (per log)
90 */
91 #define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock)
92 #define LOG_LOCK(log) mutex_lock(&((log)->loglock))
93 #define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock))
96 /*
97 * log group commit serialization (per log)
98 */
100 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
101 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
102 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
103 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
105 /*
106 * log sync serialization (per log)
107 */
108 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
109 #define LOGSYNC_BARRIER(logsize) ((logsize)/4)
110 /*
111 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
112 #define LOGSYNC_BARRIER(logsize) ((logsize)/2)
113 */
116 /*
117 * log buffer cache synchronization
118 */
119 static DEFINE_SPINLOCK(jfsLCacheLock);
121 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
122 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
124 /*
125 * See __SLEEP_COND in jfs_locks.h
126 */
127 #define LCACHE_SLEEP_COND(wq, cond, flags) \
128 do { \
129 if (cond) \
130 break; \
131 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
132 } while (0)
134 #define LCACHE_WAKEUP(event) wake_up(event)
137 /*
138 * lbuf buffer cache (lCache) control
139 */
140 /* log buffer manager pageout control (cumulative, inclusive) */
141 #define lbmREAD 0x0001
142 #define lbmWRITE 0x0002 /* enqueue at tail of write queue;
143 * init pageout if at head of queue;
144 */
145 #define lbmRELEASE 0x0004 /* remove from write queue
146 * at completion of pageout;
147 * do not free/recycle it yet:
148 * caller will free it;
149 */
150 #define lbmSYNC 0x0008 /* do not return to freelist
151 * when removed from write queue;
152 */
153 #define lbmFREE 0x0010 /* return to freelist
154 * at completion of pageout;
155 * the buffer may be recycled;
156 */
157 #define lbmDONE 0x0020
158 #define lbmERROR 0x0040
159 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
160 * of log page
161 */
162 #define lbmDIRECT 0x0100
164 /*
165 * Global list of active external journals
166 */
167 static LIST_HEAD(jfs_external_logs);
168 static struct jfs_log *dummy_log = NULL;
169 static DEFINE_MUTEX(jfs_log_mutex);
171 /*
172 * forward references
173 */
174 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
175 struct lrd * lrd, struct tlock * tlck);
177 static int lmNextPage(struct jfs_log * log);
178 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
179 int activate);
181 static int open_inline_log(struct super_block *sb);
182 static int open_dummy_log(struct super_block *sb);
183 static int lbmLogInit(struct jfs_log * log);
184 static void lbmLogShutdown(struct jfs_log * log);
185 static struct lbuf *lbmAllocate(struct jfs_log * log, int);
186 static void lbmFree(struct lbuf * bp);
187 static void lbmfree(struct lbuf * bp);
188 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
189 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
190 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
191 static int lbmIOWait(struct lbuf * bp, int flag);
192 static bio_end_io_t lbmIODone;
193 static void lbmStartIO(struct lbuf * bp);
194 static void lmGCwrite(struct jfs_log * log, int cant_block);
195 static int lmLogSync(struct jfs_log * log, int hard_sync);
199 /*
200 * statistics
201 */
202 #ifdef CONFIG_JFS_STATISTICS
203 static struct lmStat {
204 uint commit; /* # of commit */
205 uint pagedone; /* # of page written */
206 uint submitted; /* # of pages submitted */
207 uint full_page; /* # of full pages submitted */
208 uint partial_page; /* # of partial pages submitted */
209 } lmStat;
210 #endif
213 /*
214 * NAME: lmLog()
215 *
216 * FUNCTION: write a log record;
217 *
218 * PARAMETER:
219 *
220 * RETURN: lsn - offset to the next log record to write (end-of-log);
221 * -1 - error;
222 *
223 * note: todo: log error handler
224 */
225 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
226 struct tlock * tlck)
227 {
228 int lsn;
229 int diffp, difft;
230 struct metapage *mp = NULL;
231 unsigned long flags;
233 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
234 log, tblk, lrd, tlck);
236 LOG_LOCK(log);
238 /* log by (out-of-transaction) JFS ? */
239 if (tblk == NULL)
240 goto writeRecord;
242 /* log from page ? */
243 if (tlck == NULL ||
244 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
245 goto writeRecord;
247 /*
248 * initialize/update page/transaction recovery lsn
249 */
250 lsn = log->lsn;
252 LOGSYNC_LOCK(log, flags);
254 /*
255 * initialize page lsn if first log write of the page
256 */
257 if (mp->lsn == 0) {
258 mp->log = log;
259 mp->lsn = lsn;
260 log->count++;
262 /* insert page at tail of logsynclist */
263 list_add_tail(&mp->synclist, &log->synclist);
264 }
266 /*
267 * initialize/update lsn of tblock of the page
268 *
269 * transaction inherits oldest lsn of pages associated
270 * with allocation/deallocation of resources (their
271 * log records are used to reconstruct allocation map
272 * at recovery time: inode for inode allocation map,
273 * B+-tree index of extent descriptors for block
274 * allocation map);
275 * allocation map pages inherit transaction lsn at
276 * commit time to allow forwarding log syncpt past log
277 * records associated with allocation/deallocation of
278 * resources only after persistent map of these map pages
279 * have been updated and propagated to home.
280 */
281 /*
282 * initialize transaction lsn:
283 */
284 if (tblk->lsn == 0) {
285 /* inherit lsn of its first page logged */
286 tblk->lsn = mp->lsn;
287 log->count++;
289 /* insert tblock after the page on logsynclist */
290 list_add(&tblk->synclist, &mp->synclist);
291 }
292 /*
293 * update transaction lsn:
294 */
295 else {
296 /* inherit oldest/smallest lsn of page */
297 logdiff(diffp, mp->lsn, log);
298 logdiff(difft, tblk->lsn, log);
299 if (diffp < difft) {
300 /* update tblock lsn with page lsn */
301 tblk->lsn = mp->lsn;
303 /* move tblock after page on logsynclist */
304 list_move(&tblk->synclist, &mp->synclist);
305 }
306 }
308 LOGSYNC_UNLOCK(log, flags);
310 /*
311 * write the log record
312 */
313 writeRecord:
314 lsn = lmWriteRecord(log, tblk, lrd, tlck);
316 /*
317 * forward log syncpt if log reached next syncpt trigger
318 */
319 logdiff(diffp, lsn, log);
320 if (diffp >= log->nextsync)
321 lsn = lmLogSync(log, 0);
323 /* update end-of-log lsn */
324 log->lsn = lsn;
326 LOG_UNLOCK(log);
328 /* return end-of-log address */
329 return lsn;
330 }
332 /*
333 * NAME: lmWriteRecord()
334 *
335 * FUNCTION: move the log record to current log page
336 *
337 * PARAMETER: cd - commit descriptor
338 *
339 * RETURN: end-of-log address
340 *
341 * serialization: LOG_LOCK() held on entry/exit
342 */
343 static int
344 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
345 struct tlock * tlck)
346 {
347 int lsn = 0; /* end-of-log address */
348 struct lbuf *bp; /* dst log page buffer */
349 struct logpage *lp; /* dst log page */
350 caddr_t dst; /* destination address in log page */
351 int dstoffset; /* end-of-log offset in log page */
352 int freespace; /* free space in log page */
353 caddr_t p; /* src meta-data page */
354 caddr_t src;
355 int srclen;
356 int nbytes; /* number of bytes to move */
357 int i;
358 int len;
359 struct linelock *linelock;
360 struct lv *lv;
361 struct lvd *lvd;
362 int l2linesize;
364 len = 0;
366 /* retrieve destination log page to write */
367 bp = (struct lbuf *) log->bp;
368 lp = (struct logpage *) bp->l_ldata;
369 dstoffset = log->eor;
371 /* any log data to write ? */
372 if (tlck == NULL)
373 goto moveLrd;
375 /*
376 * move log record data
377 */
378 /* retrieve source meta-data page to log */
379 if (tlck->flag & tlckPAGELOCK) {
380 p = (caddr_t) (tlck->mp->data);
381 linelock = (struct linelock *) & tlck->lock;
382 }
383 /* retrieve source in-memory inode to log */
384 else if (tlck->flag & tlckINODELOCK) {
385 if (tlck->type & tlckDTREE)
386 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
387 else
388 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
389 linelock = (struct linelock *) & tlck->lock;
390 }
391 #ifdef _JFS_WIP
392 else if (tlck->flag & tlckINLINELOCK) {
394 inlinelock = (struct inlinelock *) & tlck;
395 p = (caddr_t) & inlinelock->pxd;
396 linelock = (struct linelock *) & tlck;
397 }
398 #endif /* _JFS_WIP */
399 else {
400 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
401 return 0; /* Probably should trap */
402 }
403 l2linesize = linelock->l2linesize;
405 moveData:
406 ASSERT(linelock->index <= linelock->maxcnt);
408 lv = linelock->lv;
409 for (i = 0; i < linelock->index; i++, lv++) {
410 if (lv->length == 0)
411 continue;
413 /* is page full ? */
414 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
415 /* page become full: move on to next page */
416 lmNextPage(log);
418 bp = log->bp;
419 lp = (struct logpage *) bp->l_ldata;
420 dstoffset = LOGPHDRSIZE;
421 }
423 /*
424 * move log vector data
425 */
426 src = (u8 *) p + (lv->offset << l2linesize);
427 srclen = lv->length << l2linesize;
428 len += srclen;
429 while (srclen > 0) {
430 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
431 nbytes = min(freespace, srclen);
432 dst = (caddr_t) lp + dstoffset;
433 memcpy(dst, src, nbytes);
434 dstoffset += nbytes;
436 /* is page not full ? */
437 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
438 break;
440 /* page become full: move on to next page */
441 lmNextPage(log);
443 bp = (struct lbuf *) log->bp;
444 lp = (struct logpage *) bp->l_ldata;
445 dstoffset = LOGPHDRSIZE;
447 srclen -= nbytes;
448 src += nbytes;
449 }
451 /*
452 * move log vector descriptor
453 */
454 len += 4;
455 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
456 lvd->offset = cpu_to_le16(lv->offset);
457 lvd->length = cpu_to_le16(lv->length);
458 dstoffset += 4;
459 jfs_info("lmWriteRecord: lv offset:%d length:%d",
460 lv->offset, lv->length);
461 }
463 if ((i = linelock->next)) {
464 linelock = (struct linelock *) lid_to_tlock(i);
465 goto moveData;
466 }
468 /*
469 * move log record descriptor
470 */
471 moveLrd:
472 lrd->length = cpu_to_le16(len);
474 src = (caddr_t) lrd;
475 srclen = LOGRDSIZE;
477 while (srclen > 0) {
478 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
479 nbytes = min(freespace, srclen);
480 dst = (caddr_t) lp + dstoffset;
481 memcpy(dst, src, nbytes);
483 dstoffset += nbytes;
484 srclen -= nbytes;
486 /* are there more to move than freespace of page ? */
487 if (srclen)
488 goto pageFull;
490 /*
491 * end of log record descriptor
492 */
494 /* update last log record eor */
495 log->eor = dstoffset;
496 bp->l_eor = dstoffset;
497 lsn = (log->page << L2LOGPSIZE) + dstoffset;
499 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
500 tblk->clsn = lsn;
501 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
502 bp->l_eor);
504 INCREMENT(lmStat.commit); /* # of commit */
506 /*
507 * enqueue tblock for group commit:
508 *
509 * enqueue tblock of non-trivial/synchronous COMMIT
510 * at tail of group commit queue
511 * (trivial/asynchronous COMMITs are ignored by
512 * group commit.)
513 */
514 LOGGC_LOCK(log);
516 /* init tblock gc state */
517 tblk->flag = tblkGC_QUEUE;
518 tblk->bp = log->bp;
519 tblk->pn = log->page;
520 tblk->eor = log->eor;
522 /* enqueue transaction to commit queue */
523 list_add_tail(&tblk->cqueue, &log->cqueue);
525 LOGGC_UNLOCK(log);
526 }
528 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
529 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
531 /* page not full ? */
532 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
533 return lsn;
535 pageFull:
536 /* page become full: move on to next page */
537 lmNextPage(log);
539 bp = (struct lbuf *) log->bp;
540 lp = (struct logpage *) bp->l_ldata;
541 dstoffset = LOGPHDRSIZE;
542 src += nbytes;
543 }
545 return lsn;
546 }
549 /*
550 * NAME: lmNextPage()
551 *
552 * FUNCTION: write current page and allocate next page.
553 *
554 * PARAMETER: log
555 *
556 * RETURN: 0
557 *
558 * serialization: LOG_LOCK() held on entry/exit
559 */
560 static int lmNextPage(struct jfs_log * log)
561 {
562 struct logpage *lp;
563 int lspn; /* log sequence page number */
564 int pn; /* current page number */
565 struct lbuf *bp;
566 struct lbuf *nextbp;
567 struct tblock *tblk;
569 /* get current log page number and log sequence page number */
570 pn = log->page;
571 bp = log->bp;
572 lp = (struct logpage *) bp->l_ldata;
573 lspn = le32_to_cpu(lp->h.page);
575 LOGGC_LOCK(log);
577 /*
578 * write or queue the full page at the tail of write queue
579 */
580 /* get the tail tblk on commit queue */
581 if (list_empty(&log->cqueue))
582 tblk = NULL;
583 else
584 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
586 /* every tblk who has COMMIT record on the current page,
587 * and has not been committed, must be on commit queue
588 * since tblk is queued at commit queueu at the time
589 * of writing its COMMIT record on the page before
590 * page becomes full (even though the tblk thread
591 * who wrote COMMIT record may have been suspended
592 * currently);
593 */
595 /* is page bound with outstanding tail tblk ? */
596 if (tblk && tblk->pn == pn) {
597 /* mark tblk for end-of-page */
598 tblk->flag |= tblkGC_EOP;
600 if (log->cflag & logGC_PAGEOUT) {
601 /* if page is not already on write queue,
602 * just enqueue (no lbmWRITE to prevent redrive)
603 * buffer to wqueue to ensure correct serial order
604 * of the pages since log pages will be added
605 * continuously
606 */
607 if (bp->l_wqnext == NULL)
608 lbmWrite(log, bp, 0, 0);
609 } else {
610 /*
611 * No current GC leader, initiate group commit
612 */
613 log->cflag |= logGC_PAGEOUT;
614 lmGCwrite(log, 0);
615 }
616 }
617 /* page is not bound with outstanding tblk:
618 * init write or mark it to be redriven (lbmWRITE)
619 */
620 else {
621 /* finalize the page */
622 bp->l_ceor = bp->l_eor;
623 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
624 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
625 }
626 LOGGC_UNLOCK(log);
628 /*
629 * allocate/initialize next page
630 */
631 /* if log wraps, the first data page of log is 2
632 * (0 never used, 1 is superblock).
633 */
634 log->page = (pn == log->size - 1) ? 2 : pn + 1;
635 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
637 /* allocate/initialize next log page buffer */
638 nextbp = lbmAllocate(log, log->page);
639 nextbp->l_eor = log->eor;
640 log->bp = nextbp;
642 /* initialize next log page */
643 lp = (struct logpage *) nextbp->l_ldata;
644 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
645 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
647 return 0;
648 }
651 /*
652 * NAME: lmGroupCommit()
653 *
654 * FUNCTION: group commit
655 * initiate pageout of the pages with COMMIT in the order of
656 * page number - redrive pageout of the page at the head of
657 * pageout queue until full page has been written.
658 *
659 * RETURN:
660 *
661 * NOTE:
662 * LOGGC_LOCK serializes log group commit queue, and
663 * transaction blocks on the commit queue.
664 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
665 */
666 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
667 {
668 int rc = 0;
670 LOGGC_LOCK(log);
672 /* group committed already ? */
673 if (tblk->flag & tblkGC_COMMITTED) {
674 if (tblk->flag & tblkGC_ERROR)
675 rc = -EIO;
677 LOGGC_UNLOCK(log);
678 return rc;
679 }
680 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
682 if (tblk->xflag & COMMIT_LAZY)
683 tblk->flag |= tblkGC_LAZY;
685 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
686 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
687 || jfs_tlocks_low)) {
688 /*
689 * No pageout in progress
690 *
691 * start group commit as its group leader.
692 */
693 log->cflag |= logGC_PAGEOUT;
695 lmGCwrite(log, 0);
696 }
698 if (tblk->xflag & COMMIT_LAZY) {
699 /*
700 * Lazy transactions can leave now
701 */
702 LOGGC_UNLOCK(log);
703 return 0;
704 }
706 /* lmGCwrite gives up LOGGC_LOCK, check again */
708 if (tblk->flag & tblkGC_COMMITTED) {
709 if (tblk->flag & tblkGC_ERROR)
710 rc = -EIO;
712 LOGGC_UNLOCK(log);
713 return rc;
714 }
716 /* upcount transaction waiting for completion
717 */
718 log->gcrtc++;
719 tblk->flag |= tblkGC_READY;
721 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
722 LOGGC_LOCK(log), LOGGC_UNLOCK(log));
724 /* removed from commit queue */
725 if (tblk->flag & tblkGC_ERROR)
726 rc = -EIO;
728 LOGGC_UNLOCK(log);
729 return rc;
730 }
732 /*
733 * NAME: lmGCwrite()
734 *
735 * FUNCTION: group commit write
736 * initiate write of log page, building a group of all transactions
737 * with commit records on that page.
738 *
739 * RETURN: None
740 *
741 * NOTE:
742 * LOGGC_LOCK must be held by caller.
743 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
744 */
745 static void lmGCwrite(struct jfs_log * log, int cant_write)
746 {
747 struct lbuf *bp;
748 struct logpage *lp;
749 int gcpn; /* group commit page number */
750 struct tblock *tblk;
751 struct tblock *xtblk = NULL;
753 /*
754 * build the commit group of a log page
755 *
756 * scan commit queue and make a commit group of all
757 * transactions with COMMIT records on the same log page.
758 */
759 /* get the head tblk on the commit queue */
760 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
762 list_for_each_entry(tblk, &log->cqueue, cqueue) {
763 if (tblk->pn != gcpn)
764 break;
766 xtblk = tblk;
768 /* state transition: (QUEUE, READY) -> COMMIT */
769 tblk->flag |= tblkGC_COMMIT;
770 }
771 tblk = xtblk; /* last tblk of the page */
773 /*
774 * pageout to commit transactions on the log page.
775 */
776 bp = (struct lbuf *) tblk->bp;
777 lp = (struct logpage *) bp->l_ldata;
778 /* is page already full ? */
779 if (tblk->flag & tblkGC_EOP) {
780 /* mark page to free at end of group commit of the page */
781 tblk->flag &= ~tblkGC_EOP;
782 tblk->flag |= tblkGC_FREE;
783 bp->l_ceor = bp->l_eor;
784 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
785 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
786 cant_write);
787 INCREMENT(lmStat.full_page);
788 }
789 /* page is not yet full */
790 else {
791 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
792 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
793 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
794 INCREMENT(lmStat.partial_page);
795 }
796 }
798 /*
799 * NAME: lmPostGC()
800 *
801 * FUNCTION: group commit post-processing
802 * Processes transactions after their commit records have been written
803 * to disk, redriving log I/O if necessary.
804 *
805 * RETURN: None
806 *
807 * NOTE:
808 * This routine is called a interrupt time by lbmIODone
809 */
810 static void lmPostGC(struct lbuf * bp)
811 {
812 unsigned long flags;
813 struct jfs_log *log = bp->l_log;
814 struct logpage *lp;
815 struct tblock *tblk, *temp;
817 //LOGGC_LOCK(log);
818 spin_lock_irqsave(&log->gclock, flags);
819 /*
820 * current pageout of group commit completed.
821 *
822 * remove/wakeup transactions from commit queue who were
823 * group committed with the current log page
824 */
825 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
826 if (!(tblk->flag & tblkGC_COMMIT))
827 break;
828 /* if transaction was marked GC_COMMIT then
829 * it has been shipped in the current pageout
830 * and made it to disk - it is committed.
831 */
833 if (bp->l_flag & lbmERROR)
834 tblk->flag |= tblkGC_ERROR;
836 /* remove it from the commit queue */
837 list_del(&tblk->cqueue);
838 tblk->flag &= ~tblkGC_QUEUE;
840 if (tblk == log->flush_tblk) {
841 /* we can stop flushing the log now */
842 clear_bit(log_FLUSH, &log->flag);
843 log->flush_tblk = NULL;
844 }
846 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
847 tblk->flag);
849 if (!(tblk->xflag & COMMIT_FORCE))
850 /*
851 * Hand tblk over to lazy commit thread
852 */
853 txLazyUnlock(tblk);
854 else {
855 /* state transition: COMMIT -> COMMITTED */
856 tblk->flag |= tblkGC_COMMITTED;
858 if (tblk->flag & tblkGC_READY)
859 log->gcrtc--;
861 LOGGC_WAKEUP(tblk);
862 }
864 /* was page full before pageout ?
865 * (and this is the last tblk bound with the page)
866 */
867 if (tblk->flag & tblkGC_FREE)
868 lbmFree(bp);
869 /* did page become full after pageout ?
870 * (and this is the last tblk bound with the page)
871 */
872 else if (tblk->flag & tblkGC_EOP) {
873 /* finalize the page */
874 lp = (struct logpage *) bp->l_ldata;
875 bp->l_ceor = bp->l_eor;
876 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
877 jfs_info("lmPostGC: calling lbmWrite");
878 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
879 1);
880 }
882 }
884 /* are there any transactions who have entered lnGroupCommit()
885 * (whose COMMITs are after that of the last log page written.
886 * They are waiting for new group commit (above at (SLEEP 1))
887 * or lazy transactions are on a full (queued) log page,
888 * select the latest ready transaction as new group leader and
889 * wake her up to lead her group.
890 */
891 if ((!list_empty(&log->cqueue)) &&
892 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
893 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
894 /*
895 * Call lmGCwrite with new group leader
896 */
897 lmGCwrite(log, 1);
899 /* no transaction are ready yet (transactions are only just
900 * queued (GC_QUEUE) and not entered for group commit yet).
901 * the first transaction entering group commit
902 * will elect herself as new group leader.
903 */
904 else
905 log->cflag &= ~logGC_PAGEOUT;
907 //LOGGC_UNLOCK(log);
908 spin_unlock_irqrestore(&log->gclock, flags);
909 return;
910 }
912 /*
913 * NAME: lmLogSync()
914 *
915 * FUNCTION: write log SYNCPT record for specified log
916 * if new sync address is available
917 * (normally the case if sync() is executed by back-ground
918 * process).
919 * calculate new value of i_nextsync which determines when
920 * this code is called again.
921 *
922 * PARAMETERS: log - log structure
923 * hard_sync - 1 to force all metadata to be written
924 *
925 * RETURN: 0
926 *
927 * serialization: LOG_LOCK() held on entry/exit
928 */
929 static int lmLogSync(struct jfs_log * log, int hard_sync)
930 {
931 int logsize;
932 int written; /* written since last syncpt */
933 int free; /* free space left available */
934 int delta; /* additional delta to write normally */
935 int more; /* additional write granted */
936 struct lrd lrd;
937 int lsn;
938 struct logsyncblk *lp;
939 struct jfs_sb_info *sbi;
940 unsigned long flags;
942 /* push dirty metapages out to disk */
943 if (hard_sync)
944 list_for_each_entry(sbi, &log->sb_list, log_list) {
945 filemap_fdatawrite(sbi->ipbmap->i_mapping);
946 filemap_fdatawrite(sbi->ipimap->i_mapping);
947 filemap_fdatawrite(sbi->direct_inode->i_mapping);
948 }
949 else
950 list_for_each_entry(sbi, &log->sb_list, log_list) {
951 filemap_flush(sbi->ipbmap->i_mapping);
952 filemap_flush(sbi->ipimap->i_mapping);
953 filemap_flush(sbi->direct_inode->i_mapping);
954 }
956 /*
957 * forward syncpt
958 */
959 /* if last sync is same as last syncpt,
960 * invoke sync point forward processing to update sync.
961 */
963 if (log->sync == log->syncpt) {
964 LOGSYNC_LOCK(log, flags);
965 if (list_empty(&log->synclist))
966 log->sync = log->lsn;
967 else {
968 lp = list_entry(log->synclist.next,
969 struct logsyncblk, synclist);
970 log->sync = lp->lsn;
971 }
972 LOGSYNC_UNLOCK(log, flags);
974 }
976 /* if sync is different from last syncpt,
977 * write a SYNCPT record with syncpt = sync.
978 * reset syncpt = sync
979 */
980 if (log->sync != log->syncpt) {
981 lrd.logtid = 0;
982 lrd.backchain = 0;
983 lrd.type = cpu_to_le16(LOG_SYNCPT);
984 lrd.length = 0;
985 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
986 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
988 log->syncpt = log->sync;
989 } else
990 lsn = log->lsn;
992 /*
993 * setup next syncpt trigger (SWAG)
994 */
995 logsize = log->logsize;
997 logdiff(written, lsn, log);
998 free = logsize - written;
999 delta = LOGSYNC_DELTA(logsize);
1000 more = min(free / 2, delta);
1001 if (more < 2 * LOGPSIZE) {
1002 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
1003 /*
1004 * log wrapping
1006 * option 1 - panic ? No.!
1007 * option 2 - shutdown file systems
1008 * associated with log ?
1009 * option 3 - extend log ?
1010 */
1011 /*
1012 * option 4 - second chance
1014 * mark log wrapped, and continue.
1015 * when all active transactions are completed,
1016 * mark log vaild for recovery.
1017 * if crashed during invalid state, log state
1018 * implies invald log, forcing fsck().
1019 */
1020 /* mark log state log wrap in log superblock */
1021 /* log->state = LOGWRAP; */
1023 /* reset sync point computation */
1024 log->syncpt = log->sync = lsn;
1025 log->nextsync = delta;
1026 } else
1027 /* next syncpt trigger = written + more */
1028 log->nextsync = written + more;
1030 /* if number of bytes written from last sync point is more
1031 * than 1/4 of the log size, stop new transactions from
1032 * starting until all current transactions are completed
1033 * by setting syncbarrier flag.
1034 */
1035 if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1036 (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1037 set_bit(log_SYNCBARRIER, &log->flag);
1038 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1039 log->syncpt);
1040 /*
1041 * We may have to initiate group commit
1042 */
1043 jfs_flush_journal(log, 0);
1046 return lsn;
1049 /*
1050 * NAME: jfs_syncpt
1052 * FUNCTION: write log SYNCPT record for specified log
1054 * PARAMETERS: log - log structure
1055 * hard_sync - set to 1 to force metadata to be written
1056 */
1057 void jfs_syncpt(struct jfs_log *log, int hard_sync)
1058 { LOG_LOCK(log);
1059 lmLogSync(log, hard_sync);
1060 LOG_UNLOCK(log);
1063 /*
1064 * NAME: lmLogOpen()
1066 * FUNCTION: open the log on first open;
1067 * insert filesystem in the active list of the log.
1069 * PARAMETER: ipmnt - file system mount inode
1070 * iplog - log inode (out)
1072 * RETURN:
1074 * serialization:
1075 */
1076 int lmLogOpen(struct super_block *sb)
1078 int rc;
1079 struct block_device *bdev;
1080 struct jfs_log *log;
1081 struct jfs_sb_info *sbi = JFS_SBI(sb);
1083 if (sbi->flag & JFS_NOINTEGRITY)
1084 return open_dummy_log(sb);
1086 if (sbi->mntflag & JFS_INLINELOG)
1087 return open_inline_log(sb);
1089 mutex_lock(&jfs_log_mutex);
1090 list_for_each_entry(log, &jfs_external_logs, journal_list) {
1091 if (log->bdev->bd_dev == sbi->logdev) {
1092 if (memcmp(log->uuid, sbi->loguuid,
1093 sizeof(log->uuid))) {
1094 jfs_warn("wrong uuid on JFS journal\n");
1095 mutex_unlock(&jfs_log_mutex);
1096 return -EINVAL;
1098 /*
1099 * add file system to log active file system list
1100 */
1101 if ((rc = lmLogFileSystem(log, sbi, 1))) {
1102 mutex_unlock(&jfs_log_mutex);
1103 return rc;
1105 goto journal_found;
1109 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1110 mutex_unlock(&jfs_log_mutex);
1111 return -ENOMEM;
1113 INIT_LIST_HEAD(&log->sb_list);
1114 init_waitqueue_head(&log->syncwait);
1116 /*
1117 * external log as separate logical volume
1119 * file systems to log may have n-to-1 relationship;
1120 */
1122 bdev = open_by_devnum(sbi->logdev, FMODE_READ|FMODE_WRITE);
1123 if (IS_ERR(bdev)) {
1124 rc = -PTR_ERR(bdev);
1125 goto free;
1128 if ((rc = bd_claim(bdev, log))) {
1129 goto close;
1132 log->bdev = bdev;
1133 memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
1135 /*
1136 * initialize log:
1137 */
1138 if ((rc = lmLogInit(log)))
1139 goto unclaim;
1141 list_add(&log->journal_list, &jfs_external_logs);
1143 /*
1144 * add file system to log active file system list
1145 */
1146 if ((rc = lmLogFileSystem(log, sbi, 1)))
1147 goto shutdown;
1149 journal_found:
1150 LOG_LOCK(log);
1151 list_add(&sbi->log_list, &log->sb_list);
1152 sbi->log = log;
1153 LOG_UNLOCK(log);
1155 mutex_unlock(&jfs_log_mutex);
1156 return 0;
1158 /*
1159 * unwind on error
1160 */
1161 shutdown: /* unwind lbmLogInit() */
1162 list_del(&log->journal_list);
1163 lbmLogShutdown(log);
1165 unclaim:
1166 bd_release(bdev);
1168 close: /* close external log device */
1169 blkdev_put(bdev);
1171 free: /* free log descriptor */
1172 mutex_unlock(&jfs_log_mutex);
1173 kfree(log);
1175 jfs_warn("lmLogOpen: exit(%d)", rc);
1176 return rc;
1179 static int open_inline_log(struct super_block *sb)
1181 struct jfs_log *log;
1182 int rc;
1184 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1185 return -ENOMEM;
1186 INIT_LIST_HEAD(&log->sb_list);
1187 init_waitqueue_head(&log->syncwait);
1189 set_bit(log_INLINELOG, &log->flag);
1190 log->bdev = sb->s_bdev;
1191 log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1192 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1193 (L2LOGPSIZE - sb->s_blocksize_bits);
1194 log->l2bsize = sb->s_blocksize_bits;
1195 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1197 /*
1198 * initialize log.
1199 */
1200 if ((rc = lmLogInit(log))) {
1201 kfree(log);
1202 jfs_warn("lmLogOpen: exit(%d)", rc);
1203 return rc;
1206 list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1207 JFS_SBI(sb)->log = log;
1209 return rc;
1212 static int open_dummy_log(struct super_block *sb)
1214 int rc;
1216 mutex_lock(&jfs_log_mutex);
1217 if (!dummy_log) {
1218 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1219 if (!dummy_log) {
1220 mutex_unlock(&jfs_log_mutex);
1221 return -ENOMEM;
1223 INIT_LIST_HEAD(&dummy_log->sb_list);
1224 init_waitqueue_head(&dummy_log->syncwait);
1225 dummy_log->no_integrity = 1;
1226 /* Make up some stuff */
1227 dummy_log->base = 0;
1228 dummy_log->size = 1024;
1229 rc = lmLogInit(dummy_log);
1230 if (rc) {
1231 kfree(dummy_log);
1232 dummy_log = NULL;
1233 mutex_unlock(&jfs_log_mutex);
1234 return rc;
1238 LOG_LOCK(dummy_log);
1239 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1240 JFS_SBI(sb)->log = dummy_log;
1241 LOG_UNLOCK(dummy_log);
1242 mutex_unlock(&jfs_log_mutex);
1244 return 0;
1247 /*
1248 * NAME: lmLogInit()
1250 * FUNCTION: log initialization at first log open.
1252 * logredo() (or logformat()) should have been run previously.
1253 * initialize the log from log superblock.
1254 * set the log state in the superblock to LOGMOUNT and
1255 * write SYNCPT log record.
1257 * PARAMETER: log - log structure
1259 * RETURN: 0 - if ok
1260 * -EINVAL - bad log magic number or superblock dirty
1261 * error returned from logwait()
1263 * serialization: single first open thread
1264 */
1265 int lmLogInit(struct jfs_log * log)
1267 int rc = 0;
1268 struct lrd lrd;
1269 struct logsuper *logsuper;
1270 struct lbuf *bpsuper;
1271 struct lbuf *bp;
1272 struct logpage *lp;
1273 int lsn = 0;
1275 jfs_info("lmLogInit: log:0x%p", log);
1277 /* initialize the group commit serialization lock */
1278 LOGGC_LOCK_INIT(log);
1280 /* allocate/initialize the log write serialization lock */
1281 LOG_LOCK_INIT(log);
1283 LOGSYNC_LOCK_INIT(log);
1285 INIT_LIST_HEAD(&log->synclist);
1287 INIT_LIST_HEAD(&log->cqueue);
1288 log->flush_tblk = NULL;
1290 log->count = 0;
1292 /*
1293 * initialize log i/o
1294 */
1295 if ((rc = lbmLogInit(log)))
1296 return rc;
1298 if (!test_bit(log_INLINELOG, &log->flag))
1299 log->l2bsize = L2LOGPSIZE;
1301 /* check for disabled journaling to disk */
1302 if (log->no_integrity) {
1303 /*
1304 * Journal pages will still be filled. When the time comes
1305 * to actually do the I/O, the write is not done, and the
1306 * endio routine is called directly.
1307 */
1308 bp = lbmAllocate(log , 0);
1309 log->bp = bp;
1310 bp->l_pn = bp->l_eor = 0;
1311 } else {
1312 /*
1313 * validate log superblock
1314 */
1315 if ((rc = lbmRead(log, 1, &bpsuper)))
1316 goto errout10;
1318 logsuper = (struct logsuper *) bpsuper->l_ldata;
1320 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1321 jfs_warn("*** Log Format Error ! ***");
1322 rc = -EINVAL;
1323 goto errout20;
1326 /* logredo() should have been run successfully. */
1327 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1328 jfs_warn("*** Log Is Dirty ! ***");
1329 rc = -EINVAL;
1330 goto errout20;
1333 /* initialize log from log superblock */
1334 if (test_bit(log_INLINELOG,&log->flag)) {
1335 if (log->size != le32_to_cpu(logsuper->size)) {
1336 rc = -EINVAL;
1337 goto errout20;
1339 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
1340 "size:0x%x", log,
1341 (unsigned long long) log->base, log->size);
1342 } else {
1343 if (memcmp(logsuper->uuid, log->uuid, 16)) {
1344 jfs_warn("wrong uuid on JFS log device");
1345 goto errout20;
1347 log->size = le32_to_cpu(logsuper->size);
1348 log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1349 jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
1350 "size:0x%x", log,
1351 (unsigned long long) log->base, log->size);
1354 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1355 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1357 /*
1358 * initialize for log append write mode
1359 */
1360 /* establish current/end-of-log page/buffer */
1361 if ((rc = lbmRead(log, log->page, &bp)))
1362 goto errout20;
1364 lp = (struct logpage *) bp->l_ldata;
1366 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1367 le32_to_cpu(logsuper->end), log->page, log->eor,
1368 le16_to_cpu(lp->h.eor));
1370 log->bp = bp;
1371 bp->l_pn = log->page;
1372 bp->l_eor = log->eor;
1374 /* if current page is full, move on to next page */
1375 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1376 lmNextPage(log);
1378 /*
1379 * initialize log syncpoint
1380 */
1381 /*
1382 * write the first SYNCPT record with syncpoint = 0
1383 * (i.e., log redo up to HERE !);
1384 * remove current page from lbm write queue at end of pageout
1385 * (to write log superblock update), but do not release to
1386 * freelist;
1387 */
1388 lrd.logtid = 0;
1389 lrd.backchain = 0;
1390 lrd.type = cpu_to_le16(LOG_SYNCPT);
1391 lrd.length = 0;
1392 lrd.log.syncpt.sync = 0;
1393 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1394 bp = log->bp;
1395 bp->l_ceor = bp->l_eor;
1396 lp = (struct logpage *) bp->l_ldata;
1397 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1398 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1399 if ((rc = lbmIOWait(bp, 0)))
1400 goto errout30;
1402 /*
1403 * update/write superblock
1404 */
1405 logsuper->state = cpu_to_le32(LOGMOUNT);
1406 log->serial = le32_to_cpu(logsuper->serial) + 1;
1407 logsuper->serial = cpu_to_le32(log->serial);
1408 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1409 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1410 goto errout30;
1413 /* initialize logsync parameters */
1414 log->logsize = (log->size - 2) << L2LOGPSIZE;
1415 log->lsn = lsn;
1416 log->syncpt = lsn;
1417 log->sync = log->syncpt;
1418 log->nextsync = LOGSYNC_DELTA(log->logsize);
1420 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1421 log->lsn, log->syncpt, log->sync);
1423 /*
1424 * initialize for lazy/group commit
1425 */
1426 log->clsn = lsn;
1428 return 0;
1430 /*
1431 * unwind on error
1432 */
1433 errout30: /* release log page */
1434 log->wqueue = NULL;
1435 bp->l_wqnext = NULL;
1436 lbmFree(bp);
1438 errout20: /* release log superblock */
1439 lbmFree(bpsuper);
1441 errout10: /* unwind lbmLogInit() */
1442 lbmLogShutdown(log);
1444 jfs_warn("lmLogInit: exit(%d)", rc);
1445 return rc;
1449 /*
1450 * NAME: lmLogClose()
1452 * FUNCTION: remove file system <ipmnt> from active list of log <iplog>
1453 * and close it on last close.
1455 * PARAMETER: sb - superblock
1457 * RETURN: errors from subroutines
1459 * serialization:
1460 */
1461 int lmLogClose(struct super_block *sb)
1463 struct jfs_sb_info *sbi = JFS_SBI(sb);
1464 struct jfs_log *log = sbi->log;
1465 struct block_device *bdev;
1466 int rc = 0;
1468 jfs_info("lmLogClose: log:0x%p", log);
1470 mutex_lock(&jfs_log_mutex);
1471 LOG_LOCK(log);
1472 list_del(&sbi->log_list);
1473 LOG_UNLOCK(log);
1474 sbi->log = NULL;
1476 /*
1477 * We need to make sure all of the "written" metapages
1478 * actually make it to disk
1479 */
1480 sync_blockdev(sb->s_bdev);
1482 if (test_bit(log_INLINELOG, &log->flag)) {
1483 /*
1484 * in-line log in host file system
1485 */
1486 rc = lmLogShutdown(log);
1487 kfree(log);
1488 goto out;
1491 if (!log->no_integrity)
1492 lmLogFileSystem(log, sbi, 0);
1494 if (!list_empty(&log->sb_list))
1495 goto out;
1497 /*
1498 * TODO: ensure that the dummy_log is in a state to allow
1499 * lbmLogShutdown to deallocate all the buffers and call
1500 * kfree against dummy_log. For now, leave dummy_log & its
1501 * buffers in memory, and resuse if another no-integrity mount
1502 * is requested.
1503 */
1504 if (log->no_integrity)
1505 goto out;
1507 /*
1508 * external log as separate logical volume
1509 */
1510 list_del(&log->journal_list);
1511 bdev = log->bdev;
1512 rc = lmLogShutdown(log);
1514 bd_release(bdev);
1515 blkdev_put(bdev);
1517 kfree(log);
1519 out:
1520 mutex_unlock(&jfs_log_mutex);
1521 jfs_info("lmLogClose: exit(%d)", rc);
1522 return rc;
1526 /*
1527 * NAME: jfs_flush_journal()
1529 * FUNCTION: initiate write of any outstanding transactions to the journal
1530 * and optionally wait until they are all written to disk
1532 * wait == 0 flush until latest txn is committed, don't wait
1533 * wait == 1 flush until latest txn is committed, wait
1534 * wait > 1 flush until all txn's are complete, wait
1535 */
1536 void jfs_flush_journal(struct jfs_log *log, int wait)
1538 int i;
1539 struct tblock *target = NULL;
1540 struct jfs_sb_info *sbi;
1542 /* jfs_write_inode may call us during read-only mount */
1543 if (!log)
1544 return;
1546 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1548 LOGGC_LOCK(log);
1550 if (!list_empty(&log->cqueue)) {
1551 /*
1552 * This ensures that we will keep writing to the journal as long
1553 * as there are unwritten commit records
1554 */
1555 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1557 if (test_bit(log_FLUSH, &log->flag)) {
1558 /*
1559 * We're already flushing.
1560 * if flush_tblk is NULL, we are flushing everything,
1561 * so leave it that way. Otherwise, update it to the
1562 * latest transaction
1563 */
1564 if (log->flush_tblk)
1565 log->flush_tblk = target;
1566 } else {
1567 /* Only flush until latest transaction is committed */
1568 log->flush_tblk = target;
1569 set_bit(log_FLUSH, &log->flag);
1571 /*
1572 * Initiate I/O on outstanding transactions
1573 */
1574 if (!(log->cflag & logGC_PAGEOUT)) {
1575 log->cflag |= logGC_PAGEOUT;
1576 lmGCwrite(log, 0);
1580 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1581 /* Flush until all activity complete */
1582 set_bit(log_FLUSH, &log->flag);
1583 log->flush_tblk = NULL;
1586 if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1587 DECLARE_WAITQUEUE(__wait, current);
1589 add_wait_queue(&target->gcwait, &__wait);
1590 set_current_state(TASK_UNINTERRUPTIBLE);
1591 LOGGC_UNLOCK(log);
1592 schedule();
1593 current->state = TASK_RUNNING;
1594 LOGGC_LOCK(log);
1595 remove_wait_queue(&target->gcwait, &__wait);
1597 LOGGC_UNLOCK(log);
1599 if (wait < 2)
1600 return;
1602 list_for_each_entry(sbi, &log->sb_list, log_list) {
1603 filemap_fdatawrite(sbi->ipbmap->i_mapping);
1604 filemap_fdatawrite(sbi->ipimap->i_mapping);
1605 filemap_fdatawrite(sbi->direct_inode->i_mapping);
1608 /*
1609 * If there was recent activity, we may need to wait
1610 * for the lazycommit thread to catch up
1611 */
1612 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1613 for (i = 0; i < 200; i++) { /* Too much? */
1614 msleep(250);
1615 if (list_empty(&log->cqueue) &&
1616 list_empty(&log->synclist))
1617 break;
1620 assert(list_empty(&log->cqueue));
1622 #ifdef CONFIG_JFS_DEBUG
1623 if (!list_empty(&log->synclist)) {
1624 struct logsyncblk *lp;
1626 list_for_each_entry(lp, &log->synclist, synclist) {
1627 if (lp->xflag & COMMIT_PAGE) {
1628 struct metapage *mp = (struct metapage *)lp;
1629 dump_mem("orphan metapage", lp,
1630 sizeof(struct metapage));
1631 dump_mem("page", mp->page, sizeof(struct page));
1633 else
1634 dump_mem("orphan tblock", lp,
1635 sizeof(struct tblock));
1638 #endif
1639 //assert(list_empty(&log->synclist));
1640 clear_bit(log_FLUSH, &log->flag);
1643 /*
1644 * NAME: lmLogShutdown()
1646 * FUNCTION: log shutdown at last LogClose().
1648 * write log syncpt record.
1649 * update super block to set redone flag to 0.
1651 * PARAMETER: log - log inode
1653 * RETURN: 0 - success
1655 * serialization: single last close thread
1656 */
1657 int lmLogShutdown(struct jfs_log * log)
1659 int rc;
1660 struct lrd lrd;
1661 int lsn;
1662 struct logsuper *logsuper;
1663 struct lbuf *bpsuper;
1664 struct lbuf *bp;
1665 struct logpage *lp;
1667 jfs_info("lmLogShutdown: log:0x%p", log);
1669 jfs_flush_journal(log, 2);
1671 /*
1672 * write the last SYNCPT record with syncpoint = 0
1673 * (i.e., log redo up to HERE !)
1674 */
1675 lrd.logtid = 0;
1676 lrd.backchain = 0;
1677 lrd.type = cpu_to_le16(LOG_SYNCPT);
1678 lrd.length = 0;
1679 lrd.log.syncpt.sync = 0;
1681 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1682 bp = log->bp;
1683 lp = (struct logpage *) bp->l_ldata;
1684 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1685 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1686 lbmIOWait(log->bp, lbmFREE);
1687 log->bp = NULL;
1689 /*
1690 * synchronous update log superblock
1691 * mark log state as shutdown cleanly
1692 * (i.e., Log does not need to be replayed).
1693 */
1694 if ((rc = lbmRead(log, 1, &bpsuper)))
1695 goto out;
1697 logsuper = (struct logsuper *) bpsuper->l_ldata;
1698 logsuper->state = cpu_to_le32(LOGREDONE);
1699 logsuper->end = cpu_to_le32(lsn);
1700 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1701 rc = lbmIOWait(bpsuper, lbmFREE);
1703 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1704 lsn, log->page, log->eor);
1706 out:
1707 /*
1708 * shutdown per log i/o
1709 */
1710 lbmLogShutdown(log);
1712 if (rc) {
1713 jfs_warn("lmLogShutdown: exit(%d)", rc);
1715 return rc;
1719 /*
1720 * NAME: lmLogFileSystem()
1722 * FUNCTION: insert (<activate> = true)/remove (<activate> = false)
1723 * file system into/from log active file system list.
1725 * PARAMETE: log - pointer to logs inode.
1726 * fsdev - kdev_t of filesystem.
1727 * serial - pointer to returned log serial number
1728 * activate - insert/remove device from active list.
1730 * RETURN: 0 - success
1731 * errors returned by vms_iowait().
1732 */
1733 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1734 int activate)
1736 int rc = 0;
1737 int i;
1738 struct logsuper *logsuper;
1739 struct lbuf *bpsuper;
1740 char *uuid = sbi->uuid;
1742 /*
1743 * insert/remove file system device to log active file system list.
1744 */
1745 if ((rc = lbmRead(log, 1, &bpsuper)))
1746 return rc;
1748 logsuper = (struct logsuper *) bpsuper->l_ldata;
1749 if (activate) {
1750 for (i = 0; i < MAX_ACTIVE; i++)
1751 if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
1752 memcpy(logsuper->active[i].uuid, uuid, 16);
1753 sbi->aggregate = i;
1754 break;
1756 if (i == MAX_ACTIVE) {
1757 jfs_warn("Too many file systems sharing journal!");
1758 lbmFree(bpsuper);
1759 return -EMFILE; /* Is there a better rc? */
1761 } else {
1762 for (i = 0; i < MAX_ACTIVE; i++)
1763 if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
1764 memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
1765 break;
1767 if (i == MAX_ACTIVE) {
1768 jfs_warn("Somebody stomped on the journal!");
1769 lbmFree(bpsuper);
1770 return -EIO;
1775 /*
1776 * synchronous write log superblock:
1778 * write sidestream bypassing write queue:
1779 * at file system mount, log super block is updated for
1780 * activation of the file system before any log record
1781 * (MOUNT record) of the file system, and at file system
1782 * unmount, all meta data for the file system has been
1783 * flushed before log super block is updated for deactivation
1784 * of the file system.
1785 */
1786 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1787 rc = lbmIOWait(bpsuper, lbmFREE);
1789 return rc;
1792 /*
1793 * log buffer manager (lbm)
1794 * ------------------------
1796 * special purpose buffer manager supporting log i/o requirements.
1798 * per log write queue:
1799 * log pageout occurs in serial order by fifo write queue and
1800 * restricting to a single i/o in pregress at any one time.
1801 * a circular singly-linked list
1802 * (log->wrqueue points to the tail, and buffers are linked via
1803 * bp->wrqueue field), and
1804 * maintains log page in pageout ot waiting for pageout in serial pageout.
1805 */
1807 /*
1808 * lbmLogInit()
1810 * initialize per log I/O setup at lmLogInit()
1811 */
1812 static int lbmLogInit(struct jfs_log * log)
1813 { /* log inode */
1814 int i;
1815 struct lbuf *lbuf;
1817 jfs_info("lbmLogInit: log:0x%p", log);
1819 /* initialize current buffer cursor */
1820 log->bp = NULL;
1822 /* initialize log device write queue */
1823 log->wqueue = NULL;
1825 /*
1826 * Each log has its own buffer pages allocated to it. These are
1827 * not managed by the page cache. This ensures that a transaction
1828 * writing to the log does not block trying to allocate a page from
1829 * the page cache (for the log). This would be bad, since page
1830 * allocation waits on the kswapd thread that may be committing inodes
1831 * which would cause log activity. Was that clear? I'm trying to
1832 * avoid deadlock here.
1833 */
1834 init_waitqueue_head(&log->free_wait);
1836 log->lbuf_free = NULL;
1838 for (i = 0; i < LOGPAGES;) {
1839 char *buffer;
1840 uint offset;
1841 struct page *page;
1843 buffer = (char *) get_zeroed_page(GFP_KERNEL);
1844 if (buffer == NULL)
1845 goto error;
1846 page = virt_to_page(buffer);
1847 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1848 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1849 if (lbuf == NULL) {
1850 if (offset == 0)
1851 free_page((unsigned long) buffer);
1852 goto error;
1854 if (offset) /* we already have one reference */
1855 get_page(page);
1856 lbuf->l_offset = offset;
1857 lbuf->l_ldata = buffer + offset;
1858 lbuf->l_page = page;
1859 lbuf->l_log = log;
1860 init_waitqueue_head(&lbuf->l_ioevent);
1862 lbuf->l_freelist = log->lbuf_free;
1863 log->lbuf_free = lbuf;
1864 i++;
1868 return (0);
1870 error:
1871 lbmLogShutdown(log);
1872 return -ENOMEM;
1876 /*
1877 * lbmLogShutdown()
1879 * finalize per log I/O setup at lmLogShutdown()
1880 */
1881 static void lbmLogShutdown(struct jfs_log * log)
1883 struct lbuf *lbuf;
1885 jfs_info("lbmLogShutdown: log:0x%p", log);
1887 lbuf = log->lbuf_free;
1888 while (lbuf) {
1889 struct lbuf *next = lbuf->l_freelist;
1890 __free_page(lbuf->l_page);
1891 kfree(lbuf);
1892 lbuf = next;
1897 /*
1898 * lbmAllocate()
1900 * allocate an empty log buffer
1901 */
1902 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1904 struct lbuf *bp;
1905 unsigned long flags;
1907 /*
1908 * recycle from log buffer freelist if any
1909 */
1910 LCACHE_LOCK(flags);
1911 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1912 log->lbuf_free = bp->l_freelist;
1913 LCACHE_UNLOCK(flags);
1915 bp->l_flag = 0;
1917 bp->l_wqnext = NULL;
1918 bp->l_freelist = NULL;
1920 bp->l_pn = pn;
1921 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1922 bp->l_ceor = 0;
1924 return bp;
1928 /*
1929 * lbmFree()
1931 * release a log buffer to freelist
1932 */
1933 static void lbmFree(struct lbuf * bp)
1935 unsigned long flags;
1937 LCACHE_LOCK(flags);
1939 lbmfree(bp);
1941 LCACHE_UNLOCK(flags);
1944 static void lbmfree(struct lbuf * bp)
1946 struct jfs_log *log = bp->l_log;
1948 assert(bp->l_wqnext == NULL);
1950 /*
1951 * return the buffer to head of freelist
1952 */
1953 bp->l_freelist = log->lbuf_free;
1954 log->lbuf_free = bp;
1956 wake_up(&log->free_wait);
1957 return;
1961 /*
1962 * NAME: lbmRedrive
1964 * FUNCTION: add a log buffer to the the log redrive list
1966 * PARAMETER:
1967 * bp - log buffer
1969 * NOTES:
1970 * Takes log_redrive_lock.
1971 */
1972 static inline void lbmRedrive(struct lbuf *bp)
1974 unsigned long flags;
1976 spin_lock_irqsave(&log_redrive_lock, flags);
1977 bp->l_redrive_next = log_redrive_list;
1978 log_redrive_list = bp;
1979 spin_unlock_irqrestore(&log_redrive_lock, flags);
1981 wake_up_process(jfsIOthread);
1985 /*
1986 * lbmRead()
1987 */
1988 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1990 struct bio *bio;
1991 struct lbuf *bp;
1993 /*
1994 * allocate a log buffer
1995 */
1996 *bpp = bp = lbmAllocate(log, pn);
1997 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
1999 bp->l_flag |= lbmREAD;
2001 bio = bio_alloc(GFP_NOFS, 1);
2003 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2004 bio->bi_bdev = log->bdev;
2005 bio->bi_io_vec[0].bv_page = bp->l_page;
2006 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2007 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2009 bio->bi_vcnt = 1;
2010 bio->bi_idx = 0;
2011 bio->bi_size = LOGPSIZE;
2013 bio->bi_end_io = lbmIODone;
2014 bio->bi_private = bp;
2015 submit_bio(READ_SYNC, bio);
2017 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2019 return 0;
2023 /*
2024 * lbmWrite()
2026 * buffer at head of pageout queue stays after completion of
2027 * partial-page pageout and redriven by explicit initiation of
2028 * pageout by caller until full-page pageout is completed and
2029 * released.
2031 * device driver i/o done redrives pageout of new buffer at
2032 * head of pageout queue when current buffer at head of pageout
2033 * queue is released at the completion of its full-page pageout.
2035 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2036 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2037 */
2038 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2039 int cant_block)
2041 struct lbuf *tail;
2042 unsigned long flags;
2044 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2046 /* map the logical block address to physical block address */
2047 bp->l_blkno =
2048 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2050 LCACHE_LOCK(flags); /* disable+lock */
2052 /*
2053 * initialize buffer for device driver
2054 */
2055 bp->l_flag = flag;
2057 /*
2058 * insert bp at tail of write queue associated with log
2060 * (request is either for bp already/currently at head of queue
2061 * or new bp to be inserted at tail)
2062 */
2063 tail = log->wqueue;
2065 /* is buffer not already on write queue ? */
2066 if (bp->l_wqnext == NULL) {
2067 /* insert at tail of wqueue */
2068 if (tail == NULL) {
2069 log->wqueue = bp;
2070 bp->l_wqnext = bp;
2071 } else {
2072 log->wqueue = bp;
2073 bp->l_wqnext = tail->l_wqnext;
2074 tail->l_wqnext = bp;
2077 tail = bp;
2080 /* is buffer at head of wqueue and for write ? */
2081 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2082 LCACHE_UNLOCK(flags); /* unlock+enable */
2083 return;
2086 LCACHE_UNLOCK(flags); /* unlock+enable */
2088 if (cant_block)
2089 lbmRedrive(bp);
2090 else if (flag & lbmSYNC)
2091 lbmStartIO(bp);
2092 else {
2093 LOGGC_UNLOCK(log);
2094 lbmStartIO(bp);
2095 LOGGC_LOCK(log);
2100 /*
2101 * lbmDirectWrite()
2103 * initiate pageout bypassing write queue for sidestream
2104 * (e.g., log superblock) write;
2105 */
2106 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2108 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2109 bp, flag, bp->l_pn);
2111 /*
2112 * initialize buffer for device driver
2113 */
2114 bp->l_flag = flag | lbmDIRECT;
2116 /* map the logical block address to physical block address */
2117 bp->l_blkno =
2118 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2120 /*
2121 * initiate pageout of the page
2122 */
2123 lbmStartIO(bp);
2127 /*
2128 * NAME: lbmStartIO()
2130 * FUNCTION: Interface to DD strategy routine
2132 * RETURN: none
2134 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2135 */
2136 static void lbmStartIO(struct lbuf * bp)
2138 struct bio *bio;
2139 struct jfs_log *log = bp->l_log;
2141 jfs_info("lbmStartIO\n");
2143 bio = bio_alloc(GFP_NOFS, 1);
2144 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2145 bio->bi_bdev = log->bdev;
2146 bio->bi_io_vec[0].bv_page = bp->l_page;
2147 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2148 bio->bi_io_vec[0].bv_offset = bp->l_offset;
2150 bio->bi_vcnt = 1;
2151 bio->bi_idx = 0;
2152 bio->bi_size = LOGPSIZE;
2154 bio->bi_end_io = lbmIODone;
2155 bio->bi_private = bp;
2157 /* check if journaling to disk has been disabled */
2158 if (log->no_integrity) {
2159 bio->bi_size = 0;
2160 lbmIODone(bio, 0, 0);
2161 } else {
2162 submit_bio(WRITE_SYNC, bio);
2163 INCREMENT(lmStat.submitted);
2168 /*
2169 * lbmIOWait()
2170 */
2171 static int lbmIOWait(struct lbuf * bp, int flag)
2173 unsigned long flags;
2174 int rc = 0;
2176 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2178 LCACHE_LOCK(flags); /* disable+lock */
2180 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2182 rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2184 if (flag & lbmFREE)
2185 lbmfree(bp);
2187 LCACHE_UNLOCK(flags); /* unlock+enable */
2189 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2190 return rc;
2193 /*
2194 * lbmIODone()
2196 * executed at INTIODONE level
2197 */
2198 static int lbmIODone(struct bio *bio, unsigned int bytes_done, int error)
2200 struct lbuf *bp = bio->bi_private;
2201 struct lbuf *nextbp, *tail;
2202 struct jfs_log *log;
2203 unsigned long flags;
2205 if (bio->bi_size)
2206 return 1;
2208 /*
2209 * get back jfs buffer bound to the i/o buffer
2210 */
2211 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2213 LCACHE_LOCK(flags); /* disable+lock */
2215 bp->l_flag |= lbmDONE;
2217 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2218 bp->l_flag |= lbmERROR;
2220 jfs_err("lbmIODone: I/O error in JFS log");
2223 bio_put(bio);
2225 /*
2226 * pagein completion
2227 */
2228 if (bp->l_flag & lbmREAD) {
2229 bp->l_flag &= ~lbmREAD;
2231 LCACHE_UNLOCK(flags); /* unlock+enable */
2233 /* wakeup I/O initiator */
2234 LCACHE_WAKEUP(&bp->l_ioevent);
2236 return 0;
2239 /*
2240 * pageout completion
2242 * the bp at the head of write queue has completed pageout.
2244 * if single-commit/full-page pageout, remove the current buffer
2245 * from head of pageout queue, and redrive pageout with
2246 * the new buffer at head of pageout queue;
2247 * otherwise, the partial-page pageout buffer stays at
2248 * the head of pageout queue to be redriven for pageout
2249 * by lmGroupCommit() until full-page pageout is completed.
2250 */
2251 bp->l_flag &= ~lbmWRITE;
2252 INCREMENT(lmStat.pagedone);
2254 /* update committed lsn */
2255 log = bp->l_log;
2256 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2258 if (bp->l_flag & lbmDIRECT) {
2259 LCACHE_WAKEUP(&bp->l_ioevent);
2260 LCACHE_UNLOCK(flags);
2261 return 0;
2264 tail = log->wqueue;
2266 /* single element queue */
2267 if (bp == tail) {
2268 /* remove head buffer of full-page pageout
2269 * from log device write queue
2270 */
2271 if (bp->l_flag & lbmRELEASE) {
2272 log->wqueue = NULL;
2273 bp->l_wqnext = NULL;
2276 /* multi element queue */
2277 else {
2278 /* remove head buffer of full-page pageout
2279 * from log device write queue
2280 */
2281 if (bp->l_flag & lbmRELEASE) {
2282 nextbp = tail->l_wqnext = bp->l_wqnext;
2283 bp->l_wqnext = NULL;
2285 /*
2286 * redrive pageout of next page at head of write queue:
2287 * redrive next page without any bound tblk
2288 * (i.e., page w/o any COMMIT records), or
2289 * first page of new group commit which has been
2290 * queued after current page (subsequent pageout
2291 * is performed synchronously, except page without
2292 * any COMMITs) by lmGroupCommit() as indicated
2293 * by lbmWRITE flag;
2294 */
2295 if (nextbp->l_flag & lbmWRITE) {
2296 /*
2297 * We can't do the I/O at interrupt time.
2298 * The jfsIO thread can do it
2299 */
2300 lbmRedrive(nextbp);
2305 /*
2306 * synchronous pageout:
2308 * buffer has not necessarily been removed from write queue
2309 * (e.g., synchronous write of partial-page with COMMIT):
2310 * leave buffer for i/o initiator to dispose
2311 */
2312 if (bp->l_flag & lbmSYNC) {
2313 LCACHE_UNLOCK(flags); /* unlock+enable */
2315 /* wakeup I/O initiator */
2316 LCACHE_WAKEUP(&bp->l_ioevent);
2319 /*
2320 * Group Commit pageout:
2321 */
2322 else if (bp->l_flag & lbmGC) {
2323 LCACHE_UNLOCK(flags);
2324 lmPostGC(bp);
2327 /*
2328 * asynchronous pageout:
2330 * buffer must have been removed from write queue:
2331 * insert buffer at head of freelist where it can be recycled
2332 */
2333 else {
2334 assert(bp->l_flag & lbmRELEASE);
2335 assert(bp->l_flag & lbmFREE);
2336 lbmfree(bp);
2338 LCACHE_UNLOCK(flags); /* unlock+enable */
2341 return 0;
2344 int jfsIOWait(void *arg)
2346 struct lbuf *bp;
2348 do {
2349 spin_lock_irq(&log_redrive_lock);
2350 while ((bp = log_redrive_list) != 0) {
2351 log_redrive_list = bp->l_redrive_next;
2352 bp->l_redrive_next = NULL;
2353 spin_unlock_irq(&log_redrive_lock);
2354 lbmStartIO(bp);
2355 spin_lock_irq(&log_redrive_lock);
2357 spin_unlock_irq(&log_redrive_lock);
2359 if (freezing(current)) {
2360 refrigerator();
2361 } else {
2362 set_current_state(TASK_INTERRUPTIBLE);
2363 schedule();
2364 current->state = TASK_RUNNING;
2366 } while (!kthread_should_stop());
2368 jfs_info("jfsIOWait being killed!");
2369 return 0;
2372 /*
2373 * NAME: lmLogFormat()/jfs_logform()
2375 * FUNCTION: format file system log
2377 * PARAMETERS:
2378 * log - volume log
2379 * logAddress - start address of log space in FS block
2380 * logSize - length of log space in FS block;
2382 * RETURN: 0 - success
2383 * -EIO - i/o error
2385 * XXX: We're synchronously writing one page at a time. This needs to
2386 * be improved by writing multiple pages at once.
2387 */
2388 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2390 int rc = -EIO;
2391 struct jfs_sb_info *sbi;
2392 struct logsuper *logsuper;
2393 struct logpage *lp;
2394 int lspn; /* log sequence page number */
2395 struct lrd *lrd_ptr;
2396 int npages = 0;
2397 struct lbuf *bp;
2399 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2400 (long long)logAddress, logSize);
2402 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2404 /* allocate a log buffer */
2405 bp = lbmAllocate(log, 1);
2407 npages = logSize >> sbi->l2nbperpage;
2409 /*
2410 * log space:
2412 * page 0 - reserved;
2413 * page 1 - log superblock;
2414 * page 2 - log data page: A SYNC log record is written
2415 * into this page at logform time;
2416 * pages 3-N - log data page: set to empty log data pages;
2417 */
2418 /*
2419 * init log superblock: log page 1
2420 */
2421 logsuper = (struct logsuper *) bp->l_ldata;
2423 logsuper->magic = cpu_to_le32(LOGMAGIC);
2424 logsuper->version = cpu_to_le32(LOGVERSION);
2425 logsuper->state = cpu_to_le32(LOGREDONE);
2426 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
2427 logsuper->size = cpu_to_le32(npages);
2428 logsuper->bsize = cpu_to_le32(sbi->bsize);
2429 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2430 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2432 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2433 bp->l_blkno = logAddress + sbi->nbperpage;
2434 lbmStartIO(bp);
2435 if ((rc = lbmIOWait(bp, 0)))
2436 goto exit;
2438 /*
2439 * init pages 2 to npages-1 as log data pages:
2441 * log page sequence number (lpsn) initialization:
2443 * pn: 0 1 2 3 n-1
2444 * +-----+-----+=====+=====+===.....===+=====+
2445 * lspn: N-1 0 1 N-2
2446 * <--- N page circular file ---->
2448 * the N (= npages-2) data pages of the log is maintained as
2449 * a circular file for the log records;
2450 * lpsn grows by 1 monotonically as each log page is written
2451 * to the circular file of the log;
2452 * and setLogpage() will not reset the page number even if
2453 * the eor is equal to LOGPHDRSIZE. In order for binary search
2454 * still work in find log end process, we have to simulate the
2455 * log wrap situation at the log format time.
2456 * The 1st log page written will have the highest lpsn. Then
2457 * the succeeding log pages will have ascending order of
2458 * the lspn starting from 0, ... (N-2)
2459 */
2460 lp = (struct logpage *) bp->l_ldata;
2461 /*
2462 * initialize 1st log page to be written: lpsn = N - 1,
2463 * write a SYNCPT log record is written to this page
2464 */
2465 lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2466 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2468 lrd_ptr = (struct lrd *) &lp->data;
2469 lrd_ptr->logtid = 0;
2470 lrd_ptr->backchain = 0;
2471 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2472 lrd_ptr->length = 0;
2473 lrd_ptr->log.syncpt.sync = 0;
2475 bp->l_blkno += sbi->nbperpage;
2476 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2477 lbmStartIO(bp);
2478 if ((rc = lbmIOWait(bp, 0)))
2479 goto exit;
2481 /*
2482 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2483 */
2484 for (lspn = 0; lspn < npages - 3; lspn++) {
2485 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2486 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2488 bp->l_blkno += sbi->nbperpage;
2489 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2490 lbmStartIO(bp);
2491 if ((rc = lbmIOWait(bp, 0)))
2492 goto exit;
2495 rc = 0;
2496 exit:
2497 /*
2498 * finalize log
2499 */
2500 /* release the buffer */
2501 lbmFree(bp);
2503 return rc;
2506 #ifdef CONFIG_JFS_STATISTICS
2507 int jfs_lmstats_read(char *buffer, char **start, off_t offset, int length,
2508 int *eof, void *data)
2510 int len = 0;
2511 off_t begin;
2513 len += sprintf(buffer,
2514 "JFS Logmgr stats\n"
2515 "================\n"
2516 "commits = %d\n"
2517 "writes submitted = %d\n"
2518 "writes completed = %d\n"
2519 "full pages submitted = %d\n"
2520 "partial pages submitted = %d\n",
2521 lmStat.commit,
2522 lmStat.submitted,
2523 lmStat.pagedone,
2524 lmStat.full_page,
2525 lmStat.partial_page);
2527 begin = offset;
2528 *start = buffer + begin;
2529 len -= begin;
2531 if (len > length)
2532 len = length;
2533 else
2534 *eof = 1;
2536 if (len < 0)
2537 len = 0;
2539 return len;
2541 #endif /* CONFIG_JFS_STATISTICS */