ia64/linux-2.6.18-xen.hg

view fs/jfs/jfs_dtree.c @ 524:7f8b544237bf

netfront: Allow netfront in domain 0.

This is useful if your physical network device is in a utility domain.

Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
author Keir Fraser <keir.fraser@citrix.com>
date Tue Apr 15 15:18:58 2008 +0100 (2008-04-15)
parents 831230e53067
children
line source
1 /*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
19 /*
20 * jfs_dtree.c: directory B+-tree manager
21 *
22 * B+-tree with variable length key directory:
23 *
24 * each directory page is structured as an array of 32-byte
25 * directory entry slots initialized as a freelist
26 * to avoid search/compaction of free space at insertion.
27 * when an entry is inserted, a number of slots are allocated
28 * from the freelist as required to store variable length data
29 * of the entry; when the entry is deleted, slots of the entry
30 * are returned to freelist.
31 *
32 * leaf entry stores full name as key and file serial number
33 * (aka inode number) as data.
34 * internal/router entry stores sufffix compressed name
35 * as key and simple extent descriptor as data.
36 *
37 * each directory page maintains a sorted entry index table
38 * which stores the start slot index of sorted entries
39 * to allow binary search on the table.
40 *
41 * directory starts as a root/leaf page in on-disk inode
42 * inline data area.
43 * when it becomes full, it starts a leaf of a external extent
44 * of length of 1 block. each time the first leaf becomes full,
45 * it is extended rather than split (its size is doubled),
46 * until its length becoms 4 KBytes, from then the extent is split
47 * with new 4 Kbyte extent when it becomes full
48 * to reduce external fragmentation of small directories.
49 *
50 * blah, blah, blah, for linear scan of directory in pieces by
51 * readdir().
52 *
53 *
54 * case-insensitive directory file system
55 *
56 * names are stored in case-sensitive way in leaf entry.
57 * but stored, searched and compared in case-insensitive (uppercase) order
58 * (i.e., both search key and entry key are folded for search/compare):
59 * (note that case-sensitive order is BROKEN in storage, e.g.,
60 * sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
61 *
62 * entries which folds to the same key makes up a equivalent class
63 * whose members are stored as contiguous cluster (may cross page boundary)
64 * but whose order is arbitrary and acts as duplicate, e.g.,
65 * abc, Abc, aBc, abC)
66 *
67 * once match is found at leaf, requires scan forward/backward
68 * either for, in case-insensitive search, duplicate
69 * or for, in case-sensitive search, for exact match
70 *
71 * router entry must be created/stored in case-insensitive way
72 * in internal entry:
73 * (right most key of left page and left most key of right page
74 * are folded, and its suffix compression is propagated as router
75 * key in parent)
76 * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
77 * should be made the router key for the split)
78 *
79 * case-insensitive search:
80 *
81 * fold search key;
82 *
83 * case-insensitive search of B-tree:
84 * for internal entry, router key is already folded;
85 * for leaf entry, fold the entry key before comparison.
86 *
87 * if (leaf entry case-insensitive match found)
88 * if (next entry satisfies case-insensitive match)
89 * return EDUPLICATE;
90 * if (prev entry satisfies case-insensitive match)
91 * return EDUPLICATE;
92 * return match;
93 * else
94 * return no match;
95 *
96 * serialization:
97 * target directory inode lock is being held on entry/exit
98 * of all main directory service routines.
99 *
100 * log based recovery:
101 */
103 #include <linux/fs.h>
104 #include <linux/quotaops.h>
105 #include "jfs_incore.h"
106 #include "jfs_superblock.h"
107 #include "jfs_filsys.h"
108 #include "jfs_metapage.h"
109 #include "jfs_dmap.h"
110 #include "jfs_unicode.h"
111 #include "jfs_debug.h"
113 /* dtree split parameter */
114 struct dtsplit {
115 struct metapage *mp;
116 s16 index;
117 s16 nslot;
118 struct component_name *key;
119 ddata_t *data;
120 struct pxdlist *pxdlist;
121 };
123 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
125 /* get page buffer for specified block address */
126 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)\
127 {\
128 BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot)\
129 if (!(RC))\
130 {\
131 if (((P)->header.nextindex > (((BN)==0)?DTROOTMAXSLOT:(P)->header.maxslot)) ||\
132 ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT)))\
133 {\
134 BT_PUTPAGE(MP);\
135 jfs_error((IP)->i_sb, "DT_GETPAGE: dtree page corrupt");\
136 MP = NULL;\
137 RC = -EIO;\
138 }\
139 }\
140 }
142 /* for consistency */
143 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
145 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
146 BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
148 /*
149 * forward references
150 */
151 static int dtSplitUp(tid_t tid, struct inode *ip,
152 struct dtsplit * split, struct btstack * btstack);
154 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
155 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
157 static int dtExtendPage(tid_t tid, struct inode *ip,
158 struct dtsplit * split, struct btstack * btstack);
160 static int dtSplitRoot(tid_t tid, struct inode *ip,
161 struct dtsplit * split, struct metapage ** rmpp);
163 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
164 dtpage_t * fp, struct btstack * btstack);
166 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
168 static int dtReadFirst(struct inode *ip, struct btstack * btstack);
170 static int dtReadNext(struct inode *ip,
171 loff_t * offset, struct btstack * btstack);
173 static int dtCompare(struct component_name * key, dtpage_t * p, int si);
175 static int ciCompare(struct component_name * key, dtpage_t * p, int si,
176 int flag);
178 static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
179 int flag);
181 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
182 int ri, struct component_name * key, int flag);
184 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
185 ddata_t * data, struct dt_lock **);
187 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
188 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
189 int do_index);
191 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
193 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
195 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
197 #define ciToUpper(c) UniStrupr((c)->name)
199 /*
200 * read_index_page()
201 *
202 * Reads a page of a directory's index table.
203 * Having metadata mapped into the directory inode's address space
204 * presents a multitude of problems. We avoid this by mapping to
205 * the absolute address space outside of the *_metapage routines
206 */
207 static struct metapage *read_index_page(struct inode *inode, s64 blkno)
208 {
209 int rc;
210 s64 xaddr;
211 int xflag;
212 s32 xlen;
214 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
215 if (rc || (xaddr == 0))
216 return NULL;
218 return read_metapage(inode, xaddr, PSIZE, 1);
219 }
221 /*
222 * get_index_page()
223 *
224 * Same as get_index_page(), but get's a new page without reading
225 */
226 static struct metapage *get_index_page(struct inode *inode, s64 blkno)
227 {
228 int rc;
229 s64 xaddr;
230 int xflag;
231 s32 xlen;
233 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
234 if (rc || (xaddr == 0))
235 return NULL;
237 return get_metapage(inode, xaddr, PSIZE, 1);
238 }
240 /*
241 * find_index()
242 *
243 * Returns dtree page containing directory table entry for specified
244 * index and pointer to its entry.
245 *
246 * mp must be released by caller.
247 */
248 static struct dir_table_slot *find_index(struct inode *ip, u32 index,
249 struct metapage ** mp, s64 *lblock)
250 {
251 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
252 s64 blkno;
253 s64 offset;
254 int page_offset;
255 struct dir_table_slot *slot;
256 static int maxWarnings = 10;
258 if (index < 2) {
259 if (maxWarnings) {
260 jfs_warn("find_entry called with index = %d", index);
261 maxWarnings--;
262 }
263 return NULL;
264 }
266 if (index >= jfs_ip->next_index) {
267 jfs_warn("find_entry called with index >= next_index");
268 return NULL;
269 }
271 if (jfs_dirtable_inline(ip)) {
272 /*
273 * Inline directory table
274 */
275 *mp = NULL;
276 slot = &jfs_ip->i_dirtable[index - 2];
277 } else {
278 offset = (index - 2) * sizeof(struct dir_table_slot);
279 page_offset = offset & (PSIZE - 1);
280 blkno = ((offset + 1) >> L2PSIZE) <<
281 JFS_SBI(ip->i_sb)->l2nbperpage;
283 if (*mp && (*lblock != blkno)) {
284 release_metapage(*mp);
285 *mp = NULL;
286 }
287 if (*mp == 0) {
288 *lblock = blkno;
289 *mp = read_index_page(ip, blkno);
290 }
291 if (*mp == 0) {
292 jfs_err("free_index: error reading directory table");
293 return NULL;
294 }
296 slot =
297 (struct dir_table_slot *) ((char *) (*mp)->data +
298 page_offset);
299 }
300 return slot;
301 }
303 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
304 u32 index)
305 {
306 struct tlock *tlck;
307 struct linelock *llck;
308 struct lv *lv;
310 tlck = txLock(tid, ip, mp, tlckDATA);
311 llck = (struct linelock *) tlck->lock;
313 if (llck->index >= llck->maxcnt)
314 llck = txLinelock(llck);
315 lv = &llck->lv[llck->index];
317 /*
318 * Linelock slot size is twice the size of directory table
319 * slot size. 512 entries per page.
320 */
321 lv->offset = ((index - 2) & 511) >> 1;
322 lv->length = 1;
323 llck->index++;
324 }
326 /*
327 * add_index()
328 *
329 * Adds an entry to the directory index table. This is used to provide
330 * each directory entry with a persistent index in which to resume
331 * directory traversals
332 */
333 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
334 {
335 struct super_block *sb = ip->i_sb;
336 struct jfs_sb_info *sbi = JFS_SBI(sb);
337 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
338 u64 blkno;
339 struct dir_table_slot *dirtab_slot;
340 u32 index;
341 struct linelock *llck;
342 struct lv *lv;
343 struct metapage *mp;
344 s64 offset;
345 uint page_offset;
346 struct tlock *tlck;
347 s64 xaddr;
349 ASSERT(DO_INDEX(ip));
351 if (jfs_ip->next_index < 2) {
352 jfs_warn("add_index: next_index = %d. Resetting!",
353 jfs_ip->next_index);
354 jfs_ip->next_index = 2;
355 }
357 index = jfs_ip->next_index++;
359 if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
360 /*
361 * i_size reflects size of index table, or 8 bytes per entry.
362 */
363 ip->i_size = (loff_t) (index - 1) << 3;
365 /*
366 * dir table fits inline within inode
367 */
368 dirtab_slot = &jfs_ip->i_dirtable[index-2];
369 dirtab_slot->flag = DIR_INDEX_VALID;
370 dirtab_slot->slot = slot;
371 DTSaddress(dirtab_slot, bn);
373 set_cflag(COMMIT_Dirtable, ip);
375 return index;
376 }
377 if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
378 struct dir_table_slot temp_table[12];
380 /*
381 * It's time to move the inline table to an external
382 * page and begin to build the xtree
383 */
384 if (DQUOT_ALLOC_BLOCK(ip, sbi->nbperpage))
385 goto clean_up;
386 if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) {
387 DQUOT_FREE_BLOCK(ip, sbi->nbperpage);
388 goto clean_up;
389 }
391 /*
392 * Save the table, we're going to overwrite it with the
393 * xtree root
394 */
395 memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
397 /*
398 * Initialize empty x-tree
399 */
400 xtInitRoot(tid, ip);
402 /*
403 * Add the first block to the xtree
404 */
405 if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
406 /* This really shouldn't fail */
407 jfs_warn("add_index: xtInsert failed!");
408 memcpy(&jfs_ip->i_dirtable, temp_table,
409 sizeof (temp_table));
410 dbFree(ip, xaddr, sbi->nbperpage);
411 DQUOT_FREE_BLOCK(ip, sbi->nbperpage);
412 goto clean_up;
413 }
414 ip->i_size = PSIZE;
416 if ((mp = get_index_page(ip, 0)) == 0) {
417 jfs_err("add_index: get_metapage failed!");
418 xtTruncate(tid, ip, 0, COMMIT_PWMAP);
419 memcpy(&jfs_ip->i_dirtable, temp_table,
420 sizeof (temp_table));
421 goto clean_up;
422 }
423 tlck = txLock(tid, ip, mp, tlckDATA);
424 llck = (struct linelock *) & tlck->lock;
425 ASSERT(llck->index == 0);
426 lv = &llck->lv[0];
428 lv->offset = 0;
429 lv->length = 6; /* tlckDATA slot size is 16 bytes */
430 llck->index++;
432 memcpy(mp->data, temp_table, sizeof(temp_table));
434 mark_metapage_dirty(mp);
435 release_metapage(mp);
437 /*
438 * Logging is now directed by xtree tlocks
439 */
440 clear_cflag(COMMIT_Dirtable, ip);
441 }
443 offset = (index - 2) * sizeof(struct dir_table_slot);
444 page_offset = offset & (PSIZE - 1);
445 blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
446 if (page_offset == 0) {
447 /*
448 * This will be the beginning of a new page
449 */
450 xaddr = 0;
451 if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
452 jfs_warn("add_index: xtInsert failed!");
453 goto clean_up;
454 }
455 ip->i_size += PSIZE;
457 if ((mp = get_index_page(ip, blkno)))
458 memset(mp->data, 0, PSIZE); /* Just looks better */
459 else
460 xtTruncate(tid, ip, offset, COMMIT_PWMAP);
461 } else
462 mp = read_index_page(ip, blkno);
464 if (mp == 0) {
465 jfs_err("add_index: get/read_metapage failed!");
466 goto clean_up;
467 }
469 lock_index(tid, ip, mp, index);
471 dirtab_slot =
472 (struct dir_table_slot *) ((char *) mp->data + page_offset);
473 dirtab_slot->flag = DIR_INDEX_VALID;
474 dirtab_slot->slot = slot;
475 DTSaddress(dirtab_slot, bn);
477 mark_metapage_dirty(mp);
478 release_metapage(mp);
480 return index;
482 clean_up:
484 jfs_ip->next_index--;
486 return 0;
487 }
489 /*
490 * free_index()
491 *
492 * Marks an entry to the directory index table as free.
493 */
494 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
495 {
496 struct dir_table_slot *dirtab_slot;
497 s64 lblock;
498 struct metapage *mp = NULL;
500 dirtab_slot = find_index(ip, index, &mp, &lblock);
502 if (dirtab_slot == 0)
503 return;
505 dirtab_slot->flag = DIR_INDEX_FREE;
506 dirtab_slot->slot = dirtab_slot->addr1 = 0;
507 dirtab_slot->addr2 = cpu_to_le32(next);
509 if (mp) {
510 lock_index(tid, ip, mp, index);
511 mark_metapage_dirty(mp);
512 release_metapage(mp);
513 } else
514 set_cflag(COMMIT_Dirtable, ip);
515 }
517 /*
518 * modify_index()
519 *
520 * Changes an entry in the directory index table
521 */
522 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
523 int slot, struct metapage ** mp, u64 *lblock)
524 {
525 struct dir_table_slot *dirtab_slot;
527 dirtab_slot = find_index(ip, index, mp, lblock);
529 if (dirtab_slot == 0)
530 return;
532 DTSaddress(dirtab_slot, bn);
533 dirtab_slot->slot = slot;
535 if (*mp) {
536 lock_index(tid, ip, *mp, index);
537 mark_metapage_dirty(*mp);
538 } else
539 set_cflag(COMMIT_Dirtable, ip);
540 }
542 /*
543 * read_index()
544 *
545 * reads a directory table slot
546 */
547 static int read_index(struct inode *ip, u32 index,
548 struct dir_table_slot * dirtab_slot)
549 {
550 s64 lblock;
551 struct metapage *mp = NULL;
552 struct dir_table_slot *slot;
554 slot = find_index(ip, index, &mp, &lblock);
555 if (slot == 0) {
556 return -EIO;
557 }
559 memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
561 if (mp)
562 release_metapage(mp);
564 return 0;
565 }
567 /*
568 * dtSearch()
569 *
570 * function:
571 * Search for the entry with specified key
572 *
573 * parameter:
574 *
575 * return: 0 - search result on stack, leaf page pinned;
576 * errno - I/O error
577 */
578 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
579 struct btstack * btstack, int flag)
580 {
581 int rc = 0;
582 int cmp = 1; /* init for empty page */
583 s64 bn;
584 struct metapage *mp;
585 dtpage_t *p;
586 s8 *stbl;
587 int base, index, lim;
588 struct btframe *btsp;
589 pxd_t *pxd;
590 int psize = 288; /* initial in-line directory */
591 ino_t inumber;
592 struct component_name ciKey;
593 struct super_block *sb = ip->i_sb;
595 ciKey.name =
596 (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
597 GFP_NOFS);
598 if (ciKey.name == 0) {
599 rc = -ENOMEM;
600 goto dtSearch_Exit2;
601 }
604 /* uppercase search key for c-i directory */
605 UniStrcpy(ciKey.name, key->name);
606 ciKey.namlen = key->namlen;
608 /* only uppercase if case-insensitive support is on */
609 if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
610 ciToUpper(&ciKey);
611 }
612 BT_CLR(btstack); /* reset stack */
614 /* init level count for max pages to split */
615 btstack->nsplit = 1;
617 /*
618 * search down tree from root:
619 *
620 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
621 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
622 *
623 * if entry with search key K is not found
624 * internal page search find the entry with largest key Ki
625 * less than K which point to the child page to search;
626 * leaf page search find the entry with smallest key Kj
627 * greater than K so that the returned index is the position of
628 * the entry to be shifted right for insertion of new entry.
629 * for empty tree, search key is greater than any key of the tree.
630 *
631 * by convention, root bn = 0.
632 */
633 for (bn = 0;;) {
634 /* get/pin the page to search */
635 DT_GETPAGE(ip, bn, mp, psize, p, rc);
636 if (rc)
637 goto dtSearch_Exit1;
639 /* get sorted entry table of the page */
640 stbl = DT_GETSTBL(p);
642 /*
643 * binary search with search key K on the current page.
644 */
645 for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
646 index = base + (lim >> 1);
648 if (p->header.flag & BT_LEAF) {
649 /* uppercase leaf name to compare */
650 cmp =
651 ciCompare(&ciKey, p, stbl[index],
652 JFS_SBI(sb)->mntflag);
653 } else {
654 /* router key is in uppercase */
656 cmp = dtCompare(&ciKey, p, stbl[index]);
659 }
660 if (cmp == 0) {
661 /*
662 * search hit
663 */
664 /* search hit - leaf page:
665 * return the entry found
666 */
667 if (p->header.flag & BT_LEAF) {
668 inumber = le32_to_cpu(
669 ((struct ldtentry *) & p->slot[stbl[index]])->inumber);
671 /*
672 * search for JFS_LOOKUP
673 */
674 if (flag == JFS_LOOKUP) {
675 *data = inumber;
676 rc = 0;
677 goto out;
678 }
680 /*
681 * search for JFS_CREATE
682 */
683 if (flag == JFS_CREATE) {
684 *data = inumber;
685 rc = -EEXIST;
686 goto out;
687 }
689 /*
690 * search for JFS_REMOVE or JFS_RENAME
691 */
692 if ((flag == JFS_REMOVE ||
693 flag == JFS_RENAME) &&
694 *data != inumber) {
695 rc = -ESTALE;
696 goto out;
697 }
699 /*
700 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
701 */
702 /* save search result */
703 *data = inumber;
704 btsp = btstack->top;
705 btsp->bn = bn;
706 btsp->index = index;
707 btsp->mp = mp;
709 rc = 0;
710 goto dtSearch_Exit1;
711 }
713 /* search hit - internal page:
714 * descend/search its child page
715 */
716 goto getChild;
717 }
719 if (cmp > 0) {
720 base = index + 1;
721 --lim;
722 }
723 }
725 /*
726 * search miss
727 *
728 * base is the smallest index with key (Kj) greater than
729 * search key (K) and may be zero or (maxindex + 1) index.
730 */
731 /*
732 * search miss - leaf page
733 *
734 * return location of entry (base) where new entry with
735 * search key K is to be inserted.
736 */
737 if (p->header.flag & BT_LEAF) {
738 /*
739 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
740 */
741 if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
742 flag == JFS_RENAME) {
743 rc = -ENOENT;
744 goto out;
745 }
747 /*
748 * search for JFS_CREATE|JFS_FINDDIR:
749 *
750 * save search result
751 */
752 *data = 0;
753 btsp = btstack->top;
754 btsp->bn = bn;
755 btsp->index = base;
756 btsp->mp = mp;
758 rc = 0;
759 goto dtSearch_Exit1;
760 }
762 /*
763 * search miss - internal page
764 *
765 * if base is non-zero, decrement base by one to get the parent
766 * entry of the child page to search.
767 */
768 index = base ? base - 1 : base;
770 /*
771 * go down to child page
772 */
773 getChild:
774 /* update max. number of pages to split */
775 if (BT_STACK_FULL(btstack)) {
776 /* Something's corrupted, mark filesytem dirty so
777 * chkdsk will fix it.
778 */
779 jfs_error(sb, "stack overrun in dtSearch!");
780 BT_STACK_DUMP(btstack);
781 rc = -EIO;
782 goto out;
783 }
784 btstack->nsplit++;
786 /* push (bn, index) of the parent page/entry */
787 BT_PUSH(btstack, bn, index);
789 /* get the child page block number */
790 pxd = (pxd_t *) & p->slot[stbl[index]];
791 bn = addressPXD(pxd);
792 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
794 /* unpin the parent page */
795 DT_PUTPAGE(mp);
796 }
798 out:
799 DT_PUTPAGE(mp);
801 dtSearch_Exit1:
803 kfree(ciKey.name);
805 dtSearch_Exit2:
807 return rc;
808 }
811 /*
812 * dtInsert()
813 *
814 * function: insert an entry to directory tree
815 *
816 * parameter:
817 *
818 * return: 0 - success;
819 * errno - failure;
820 */
821 int dtInsert(tid_t tid, struct inode *ip,
822 struct component_name * name, ino_t * fsn, struct btstack * btstack)
823 {
824 int rc = 0;
825 struct metapage *mp; /* meta-page buffer */
826 dtpage_t *p; /* base B+-tree index page */
827 s64 bn;
828 int index;
829 struct dtsplit split; /* split information */
830 ddata_t data;
831 struct dt_lock *dtlck;
832 int n;
833 struct tlock *tlck;
834 struct lv *lv;
836 /*
837 * retrieve search result
838 *
839 * dtSearch() returns (leaf page pinned, index at which to insert).
840 * n.b. dtSearch() may return index of (maxindex + 1) of
841 * the full page.
842 */
843 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
845 /*
846 * insert entry for new key
847 */
848 if (DO_INDEX(ip)) {
849 if (JFS_IP(ip)->next_index == DIREND) {
850 DT_PUTPAGE(mp);
851 return -EMLINK;
852 }
853 n = NDTLEAF(name->namlen);
854 data.leaf.tid = tid;
855 data.leaf.ip = ip;
856 } else {
857 n = NDTLEAF_LEGACY(name->namlen);
858 data.leaf.ip = NULL; /* signifies legacy directory format */
859 }
860 data.leaf.ino = *fsn;
862 /*
863 * leaf page does not have enough room for new entry:
864 *
865 * extend/split the leaf page;
866 *
867 * dtSplitUp() will insert the entry and unpin the leaf page.
868 */
869 if (n > p->header.freecnt) {
870 split.mp = mp;
871 split.index = index;
872 split.nslot = n;
873 split.key = name;
874 split.data = &data;
875 rc = dtSplitUp(tid, ip, &split, btstack);
876 return rc;
877 }
879 /*
880 * leaf page does have enough room for new entry:
881 *
882 * insert the new data entry into the leaf page;
883 */
884 BT_MARK_DIRTY(mp, ip);
885 /*
886 * acquire a transaction lock on the leaf page
887 */
888 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
889 dtlck = (struct dt_lock *) & tlck->lock;
890 ASSERT(dtlck->index == 0);
891 lv = & dtlck->lv[0];
893 /* linelock header */
894 lv->offset = 0;
895 lv->length = 1;
896 dtlck->index++;
898 dtInsertEntry(p, index, name, &data, &dtlck);
900 /* linelock stbl of non-root leaf page */
901 if (!(p->header.flag & BT_ROOT)) {
902 if (dtlck->index >= dtlck->maxcnt)
903 dtlck = (struct dt_lock *) txLinelock(dtlck);
904 lv = & dtlck->lv[dtlck->index];
905 n = index >> L2DTSLOTSIZE;
906 lv->offset = p->header.stblindex + n;
907 lv->length =
908 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
909 dtlck->index++;
910 }
912 /* unpin the leaf page */
913 DT_PUTPAGE(mp);
915 return 0;
916 }
919 /*
920 * dtSplitUp()
921 *
922 * function: propagate insertion bottom up;
923 *
924 * parameter:
925 *
926 * return: 0 - success;
927 * errno - failure;
928 * leaf page unpinned;
929 */
930 static int dtSplitUp(tid_t tid,
931 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
932 {
933 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
934 int rc = 0;
935 struct metapage *smp;
936 dtpage_t *sp; /* split page */
937 struct metapage *rmp;
938 dtpage_t *rp; /* new right page split from sp */
939 pxd_t rpxd; /* new right page extent descriptor */
940 struct metapage *lmp;
941 dtpage_t *lp; /* left child page */
942 int skip; /* index of entry of insertion */
943 struct btframe *parent; /* parent page entry on traverse stack */
944 s64 xaddr, nxaddr;
945 int xlen, xsize;
946 struct pxdlist pxdlist;
947 pxd_t *pxd;
948 struct component_name key = { 0, NULL };
949 ddata_t *data = split->data;
950 int n;
951 struct dt_lock *dtlck;
952 struct tlock *tlck;
953 struct lv *lv;
954 int quota_allocation = 0;
956 /* get split page */
957 smp = split->mp;
958 sp = DT_PAGE(ip, smp);
960 key.name =
961 (wchar_t *) kmalloc((JFS_NAME_MAX + 2) * sizeof(wchar_t),
962 GFP_NOFS);
963 if (key.name == 0) {
964 DT_PUTPAGE(smp);
965 rc = -ENOMEM;
966 goto dtSplitUp_Exit;
967 }
969 /*
970 * split leaf page
971 *
972 * The split routines insert the new entry, and
973 * acquire txLock as appropriate.
974 */
975 /*
976 * split root leaf page:
977 */
978 if (sp->header.flag & BT_ROOT) {
979 /*
980 * allocate a single extent child page
981 */
982 xlen = 1;
983 n = sbi->bsize >> L2DTSLOTSIZE;
984 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
985 n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
986 if (n <= split->nslot)
987 xlen++;
988 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
989 DT_PUTPAGE(smp);
990 goto freeKeyName;
991 }
993 pxdlist.maxnpxd = 1;
994 pxdlist.npxd = 0;
995 pxd = &pxdlist.pxd[0];
996 PXDaddress(pxd, xaddr);
997 PXDlength(pxd, xlen);
998 split->pxdlist = &pxdlist;
999 rc = dtSplitRoot(tid, ip, split, &rmp);
1001 if (rc)
1002 dbFree(ip, xaddr, xlen);
1003 else
1004 DT_PUTPAGE(rmp);
1006 DT_PUTPAGE(smp);
1008 if (!DO_INDEX(ip))
1009 ip->i_size = xlen << sbi->l2bsize;
1011 goto freeKeyName;
1014 /*
1015 * extend first leaf page
1017 * extend the 1st extent if less than buffer page size
1018 * (dtExtendPage() reurns leaf page unpinned)
1019 */
1020 pxd = &sp->header.self;
1021 xlen = lengthPXD(pxd);
1022 xsize = xlen << sbi->l2bsize;
1023 if (xsize < PSIZE) {
1024 xaddr = addressPXD(pxd);
1025 n = xsize >> L2DTSLOTSIZE;
1026 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
1027 if ((n + sp->header.freecnt) <= split->nslot)
1028 n = xlen + (xlen << 1);
1029 else
1030 n = xlen;
1032 /* Allocate blocks to quota. */
1033 if (DQUOT_ALLOC_BLOCK(ip, n)) {
1034 rc = -EDQUOT;
1035 goto extendOut;
1037 quota_allocation += n;
1039 if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1040 (s64) n, &nxaddr)))
1041 goto extendOut;
1043 pxdlist.maxnpxd = 1;
1044 pxdlist.npxd = 0;
1045 pxd = &pxdlist.pxd[0];
1046 PXDaddress(pxd, nxaddr)
1047 PXDlength(pxd, xlen + n);
1048 split->pxdlist = &pxdlist;
1049 if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1050 nxaddr = addressPXD(pxd);
1051 if (xaddr != nxaddr) {
1052 /* free relocated extent */
1053 xlen = lengthPXD(pxd);
1054 dbFree(ip, nxaddr, (s64) xlen);
1055 } else {
1056 /* free extended delta */
1057 xlen = lengthPXD(pxd) - n;
1058 xaddr = addressPXD(pxd) + xlen;
1059 dbFree(ip, xaddr, (s64) n);
1061 } else if (!DO_INDEX(ip))
1062 ip->i_size = lengthPXD(pxd) << sbi->l2bsize;
1065 extendOut:
1066 DT_PUTPAGE(smp);
1067 goto freeKeyName;
1070 /*
1071 * split leaf page <sp> into <sp> and a new right page <rp>.
1073 * return <rp> pinned and its extent descriptor <rpxd>
1074 */
1075 /*
1076 * allocate new directory page extent and
1077 * new index page(s) to cover page split(s)
1079 * allocation hint: ?
1080 */
1081 n = btstack->nsplit;
1082 pxdlist.maxnpxd = pxdlist.npxd = 0;
1083 xlen = sbi->nbperpage;
1084 for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1085 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1086 PXDaddress(pxd, xaddr);
1087 PXDlength(pxd, xlen);
1088 pxdlist.maxnpxd++;
1089 continue;
1092 DT_PUTPAGE(smp);
1094 /* undo allocation */
1095 goto splitOut;
1098 split->pxdlist = &pxdlist;
1099 if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1100 DT_PUTPAGE(smp);
1102 /* undo allocation */
1103 goto splitOut;
1106 if (!DO_INDEX(ip))
1107 ip->i_size += PSIZE;
1109 /*
1110 * propagate up the router entry for the leaf page just split
1112 * insert a router entry for the new page into the parent page,
1113 * propagate the insert/split up the tree by walking back the stack
1114 * of (bn of parent page, index of child page entry in parent page)
1115 * that were traversed during the search for the page that split.
1117 * the propagation of insert/split up the tree stops if the root
1118 * splits or the page inserted into doesn't have to split to hold
1119 * the new entry.
1121 * the parent entry for the split page remains the same, and
1122 * a new entry is inserted at its right with the first key and
1123 * block number of the new right page.
1125 * There are a maximum of 4 pages pinned at any time:
1126 * two children, left parent and right parent (when the parent splits).
1127 * keep the child pages pinned while working on the parent.
1128 * make sure that all pins are released at exit.
1129 */
1130 while ((parent = BT_POP(btstack)) != NULL) {
1131 /* parent page specified by stack frame <parent> */
1133 /* keep current child pages (<lp>, <rp>) pinned */
1134 lmp = smp;
1135 lp = sp;
1137 /*
1138 * insert router entry in parent for new right child page <rp>
1139 */
1140 /* get the parent page <sp> */
1141 DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1142 if (rc) {
1143 DT_PUTPAGE(lmp);
1144 DT_PUTPAGE(rmp);
1145 goto splitOut;
1148 /*
1149 * The new key entry goes ONE AFTER the index of parent entry,
1150 * because the split was to the right.
1151 */
1152 skip = parent->index + 1;
1154 /*
1155 * compute the key for the router entry
1157 * key suffix compression:
1158 * for internal pages that have leaf pages as children,
1159 * retain only what's needed to distinguish between
1160 * the new entry and the entry on the page to its left.
1161 * If the keys compare equal, retain the entire key.
1163 * note that compression is performed only at computing
1164 * router key at the lowest internal level.
1165 * further compression of the key between pairs of higher
1166 * level internal pages loses too much information and
1167 * the search may fail.
1168 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1169 * results in two adjacent parent entries (a)(xx).
1170 * if split occurs between these two entries, and
1171 * if compression is applied, the router key of parent entry
1172 * of right page (x) will divert search for x into right
1173 * subtree and miss x in the left subtree.)
1175 * the entire key must be retained for the next-to-leftmost
1176 * internal key at any level of the tree, or search may fail
1177 * (e.g., ?)
1178 */
1179 switch (rp->header.flag & BT_TYPE) {
1180 case BT_LEAF:
1181 /*
1182 * compute the length of prefix for suffix compression
1183 * between last entry of left page and first entry
1184 * of right page
1185 */
1186 if ((sp->header.flag & BT_ROOT && skip > 1) ||
1187 sp->header.prev != 0 || skip > 1) {
1188 /* compute uppercase router prefix key */
1189 rc = ciGetLeafPrefixKey(lp,
1190 lp->header.nextindex-1,
1191 rp, 0, &key,
1192 sbi->mntflag);
1193 if (rc) {
1194 DT_PUTPAGE(lmp);
1195 DT_PUTPAGE(rmp);
1196 DT_PUTPAGE(smp);
1197 goto splitOut;
1199 } else {
1200 /* next to leftmost entry of
1201 lowest internal level */
1203 /* compute uppercase router key */
1204 dtGetKey(rp, 0, &key, sbi->mntflag);
1205 key.name[key.namlen] = 0;
1207 if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1208 ciToUpper(&key);
1211 n = NDTINTERNAL(key.namlen);
1212 break;
1214 case BT_INTERNAL:
1215 dtGetKey(rp, 0, &key, sbi->mntflag);
1216 n = NDTINTERNAL(key.namlen);
1217 break;
1219 default:
1220 jfs_err("dtSplitUp(): UFO!");
1221 break;
1224 /* unpin left child page */
1225 DT_PUTPAGE(lmp);
1227 /*
1228 * compute the data for the router entry
1229 */
1230 data->xd = rpxd; /* child page xd */
1232 /*
1233 * parent page is full - split the parent page
1234 */
1235 if (n > sp->header.freecnt) {
1236 /* init for parent page split */
1237 split->mp = smp;
1238 split->index = skip; /* index at insert */
1239 split->nslot = n;
1240 split->key = &key;
1241 /* split->data = data; */
1243 /* unpin right child page */
1244 DT_PUTPAGE(rmp);
1246 /* The split routines insert the new entry,
1247 * acquire txLock as appropriate.
1248 * return <rp> pinned and its block number <rbn>.
1249 */
1250 rc = (sp->header.flag & BT_ROOT) ?
1251 dtSplitRoot(tid, ip, split, &rmp) :
1252 dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1253 if (rc) {
1254 DT_PUTPAGE(smp);
1255 goto splitOut;
1258 /* smp and rmp are pinned */
1260 /*
1261 * parent page is not full - insert router entry in parent page
1262 */
1263 else {
1264 BT_MARK_DIRTY(smp, ip);
1265 /*
1266 * acquire a transaction lock on the parent page
1267 */
1268 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1269 dtlck = (struct dt_lock *) & tlck->lock;
1270 ASSERT(dtlck->index == 0);
1271 lv = & dtlck->lv[0];
1273 /* linelock header */
1274 lv->offset = 0;
1275 lv->length = 1;
1276 dtlck->index++;
1278 /* linelock stbl of non-root parent page */
1279 if (!(sp->header.flag & BT_ROOT)) {
1280 lv++;
1281 n = skip >> L2DTSLOTSIZE;
1282 lv->offset = sp->header.stblindex + n;
1283 lv->length =
1284 ((sp->header.nextindex -
1285 1) >> L2DTSLOTSIZE) - n + 1;
1286 dtlck->index++;
1289 dtInsertEntry(sp, skip, &key, data, &dtlck);
1291 /* exit propagate up */
1292 break;
1296 /* unpin current split and its right page */
1297 DT_PUTPAGE(smp);
1298 DT_PUTPAGE(rmp);
1300 /*
1301 * free remaining extents allocated for split
1302 */
1303 splitOut:
1304 n = pxdlist.npxd;
1305 pxd = &pxdlist.pxd[n];
1306 for (; n < pxdlist.maxnpxd; n++, pxd++)
1307 dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1309 freeKeyName:
1310 kfree(key.name);
1312 /* Rollback quota allocation */
1313 if (rc && quota_allocation)
1314 DQUOT_FREE_BLOCK(ip, quota_allocation);
1316 dtSplitUp_Exit:
1318 return rc;
1322 /*
1323 * dtSplitPage()
1325 * function: Split a non-root page of a btree.
1327 * parameter:
1329 * return: 0 - success;
1330 * errno - failure;
1331 * return split and new page pinned;
1332 */
1333 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1334 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1336 int rc = 0;
1337 struct metapage *smp;
1338 dtpage_t *sp;
1339 struct metapage *rmp;
1340 dtpage_t *rp; /* new right page allocated */
1341 s64 rbn; /* new right page block number */
1342 struct metapage *mp;
1343 dtpage_t *p;
1344 s64 nextbn;
1345 struct pxdlist *pxdlist;
1346 pxd_t *pxd;
1347 int skip, nextindex, half, left, nxt, off, si;
1348 struct ldtentry *ldtentry;
1349 struct idtentry *idtentry;
1350 u8 *stbl;
1351 struct dtslot *f;
1352 int fsi, stblsize;
1353 int n;
1354 struct dt_lock *sdtlck, *rdtlck;
1355 struct tlock *tlck;
1356 struct dt_lock *dtlck;
1357 struct lv *slv, *rlv, *lv;
1359 /* get split page */
1360 smp = split->mp;
1361 sp = DT_PAGE(ip, smp);
1363 /*
1364 * allocate the new right page for the split
1365 */
1366 pxdlist = split->pxdlist;
1367 pxd = &pxdlist->pxd[pxdlist->npxd];
1368 pxdlist->npxd++;
1369 rbn = addressPXD(pxd);
1370 rmp = get_metapage(ip, rbn, PSIZE, 1);
1371 if (rmp == NULL)
1372 return -EIO;
1374 /* Allocate blocks to quota. */
1375 if (DQUOT_ALLOC_BLOCK(ip, lengthPXD(pxd))) {
1376 release_metapage(rmp);
1377 return -EDQUOT;
1380 jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1382 BT_MARK_DIRTY(rmp, ip);
1383 /*
1384 * acquire a transaction lock on the new right page
1385 */
1386 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1387 rdtlck = (struct dt_lock *) & tlck->lock;
1389 rp = (dtpage_t *) rmp->data;
1390 *rpp = rp;
1391 rp->header.self = *pxd;
1393 BT_MARK_DIRTY(smp, ip);
1394 /*
1395 * acquire a transaction lock on the split page
1397 * action:
1398 */
1399 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1400 sdtlck = (struct dt_lock *) & tlck->lock;
1402 /* linelock header of split page */
1403 ASSERT(sdtlck->index == 0);
1404 slv = & sdtlck->lv[0];
1405 slv->offset = 0;
1406 slv->length = 1;
1407 sdtlck->index++;
1409 /*
1410 * initialize/update sibling pointers between sp and rp
1411 */
1412 nextbn = le64_to_cpu(sp->header.next);
1413 rp->header.next = cpu_to_le64(nextbn);
1414 rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1415 sp->header.next = cpu_to_le64(rbn);
1417 /*
1418 * initialize new right page
1419 */
1420 rp->header.flag = sp->header.flag;
1422 /* compute sorted entry table at start of extent data area */
1423 rp->header.nextindex = 0;
1424 rp->header.stblindex = 1;
1426 n = PSIZE >> L2DTSLOTSIZE;
1427 rp->header.maxslot = n;
1428 stblsize = (n + 31) >> L2DTSLOTSIZE; /* in unit of slot */
1430 /* init freelist */
1431 fsi = rp->header.stblindex + stblsize;
1432 rp->header.freelist = fsi;
1433 rp->header.freecnt = rp->header.maxslot - fsi;
1435 /*
1436 * sequential append at tail: append without split
1438 * If splitting the last page on a level because of appending
1439 * a entry to it (skip is maxentry), it's likely that the access is
1440 * sequential. Adding an empty page on the side of the level is less
1441 * work and can push the fill factor much higher than normal.
1442 * If we're wrong it's no big deal, we'll just do the split the right
1443 * way next time.
1444 * (It may look like it's equally easy to do a similar hack for
1445 * reverse sorted data, that is, split the tree left,
1446 * but it's not. Be my guest.)
1447 */
1448 if (nextbn == 0 && split->index == sp->header.nextindex) {
1449 /* linelock header + stbl (first slot) of new page */
1450 rlv = & rdtlck->lv[rdtlck->index];
1451 rlv->offset = 0;
1452 rlv->length = 2;
1453 rdtlck->index++;
1455 /*
1456 * initialize freelist of new right page
1457 */
1458 f = &rp->slot[fsi];
1459 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1460 f->next = fsi;
1461 f->next = -1;
1463 /* insert entry at the first entry of the new right page */
1464 dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1466 goto out;
1469 /*
1470 * non-sequential insert (at possibly middle page)
1471 */
1473 /*
1474 * update prev pointer of previous right sibling page;
1475 */
1476 if (nextbn != 0) {
1477 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1478 if (rc) {
1479 discard_metapage(rmp);
1480 return rc;
1483 BT_MARK_DIRTY(mp, ip);
1484 /*
1485 * acquire a transaction lock on the next page
1486 */
1487 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1488 jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1489 tlck, ip, mp);
1490 dtlck = (struct dt_lock *) & tlck->lock;
1492 /* linelock header of previous right sibling page */
1493 lv = & dtlck->lv[dtlck->index];
1494 lv->offset = 0;
1495 lv->length = 1;
1496 dtlck->index++;
1498 p->header.prev = cpu_to_le64(rbn);
1500 DT_PUTPAGE(mp);
1503 /*
1504 * split the data between the split and right pages.
1505 */
1506 skip = split->index;
1507 half = (PSIZE >> L2DTSLOTSIZE) >> 1; /* swag */
1508 left = 0;
1510 /*
1511 * compute fill factor for split pages
1513 * <nxt> traces the next entry to move to rp
1514 * <off> traces the next entry to stay in sp
1515 */
1516 stbl = (u8 *) & sp->slot[sp->header.stblindex];
1517 nextindex = sp->header.nextindex;
1518 for (nxt = off = 0; nxt < nextindex; ++off) {
1519 if (off == skip)
1520 /* check for fill factor with new entry size */
1521 n = split->nslot;
1522 else {
1523 si = stbl[nxt];
1524 switch (sp->header.flag & BT_TYPE) {
1525 case BT_LEAF:
1526 ldtentry = (struct ldtentry *) & sp->slot[si];
1527 if (DO_INDEX(ip))
1528 n = NDTLEAF(ldtentry->namlen);
1529 else
1530 n = NDTLEAF_LEGACY(ldtentry->
1531 namlen);
1532 break;
1534 case BT_INTERNAL:
1535 idtentry = (struct idtentry *) & sp->slot[si];
1536 n = NDTINTERNAL(idtentry->namlen);
1537 break;
1539 default:
1540 break;
1543 ++nxt; /* advance to next entry to move in sp */
1546 left += n;
1547 if (left >= half)
1548 break;
1551 /* <nxt> poins to the 1st entry to move */
1553 /*
1554 * move entries to right page
1556 * dtMoveEntry() initializes rp and reserves entry for insertion
1558 * split page moved out entries are linelocked;
1559 * new/right page moved in entries are linelocked;
1560 */
1561 /* linelock header + stbl of new right page */
1562 rlv = & rdtlck->lv[rdtlck->index];
1563 rlv->offset = 0;
1564 rlv->length = 5;
1565 rdtlck->index++;
1567 dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1569 sp->header.nextindex = nxt;
1571 /*
1572 * finalize freelist of new right page
1573 */
1574 fsi = rp->header.freelist;
1575 f = &rp->slot[fsi];
1576 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1577 f->next = fsi;
1578 f->next = -1;
1580 /*
1581 * Update directory index table for entries now in right page
1582 */
1583 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1584 s64 lblock;
1586 mp = NULL;
1587 stbl = DT_GETSTBL(rp);
1588 for (n = 0; n < rp->header.nextindex; n++) {
1589 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1590 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1591 rbn, n, &mp, &lblock);
1593 if (mp)
1594 release_metapage(mp);
1597 /*
1598 * the skipped index was on the left page,
1599 */
1600 if (skip <= off) {
1601 /* insert the new entry in the split page */
1602 dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1604 /* linelock stbl of split page */
1605 if (sdtlck->index >= sdtlck->maxcnt)
1606 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1607 slv = & sdtlck->lv[sdtlck->index];
1608 n = skip >> L2DTSLOTSIZE;
1609 slv->offset = sp->header.stblindex + n;
1610 slv->length =
1611 ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1612 sdtlck->index++;
1614 /*
1615 * the skipped index was on the right page,
1616 */
1617 else {
1618 /* adjust the skip index to reflect the new position */
1619 skip -= nxt;
1621 /* insert the new entry in the right page */
1622 dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1625 out:
1626 *rmpp = rmp;
1627 *rpxdp = *pxd;
1629 return rc;
1633 /*
1634 * dtExtendPage()
1636 * function: extend 1st/only directory leaf page
1638 * parameter:
1640 * return: 0 - success;
1641 * errno - failure;
1642 * return extended page pinned;
1643 */
1644 static int dtExtendPage(tid_t tid,
1645 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1647 struct super_block *sb = ip->i_sb;
1648 int rc;
1649 struct metapage *smp, *pmp, *mp;
1650 dtpage_t *sp, *pp;
1651 struct pxdlist *pxdlist;
1652 pxd_t *pxd, *tpxd;
1653 int xlen, xsize;
1654 int newstblindex, newstblsize;
1655 int oldstblindex, oldstblsize;
1656 int fsi, last;
1657 struct dtslot *f;
1658 struct btframe *parent;
1659 int n;
1660 struct dt_lock *dtlck;
1661 s64 xaddr, txaddr;
1662 struct tlock *tlck;
1663 struct pxd_lock *pxdlock;
1664 struct lv *lv;
1665 uint type;
1666 struct ldtentry *ldtentry;
1667 u8 *stbl;
1669 /* get page to extend */
1670 smp = split->mp;
1671 sp = DT_PAGE(ip, smp);
1673 /* get parent/root page */
1674 parent = BT_POP(btstack);
1675 DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1676 if (rc)
1677 return (rc);
1679 /*
1680 * extend the extent
1681 */
1682 pxdlist = split->pxdlist;
1683 pxd = &pxdlist->pxd[pxdlist->npxd];
1684 pxdlist->npxd++;
1686 xaddr = addressPXD(pxd);
1687 tpxd = &sp->header.self;
1688 txaddr = addressPXD(tpxd);
1689 /* in-place extension */
1690 if (xaddr == txaddr) {
1691 type = tlckEXTEND;
1693 /* relocation */
1694 else {
1695 type = tlckNEW;
1697 /* save moved extent descriptor for later free */
1698 tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1699 pxdlock = (struct pxd_lock *) & tlck->lock;
1700 pxdlock->flag = mlckFREEPXD;
1701 pxdlock->pxd = sp->header.self;
1702 pxdlock->index = 1;
1704 /*
1705 * Update directory index table to reflect new page address
1706 */
1707 if (DO_INDEX(ip)) {
1708 s64 lblock;
1710 mp = NULL;
1711 stbl = DT_GETSTBL(sp);
1712 for (n = 0; n < sp->header.nextindex; n++) {
1713 ldtentry =
1714 (struct ldtentry *) & sp->slot[stbl[n]];
1715 modify_index(tid, ip,
1716 le32_to_cpu(ldtentry->index),
1717 xaddr, n, &mp, &lblock);
1719 if (mp)
1720 release_metapage(mp);
1724 /*
1725 * extend the page
1726 */
1727 sp->header.self = *pxd;
1729 jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1731 BT_MARK_DIRTY(smp, ip);
1732 /*
1733 * acquire a transaction lock on the extended/leaf page
1734 */
1735 tlck = txLock(tid, ip, smp, tlckDTREE | type);
1736 dtlck = (struct dt_lock *) & tlck->lock;
1737 lv = & dtlck->lv[0];
1739 /* update buffer extent descriptor of extended page */
1740 xlen = lengthPXD(pxd);
1741 xsize = xlen << JFS_SBI(sb)->l2bsize;
1742 #ifdef _STILL_TO_PORT
1743 bmSetXD(smp, xaddr, xsize);
1744 #endif /* _STILL_TO_PORT */
1746 /*
1747 * copy old stbl to new stbl at start of extended area
1748 */
1749 oldstblindex = sp->header.stblindex;
1750 oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1751 newstblindex = sp->header.maxslot;
1752 n = xsize >> L2DTSLOTSIZE;
1753 newstblsize = (n + 31) >> L2DTSLOTSIZE;
1754 memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1755 sp->header.nextindex);
1757 /*
1758 * in-line extension: linelock old area of extended page
1759 */
1760 if (type == tlckEXTEND) {
1761 /* linelock header */
1762 lv->offset = 0;
1763 lv->length = 1;
1764 dtlck->index++;
1765 lv++;
1767 /* linelock new stbl of extended page */
1768 lv->offset = newstblindex;
1769 lv->length = newstblsize;
1771 /*
1772 * relocation: linelock whole relocated area
1773 */
1774 else {
1775 lv->offset = 0;
1776 lv->length = sp->header.maxslot + newstblsize;
1779 dtlck->index++;
1781 sp->header.maxslot = n;
1782 sp->header.stblindex = newstblindex;
1783 /* sp->header.nextindex remains the same */
1785 /*
1786 * add old stbl region at head of freelist
1787 */
1788 fsi = oldstblindex;
1789 f = &sp->slot[fsi];
1790 last = sp->header.freelist;
1791 for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1792 f->next = last;
1793 last = fsi;
1795 sp->header.freelist = last;
1796 sp->header.freecnt += oldstblsize;
1798 /*
1799 * append free region of newly extended area at tail of freelist
1800 */
1801 /* init free region of newly extended area */
1802 fsi = n = newstblindex + newstblsize;
1803 f = &sp->slot[fsi];
1804 for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1805 f->next = fsi;
1806 f->next = -1;
1808 /* append new free region at tail of old freelist */
1809 fsi = sp->header.freelist;
1810 if (fsi == -1)
1811 sp->header.freelist = n;
1812 else {
1813 do {
1814 f = &sp->slot[fsi];
1815 fsi = f->next;
1816 } while (fsi != -1);
1818 f->next = n;
1821 sp->header.freecnt += sp->header.maxslot - n;
1823 /*
1824 * insert the new entry
1825 */
1826 dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1828 BT_MARK_DIRTY(pmp, ip);
1829 /*
1830 * linelock any freeslots residing in old extent
1831 */
1832 if (type == tlckEXTEND) {
1833 n = sp->header.maxslot >> 2;
1834 if (sp->header.freelist < n)
1835 dtLinelockFreelist(sp, n, &dtlck);
1838 /*
1839 * update parent entry on the parent/root page
1840 */
1841 /*
1842 * acquire a transaction lock on the parent/root page
1843 */
1844 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1845 dtlck = (struct dt_lock *) & tlck->lock;
1846 lv = & dtlck->lv[dtlck->index];
1848 /* linelock parent entry - 1st slot */
1849 lv->offset = 1;
1850 lv->length = 1;
1851 dtlck->index++;
1853 /* update the parent pxd for page extension */
1854 tpxd = (pxd_t *) & pp->slot[1];
1855 *tpxd = *pxd;
1857 DT_PUTPAGE(pmp);
1858 return 0;
1862 /*
1863 * dtSplitRoot()
1865 * function:
1866 * split the full root page into
1867 * original/root/split page and new right page
1868 * i.e., root remains fixed in tree anchor (inode) and
1869 * the root is copied to a single new right child page
1870 * since root page << non-root page, and
1871 * the split root page contains a single entry for the
1872 * new right child page.
1874 * parameter:
1876 * return: 0 - success;
1877 * errno - failure;
1878 * return new page pinned;
1879 */
1880 static int dtSplitRoot(tid_t tid,
1881 struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1883 struct super_block *sb = ip->i_sb;
1884 struct metapage *smp;
1885 dtroot_t *sp;
1886 struct metapage *rmp;
1887 dtpage_t *rp;
1888 s64 rbn;
1889 int xlen;
1890 int xsize;
1891 struct dtslot *f;
1892 s8 *stbl;
1893 int fsi, stblsize, n;
1894 struct idtentry *s;
1895 pxd_t *ppxd;
1896 struct pxdlist *pxdlist;
1897 pxd_t *pxd;
1898 struct dt_lock *dtlck;
1899 struct tlock *tlck;
1900 struct lv *lv;
1902 /* get split root page */
1903 smp = split->mp;
1904 sp = &JFS_IP(ip)->i_dtroot;
1906 /*
1907 * allocate/initialize a single (right) child page
1909 * N.B. at first split, a one (or two) block to fit new entry
1910 * is allocated; at subsequent split, a full page is allocated;
1911 */
1912 pxdlist = split->pxdlist;
1913 pxd = &pxdlist->pxd[pxdlist->npxd];
1914 pxdlist->npxd++;
1915 rbn = addressPXD(pxd);
1916 xlen = lengthPXD(pxd);
1917 xsize = xlen << JFS_SBI(sb)->l2bsize;
1918 rmp = get_metapage(ip, rbn, xsize, 1);
1919 if (!rmp)
1920 return -EIO;
1922 rp = rmp->data;
1924 /* Allocate blocks to quota. */
1925 if (DQUOT_ALLOC_BLOCK(ip, lengthPXD(pxd))) {
1926 release_metapage(rmp);
1927 return -EDQUOT;
1930 BT_MARK_DIRTY(rmp, ip);
1931 /*
1932 * acquire a transaction lock on the new right page
1933 */
1934 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1935 dtlck = (struct dt_lock *) & tlck->lock;
1937 rp->header.flag =
1938 (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1939 rp->header.self = *pxd;
1941 /* initialize sibling pointers */
1942 rp->header.next = 0;
1943 rp->header.prev = 0;
1945 /*
1946 * move in-line root page into new right page extent
1947 */
1948 /* linelock header + copied entries + new stbl (1st slot) in new page */
1949 ASSERT(dtlck->index == 0);
1950 lv = & dtlck->lv[0];
1951 lv->offset = 0;
1952 lv->length = 10; /* 1 + 8 + 1 */
1953 dtlck->index++;
1955 n = xsize >> L2DTSLOTSIZE;
1956 rp->header.maxslot = n;
1957 stblsize = (n + 31) >> L2DTSLOTSIZE;
1959 /* copy old stbl to new stbl at start of extended area */
1960 rp->header.stblindex = DTROOTMAXSLOT;
1961 stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1962 memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1963 rp->header.nextindex = sp->header.nextindex;
1965 /* copy old data area to start of new data area */
1966 memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1968 /*
1969 * append free region of newly extended area at tail of freelist
1970 */
1971 /* init free region of newly extended area */
1972 fsi = n = DTROOTMAXSLOT + stblsize;
1973 f = &rp->slot[fsi];
1974 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1975 f->next = fsi;
1976 f->next = -1;
1978 /* append new free region at tail of old freelist */
1979 fsi = sp->header.freelist;
1980 if (fsi == -1)
1981 rp->header.freelist = n;
1982 else {
1983 rp->header.freelist = fsi;
1985 do {
1986 f = &rp->slot[fsi];
1987 fsi = f->next;
1988 } while (fsi != -1);
1990 f->next = n;
1993 rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1995 /*
1996 * Update directory index table for entries now in right page
1997 */
1998 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1999 s64 lblock;
2000 struct metapage *mp = NULL;
2001 struct ldtentry *ldtentry;
2003 stbl = DT_GETSTBL(rp);
2004 for (n = 0; n < rp->header.nextindex; n++) {
2005 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
2006 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
2007 rbn, n, &mp, &lblock);
2009 if (mp)
2010 release_metapage(mp);
2012 /*
2013 * insert the new entry into the new right/child page
2014 * (skip index in the new right page will not change)
2015 */
2016 dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2018 /*
2019 * reset parent/root page
2021 * set the 1st entry offset to 0, which force the left-most key
2022 * at any level of the tree to be less than any search key.
2024 * The btree comparison code guarantees that the left-most key on any
2025 * level of the tree is never used, so it doesn't need to be filled in.
2026 */
2027 BT_MARK_DIRTY(smp, ip);
2028 /*
2029 * acquire a transaction lock on the root page (in-memory inode)
2030 */
2031 tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2032 dtlck = (struct dt_lock *) & tlck->lock;
2034 /* linelock root */
2035 ASSERT(dtlck->index == 0);
2036 lv = & dtlck->lv[0];
2037 lv->offset = 0;
2038 lv->length = DTROOTMAXSLOT;
2039 dtlck->index++;
2041 /* update page header of root */
2042 if (sp->header.flag & BT_LEAF) {
2043 sp->header.flag &= ~BT_LEAF;
2044 sp->header.flag |= BT_INTERNAL;
2047 /* init the first entry */
2048 s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2049 ppxd = (pxd_t *) s;
2050 *ppxd = *pxd;
2051 s->next = -1;
2052 s->namlen = 0;
2054 stbl = sp->header.stbl;
2055 stbl[0] = DTENTRYSTART;
2056 sp->header.nextindex = 1;
2058 /* init freelist */
2059 fsi = DTENTRYSTART + 1;
2060 f = &sp->slot[fsi];
2062 /* init free region of remaining area */
2063 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2064 f->next = fsi;
2065 f->next = -1;
2067 sp->header.freelist = DTENTRYSTART + 1;
2068 sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2070 *rmpp = rmp;
2072 return 0;
2076 /*
2077 * dtDelete()
2079 * function: delete the entry(s) referenced by a key.
2081 * parameter:
2083 * return:
2084 */
2085 int dtDelete(tid_t tid,
2086 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2088 int rc = 0;
2089 s64 bn;
2090 struct metapage *mp, *imp;
2091 dtpage_t *p;
2092 int index;
2093 struct btstack btstack;
2094 struct dt_lock *dtlck;
2095 struct tlock *tlck;
2096 struct lv *lv;
2097 int i;
2098 struct ldtentry *ldtentry;
2099 u8 *stbl;
2100 u32 table_index, next_index;
2101 struct metapage *nmp;
2102 dtpage_t *np;
2104 /*
2105 * search for the entry to delete:
2107 * dtSearch() returns (leaf page pinned, index at which to delete).
2108 */
2109 if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2110 return rc;
2112 /* retrieve search result */
2113 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2115 /*
2116 * We need to find put the index of the next entry into the
2117 * directory index table in order to resume a readdir from this
2118 * entry.
2119 */
2120 if (DO_INDEX(ip)) {
2121 stbl = DT_GETSTBL(p);
2122 ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2123 table_index = le32_to_cpu(ldtentry->index);
2124 if (index == (p->header.nextindex - 1)) {
2125 /*
2126 * Last entry in this leaf page
2127 */
2128 if ((p->header.flag & BT_ROOT)
2129 || (p->header.next == 0))
2130 next_index = -1;
2131 else {
2132 /* Read next leaf page */
2133 DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2134 nmp, PSIZE, np, rc);
2135 if (rc)
2136 next_index = -1;
2137 else {
2138 stbl = DT_GETSTBL(np);
2139 ldtentry =
2140 (struct ldtentry *) & np->
2141 slot[stbl[0]];
2142 next_index =
2143 le32_to_cpu(ldtentry->index);
2144 DT_PUTPAGE(nmp);
2147 } else {
2148 ldtentry =
2149 (struct ldtentry *) & p->slot[stbl[index + 1]];
2150 next_index = le32_to_cpu(ldtentry->index);
2152 free_index(tid, ip, table_index, next_index);
2154 /*
2155 * the leaf page becomes empty, delete the page
2156 */
2157 if (p->header.nextindex == 1) {
2158 /* delete empty page */
2159 rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2161 /*
2162 * the leaf page has other entries remaining:
2164 * delete the entry from the leaf page.
2165 */
2166 else {
2167 BT_MARK_DIRTY(mp, ip);
2168 /*
2169 * acquire a transaction lock on the leaf page
2170 */
2171 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2172 dtlck = (struct dt_lock *) & tlck->lock;
2174 /*
2175 * Do not assume that dtlck->index will be zero. During a
2176 * rename within a directory, this transaction may have
2177 * modified this page already when adding the new entry.
2178 */
2180 /* linelock header */
2181 if (dtlck->index >= dtlck->maxcnt)
2182 dtlck = (struct dt_lock *) txLinelock(dtlck);
2183 lv = & dtlck->lv[dtlck->index];
2184 lv->offset = 0;
2185 lv->length = 1;
2186 dtlck->index++;
2188 /* linelock stbl of non-root leaf page */
2189 if (!(p->header.flag & BT_ROOT)) {
2190 if (dtlck->index >= dtlck->maxcnt)
2191 dtlck = (struct dt_lock *) txLinelock(dtlck);
2192 lv = & dtlck->lv[dtlck->index];
2193 i = index >> L2DTSLOTSIZE;
2194 lv->offset = p->header.stblindex + i;
2195 lv->length =
2196 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2197 i + 1;
2198 dtlck->index++;
2201 /* free the leaf entry */
2202 dtDeleteEntry(p, index, &dtlck);
2204 /*
2205 * Update directory index table for entries moved in stbl
2206 */
2207 if (DO_INDEX(ip) && index < p->header.nextindex) {
2208 s64 lblock;
2210 imp = NULL;
2211 stbl = DT_GETSTBL(p);
2212 for (i = index; i < p->header.nextindex; i++) {
2213 ldtentry =
2214 (struct ldtentry *) & p->slot[stbl[i]];
2215 modify_index(tid, ip,
2216 le32_to_cpu(ldtentry->index),
2217 bn, i, &imp, &lblock);
2219 if (imp)
2220 release_metapage(imp);
2223 DT_PUTPAGE(mp);
2226 return rc;
2230 /*
2231 * dtDeleteUp()
2233 * function:
2234 * free empty pages as propagating deletion up the tree
2236 * parameter:
2238 * return:
2239 */
2240 static int dtDeleteUp(tid_t tid, struct inode *ip,
2241 struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2243 int rc = 0;
2244 struct metapage *mp;
2245 dtpage_t *p;
2246 int index, nextindex;
2247 int xlen;
2248 struct btframe *parent;
2249 struct dt_lock *dtlck;
2250 struct tlock *tlck;
2251 struct lv *lv;
2252 struct pxd_lock *pxdlock;
2253 int i;
2255 /*
2256 * keep the root leaf page which has become empty
2257 */
2258 if (BT_IS_ROOT(fmp)) {
2259 /*
2260 * reset the root
2262 * dtInitRoot() acquires txlock on the root
2263 */
2264 dtInitRoot(tid, ip, PARENT(ip));
2266 DT_PUTPAGE(fmp);
2268 return 0;
2271 /*
2272 * free the non-root leaf page
2273 */
2274 /*
2275 * acquire a transaction lock on the page
2277 * write FREEXTENT|NOREDOPAGE log record
2278 * N.B. linelock is overlaid as freed extent descriptor, and
2279 * the buffer page is freed;
2280 */
2281 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2282 pxdlock = (struct pxd_lock *) & tlck->lock;
2283 pxdlock->flag = mlckFREEPXD;
2284 pxdlock->pxd = fp->header.self;
2285 pxdlock->index = 1;
2287 /* update sibling pointers */
2288 if ((rc = dtRelink(tid, ip, fp))) {
2289 BT_PUTPAGE(fmp);
2290 return rc;
2293 xlen = lengthPXD(&fp->header.self);
2295 /* Free quota allocation. */
2296 DQUOT_FREE_BLOCK(ip, xlen);
2298 /* free/invalidate its buffer page */
2299 discard_metapage(fmp);
2301 /*
2302 * propagate page deletion up the directory tree
2304 * If the delete from the parent page makes it empty,
2305 * continue all the way up the tree.
2306 * stop if the root page is reached (which is never deleted) or
2307 * if the entry deletion does not empty the page.
2308 */
2309 while ((parent = BT_POP(btstack)) != NULL) {
2310 /* pin the parent page <sp> */
2311 DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2312 if (rc)
2313 return rc;
2315 /*
2316 * free the extent of the child page deleted
2317 */
2318 index = parent->index;
2320 /*
2321 * delete the entry for the child page from parent
2322 */
2323 nextindex = p->header.nextindex;
2325 /*
2326 * the parent has the single entry being deleted:
2328 * free the parent page which has become empty.
2329 */
2330 if (nextindex == 1) {
2331 /*
2332 * keep the root internal page which has become empty
2333 */
2334 if (p->header.flag & BT_ROOT) {
2335 /*
2336 * reset the root
2338 * dtInitRoot() acquires txlock on the root
2339 */
2340 dtInitRoot(tid, ip, PARENT(ip));
2342 DT_PUTPAGE(mp);
2344 return 0;
2346 /*
2347 * free the parent page
2348 */
2349 else {
2350 /*
2351 * acquire a transaction lock on the page
2353 * write FREEXTENT|NOREDOPAGE log record
2354 */
2355 tlck =
2356 txMaplock(tid, ip,
2357 tlckDTREE | tlckFREE);
2358 pxdlock = (struct pxd_lock *) & tlck->lock;
2359 pxdlock->flag = mlckFREEPXD;
2360 pxdlock->pxd = p->header.self;
2361 pxdlock->index = 1;
2363 /* update sibling pointers */
2364 if ((rc = dtRelink(tid, ip, p))) {
2365 DT_PUTPAGE(mp);
2366 return rc;
2369 xlen = lengthPXD(&p->header.self);
2371 /* Free quota allocation */
2372 DQUOT_FREE_BLOCK(ip, xlen);
2374 /* free/invalidate its buffer page */
2375 discard_metapage(mp);
2377 /* propagate up */
2378 continue;
2382 /*
2383 * the parent has other entries remaining:
2385 * delete the router entry from the parent page.
2386 */
2387 BT_MARK_DIRTY(mp, ip);
2388 /*
2389 * acquire a transaction lock on the page
2391 * action: router entry deletion
2392 */
2393 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2394 dtlck = (struct dt_lock *) & tlck->lock;
2396 /* linelock header */
2397 if (dtlck->index >= dtlck->maxcnt)
2398 dtlck = (struct dt_lock *) txLinelock(dtlck);
2399 lv = & dtlck->lv[dtlck->index];
2400 lv->offset = 0;
2401 lv->length = 1;
2402 dtlck->index++;
2404 /* linelock stbl of non-root leaf page */
2405 if (!(p->header.flag & BT_ROOT)) {
2406 if (dtlck->index < dtlck->maxcnt)
2407 lv++;
2408 else {
2409 dtlck = (struct dt_lock *) txLinelock(dtlck);
2410 lv = & dtlck->lv[0];
2412 i = index >> L2DTSLOTSIZE;
2413 lv->offset = p->header.stblindex + i;
2414 lv->length =
2415 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2416 i + 1;
2417 dtlck->index++;
2420 /* free the router entry */
2421 dtDeleteEntry(p, index, &dtlck);
2423 /* reset key of new leftmost entry of level (for consistency) */
2424 if (index == 0 &&
2425 ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2426 dtTruncateEntry(p, 0, &dtlck);
2428 /* unpin the parent page */
2429 DT_PUTPAGE(mp);
2431 /* exit propagation up */
2432 break;
2435 if (!DO_INDEX(ip))
2436 ip->i_size -= PSIZE;
2438 return 0;
2441 #ifdef _NOTYET
2442 /*
2443 * NAME: dtRelocate()
2445 * FUNCTION: relocate dtpage (internal or leaf) of directory;
2446 * This function is mainly used by defragfs utility.
2447 */
2448 int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd,
2449 s64 nxaddr)
2451 int rc = 0;
2452 struct metapage *mp, *pmp, *lmp, *rmp;
2453 dtpage_t *p, *pp, *rp = 0, *lp= 0;
2454 s64 bn;
2455 int index;
2456 struct btstack btstack;
2457 pxd_t *pxd;
2458 s64 oxaddr, nextbn, prevbn;
2459 int xlen, xsize;
2460 struct tlock *tlck;
2461 struct dt_lock *dtlck;
2462 struct pxd_lock *pxdlock;
2463 s8 *stbl;
2464 struct lv *lv;
2466 oxaddr = addressPXD(opxd);
2467 xlen = lengthPXD(opxd);
2469 jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2470 (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr,
2471 xlen);
2473 /*
2474 * 1. get the internal parent dtpage covering
2475 * router entry for the tartget page to be relocated;
2476 */
2477 rc = dtSearchNode(ip, lmxaddr, opxd, &btstack);
2478 if (rc)
2479 return rc;
2481 /* retrieve search result */
2482 DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index);
2483 jfs_info("dtRelocate: parent router entry validated.");
2485 /*
2486 * 2. relocate the target dtpage
2487 */
2488 /* read in the target page from src extent */
2489 DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc);
2490 if (rc) {
2491 /* release the pinned parent page */
2492 DT_PUTPAGE(pmp);
2493 return rc;
2496 /*
2497 * read in sibling pages if any to update sibling pointers;
2498 */
2499 rmp = NULL;
2500 if (p->header.next) {
2501 nextbn = le64_to_cpu(p->header.next);
2502 DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc);
2503 if (rc) {
2504 DT_PUTPAGE(mp);
2505 DT_PUTPAGE(pmp);
2506 return (rc);
2510 lmp = NULL;
2511 if (p->header.prev) {
2512 prevbn = le64_to_cpu(p->header.prev);
2513 DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc);
2514 if (rc) {
2515 DT_PUTPAGE(mp);
2516 DT_PUTPAGE(pmp);
2517 if (rmp)
2518 DT_PUTPAGE(rmp);
2519 return (rc);
2523 /* at this point, all xtpages to be updated are in memory */
2525 /*
2526 * update sibling pointers of sibling dtpages if any;
2527 */
2528 if (lmp) {
2529 tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK);
2530 dtlck = (struct dt_lock *) & tlck->lock;
2531 /* linelock header */
2532 ASSERT(dtlck->index == 0);
2533 lv = & dtlck->lv[0];
2534 lv->offset = 0;
2535 lv->length = 1;
2536 dtlck->index++;
2538 lp->header.next = cpu_to_le64(nxaddr);
2539 DT_PUTPAGE(lmp);
2542 if (rmp) {
2543 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK);
2544 dtlck = (struct dt_lock *) & tlck->lock;
2545 /* linelock header */
2546 ASSERT(dtlck->index == 0);
2547 lv = & dtlck->lv[0];
2548 lv->offset = 0;
2549 lv->length = 1;
2550 dtlck->index++;
2552 rp->header.prev = cpu_to_le64(nxaddr);
2553 DT_PUTPAGE(rmp);
2556 /*
2557 * update the target dtpage to be relocated
2559 * write LOG_REDOPAGE of LOG_NEW type for dst page
2560 * for the whole target page (logredo() will apply
2561 * after image and update bmap for allocation of the
2562 * dst extent), and update bmap for allocation of
2563 * the dst extent;
2564 */
2565 tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW);
2566 dtlck = (struct dt_lock *) & tlck->lock;
2567 /* linelock header */
2568 ASSERT(dtlck->index == 0);
2569 lv = & dtlck->lv[0];
2571 /* update the self address in the dtpage header */
2572 pxd = &p->header.self;
2573 PXDaddress(pxd, nxaddr);
2575 /* the dst page is the same as the src page, i.e.,
2576 * linelock for afterimage of the whole page;
2577 */
2578 lv->offset = 0;
2579 lv->length = p->header.maxslot;
2580 dtlck->index++;
2582 /* update the buffer extent descriptor of the dtpage */
2583 xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize;
2584 #ifdef _STILL_TO_PORT
2585 bmSetXD(mp, nxaddr, xsize);
2586 #endif /* _STILL_TO_PORT */
2587 /* unpin the relocated page */
2588 DT_PUTPAGE(mp);
2589 jfs_info("dtRelocate: target dtpage relocated.");
2591 /* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2592 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2593 * will also force a bmap update ).
2594 */
2596 /*
2597 * 3. acquire maplock for the source extent to be freed;
2598 */
2599 /* for dtpage relocation, write a LOG_NOREDOPAGE record
2600 * for the source dtpage (logredo() will init NoRedoPage
2601 * filter and will also update bmap for free of the source
2602 * dtpage), and upadte bmap for free of the source dtpage;
2603 */
2604 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2605 pxdlock = (struct pxd_lock *) & tlck->lock;
2606 pxdlock->flag = mlckFREEPXD;
2607 PXDaddress(&pxdlock->pxd, oxaddr);
2608 PXDlength(&pxdlock->pxd, xlen);
2609 pxdlock->index = 1;
2611 /*
2612 * 4. update the parent router entry for relocation;
2614 * acquire tlck for the parent entry covering the target dtpage;
2615 * write LOG_REDOPAGE to apply after image only;
2616 */
2617 jfs_info("dtRelocate: update parent router entry.");
2618 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
2619 dtlck = (struct dt_lock *) & tlck->lock;
2620 lv = & dtlck->lv[dtlck->index];
2622 /* update the PXD with the new address */
2623 stbl = DT_GETSTBL(pp);
2624 pxd = (pxd_t *) & pp->slot[stbl[index]];
2625 PXDaddress(pxd, nxaddr);
2626 lv->offset = stbl[index];
2627 lv->length = 1;
2628 dtlck->index++;
2630 /* unpin the parent dtpage */
2631 DT_PUTPAGE(pmp);
2633 return rc;
2636 /*
2637 * NAME: dtSearchNode()
2639 * FUNCTION: Search for an dtpage containing a specified address
2640 * This function is mainly used by defragfs utility.
2642 * NOTE: Search result on stack, the found page is pinned at exit.
2643 * The result page must be an internal dtpage.
2644 * lmxaddr give the address of the left most page of the
2645 * dtree level, in which the required dtpage resides.
2646 */
2647 static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd,
2648 struct btstack * btstack)
2650 int rc = 0;
2651 s64 bn;
2652 struct metapage *mp;
2653 dtpage_t *p;
2654 int psize = 288; /* initial in-line directory */
2655 s8 *stbl;
2656 int i;
2657 pxd_t *pxd;
2658 struct btframe *btsp;
2660 BT_CLR(btstack); /* reset stack */
2662 /*
2663 * descend tree to the level with specified leftmost page
2665 * by convention, root bn = 0.
2666 */
2667 for (bn = 0;;) {
2668 /* get/pin the page to search */
2669 DT_GETPAGE(ip, bn, mp, psize, p, rc);
2670 if (rc)
2671 return rc;
2673 /* does the xaddr of leftmost page of the levevl
2674 * matches levevl search key ?
2675 */
2676 if (p->header.flag & BT_ROOT) {
2677 if (lmxaddr == 0)
2678 break;
2679 } else if (addressPXD(&p->header.self) == lmxaddr)
2680 break;
2682 /*
2683 * descend down to leftmost child page
2684 */
2685 if (p->header.flag & BT_LEAF) {
2686 DT_PUTPAGE(mp);
2687 return -ESTALE;
2690 /* get the leftmost entry */
2691 stbl = DT_GETSTBL(p);
2692 pxd = (pxd_t *) & p->slot[stbl[0]];
2694 /* get the child page block address */
2695 bn = addressPXD(pxd);
2696 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
2697 /* unpin the parent page */
2698 DT_PUTPAGE(mp);
2701 /*
2702 * search each page at the current levevl
2703 */
2704 loop:
2705 stbl = DT_GETSTBL(p);
2706 for (i = 0; i < p->header.nextindex; i++) {
2707 pxd = (pxd_t *) & p->slot[stbl[i]];
2709 /* found the specified router entry */
2710 if (addressPXD(pxd) == addressPXD(kpxd) &&
2711 lengthPXD(pxd) == lengthPXD(kpxd)) {
2712 btsp = btstack->top;
2713 btsp->bn = bn;
2714 btsp->index = i;
2715 btsp->mp = mp;
2717 return 0;
2721 /* get the right sibling page if any */
2722 if (p->header.next)
2723 bn = le64_to_cpu(p->header.next);
2724 else {
2725 DT_PUTPAGE(mp);
2726 return -ESTALE;
2729 /* unpin current page */
2730 DT_PUTPAGE(mp);
2732 /* get the right sibling page */
2733 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2734 if (rc)
2735 return rc;
2737 goto loop;
2739 #endif /* _NOTYET */
2741 /*
2742 * dtRelink()
2744 * function:
2745 * link around a freed page.
2747 * parameter:
2748 * fp: page to be freed
2750 * return:
2751 */
2752 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2754 int rc;
2755 struct metapage *mp;
2756 s64 nextbn, prevbn;
2757 struct tlock *tlck;
2758 struct dt_lock *dtlck;
2759 struct lv *lv;
2761 nextbn = le64_to_cpu(p->header.next);
2762 prevbn = le64_to_cpu(p->header.prev);
2764 /* update prev pointer of the next page */
2765 if (nextbn != 0) {
2766 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2767 if (rc)
2768 return rc;
2770 BT_MARK_DIRTY(mp, ip);
2771 /*
2772 * acquire a transaction lock on the next page
2774 * action: update prev pointer;
2775 */
2776 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2777 jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2778 tlck, ip, mp);
2779 dtlck = (struct dt_lock *) & tlck->lock;
2781 /* linelock header */
2782 if (dtlck->index >= dtlck->maxcnt)
2783 dtlck = (struct dt_lock *) txLinelock(dtlck);
2784 lv = & dtlck->lv[dtlck->index];
2785 lv->offset = 0;
2786 lv->length = 1;
2787 dtlck->index++;
2789 p->header.prev = cpu_to_le64(prevbn);
2790 DT_PUTPAGE(mp);
2793 /* update next pointer of the previous page */
2794 if (prevbn != 0) {
2795 DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2796 if (rc)
2797 return rc;
2799 BT_MARK_DIRTY(mp, ip);
2800 /*
2801 * acquire a transaction lock on the prev page
2803 * action: update next pointer;
2804 */
2805 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2806 jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2807 tlck, ip, mp);
2808 dtlck = (struct dt_lock *) & tlck->lock;
2810 /* linelock header */
2811 if (dtlck->index >= dtlck->maxcnt)
2812 dtlck = (struct dt_lock *) txLinelock(dtlck);
2813 lv = & dtlck->lv[dtlck->index];
2814 lv->offset = 0;
2815 lv->length = 1;
2816 dtlck->index++;
2818 p->header.next = cpu_to_le64(nextbn);
2819 DT_PUTPAGE(mp);
2822 return 0;
2826 /*
2827 * dtInitRoot()
2829 * initialize directory root (inline in inode)
2830 */
2831 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2833 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2834 dtroot_t *p;
2835 int fsi;
2836 struct dtslot *f;
2837 struct tlock *tlck;
2838 struct dt_lock *dtlck;
2839 struct lv *lv;
2840 u16 xflag_save;
2842 /*
2843 * If this was previously an non-empty directory, we need to remove
2844 * the old directory table.
2845 */
2846 if (DO_INDEX(ip)) {
2847 if (!jfs_dirtable_inline(ip)) {
2848 struct tblock *tblk = tid_to_tblock(tid);
2849 /*
2850 * We're playing games with the tid's xflag. If
2851 * we're removing a regular file, the file's xtree
2852 * is committed with COMMIT_PMAP, but we always
2853 * commit the directories xtree with COMMIT_PWMAP.
2854 */
2855 xflag_save = tblk->xflag;
2856 tblk->xflag = 0;
2857 /*
2858 * xtTruncate isn't guaranteed to fully truncate
2859 * the xtree. The caller needs to check i_size
2860 * after committing the transaction to see if
2861 * additional truncation is needed. The
2862 * COMMIT_Stale flag tells caller that we
2863 * initiated the truncation.
2864 */
2865 xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2866 set_cflag(COMMIT_Stale, ip);
2868 tblk->xflag = xflag_save;
2869 } else
2870 ip->i_size = 1;
2872 jfs_ip->next_index = 2;
2873 } else
2874 ip->i_size = IDATASIZE;
2876 /*
2877 * acquire a transaction lock on the root
2879 * action: directory initialization;
2880 */
2881 tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2882 tlckDTREE | tlckENTRY | tlckBTROOT);
2883 dtlck = (struct dt_lock *) & tlck->lock;
2885 /* linelock root */
2886 ASSERT(dtlck->index == 0);
2887 lv = & dtlck->lv[0];
2888 lv->offset = 0;
2889 lv->length = DTROOTMAXSLOT;
2890 dtlck->index++;
2892 p = &jfs_ip->i_dtroot;
2894 p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2896 p->header.nextindex = 0;
2898 /* init freelist */
2899 fsi = 1;
2900 f = &p->slot[fsi];
2902 /* init data area of root */
2903 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2904 f->next = fsi;
2905 f->next = -1;
2907 p->header.freelist = 1;
2908 p->header.freecnt = 8;
2910 /* init '..' entry */
2911 p->header.idotdot = cpu_to_le32(idotdot);
2913 return;
2916 /*
2917 * add_missing_indices()
2919 * function: Fix dtree page in which one or more entries has an invalid index.
2920 * fsck.jfs should really fix this, but it currently does not.
2921 * Called from jfs_readdir when bad index is detected.
2922 */
2923 static void add_missing_indices(struct inode *inode, s64 bn)
2925 struct ldtentry *d;
2926 struct dt_lock *dtlck;
2927 int i;
2928 uint index;
2929 struct lv *lv;
2930 struct metapage *mp;
2931 dtpage_t *p;
2932 int rc;
2933 s8 *stbl;
2934 tid_t tid;
2935 struct tlock *tlck;
2937 tid = txBegin(inode->i_sb, 0);
2939 DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2941 if (rc) {
2942 printk(KERN_ERR "DT_GETPAGE failed!\n");
2943 goto end;
2945 BT_MARK_DIRTY(mp, inode);
2947 ASSERT(p->header.flag & BT_LEAF);
2949 tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2950 if (BT_IS_ROOT(mp))
2951 tlck->type |= tlckBTROOT;
2953 dtlck = (struct dt_lock *) &tlck->lock;
2955 stbl = DT_GETSTBL(p);
2956 for (i = 0; i < p->header.nextindex; i++) {
2957 d = (struct ldtentry *) &p->slot[stbl[i]];
2958 index = le32_to_cpu(d->index);
2959 if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2960 d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2961 if (dtlck->index >= dtlck->maxcnt)
2962 dtlck = (struct dt_lock *) txLinelock(dtlck);
2963 lv = &dtlck->lv[dtlck->index];
2964 lv->offset = stbl[i];
2965 lv->length = 1;
2966 dtlck->index++;
2970 DT_PUTPAGE(mp);
2971 (void) txCommit(tid, 1, &inode, 0);
2972 end:
2973 txEnd(tid);
2976 /*
2977 * Buffer to hold directory entry info while traversing a dtree page
2978 * before being fed to the filldir function
2979 */
2980 struct jfs_dirent {
2981 loff_t position;
2982 int ino;
2983 u16 name_len;
2984 char name[0];
2985 };
2987 /*
2988 * function to determine next variable-sized jfs_dirent in buffer
2989 */
2990 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2992 return (struct jfs_dirent *)
2993 ((char *)dirent +
2994 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2995 sizeof (loff_t) - 1) &
2996 ~(sizeof (loff_t) - 1)));
2999 /*
3000 * jfs_readdir()
3002 * function: read directory entries sequentially
3003 * from the specified entry offset
3005 * parameter:
3007 * return: offset = (pn, index) of start entry
3008 * of next jfs_readdir()/dtRead()
3009 */
3010 int jfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
3012 struct inode *ip = filp->f_dentry->d_inode;
3013 struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
3014 int rc = 0;
3015 loff_t dtpos; /* legacy OS/2 style position */
3016 struct dtoffset {
3017 s16 pn;
3018 s16 index;
3019 s32 unused;
3020 } *dtoffset = (struct dtoffset *) &dtpos;
3021 s64 bn;
3022 struct metapage *mp;
3023 dtpage_t *p;
3024 int index;
3025 s8 *stbl;
3026 struct btstack btstack;
3027 int i, next;
3028 struct ldtentry *d;
3029 struct dtslot *t;
3030 int d_namleft, len, outlen;
3031 unsigned long dirent_buf;
3032 char *name_ptr;
3033 u32 dir_index;
3034 int do_index = 0;
3035 uint loop_count = 0;
3036 struct jfs_dirent *jfs_dirent;
3037 int jfs_dirents;
3038 int overflow, fix_page, page_fixed = 0;
3039 static int unique_pos = 2; /* If we can't fix broken index */
3041 if (filp->f_pos == DIREND)
3042 return 0;
3044 if (DO_INDEX(ip)) {
3045 /*
3046 * persistent index is stored in directory entries.
3047 * Special cases: 0 = .
3048 * 1 = ..
3049 * -1 = End of directory
3050 */
3051 do_index = 1;
3053 dir_index = (u32) filp->f_pos;
3055 if (dir_index > 1) {
3056 struct dir_table_slot dirtab_slot;
3058 if (dtEmpty(ip) ||
3059 (dir_index >= JFS_IP(ip)->next_index)) {
3060 /* Stale position. Directory has shrunk */
3061 filp->f_pos = DIREND;
3062 return 0;
3064 repeat:
3065 rc = read_index(ip, dir_index, &dirtab_slot);
3066 if (rc) {
3067 filp->f_pos = DIREND;
3068 return rc;
3070 if (dirtab_slot.flag == DIR_INDEX_FREE) {
3071 if (loop_count++ > JFS_IP(ip)->next_index) {
3072 jfs_err("jfs_readdir detected "
3073 "infinite loop!");
3074 filp->f_pos = DIREND;
3075 return 0;
3077 dir_index = le32_to_cpu(dirtab_slot.addr2);
3078 if (dir_index == -1) {
3079 filp->f_pos = DIREND;
3080 return 0;
3082 goto repeat;
3084 bn = addressDTS(&dirtab_slot);
3085 index = dirtab_slot.slot;
3086 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3087 if (rc) {
3088 filp->f_pos = DIREND;
3089 return 0;
3091 if (p->header.flag & BT_INTERNAL) {
3092 jfs_err("jfs_readdir: bad index table");
3093 DT_PUTPAGE(mp);
3094 filp->f_pos = -1;
3095 return 0;
3097 } else {
3098 if (dir_index == 0) {
3099 /*
3100 * self "."
3101 */
3102 filp->f_pos = 0;
3103 if (filldir(dirent, ".", 1, 0, ip->i_ino,
3104 DT_DIR))
3105 return 0;
3107 /*
3108 * parent ".."
3109 */
3110 filp->f_pos = 1;
3111 if (filldir(dirent, "..", 2, 1, PARENT(ip), DT_DIR))
3112 return 0;
3114 /*
3115 * Find first entry of left-most leaf
3116 */
3117 if (dtEmpty(ip)) {
3118 filp->f_pos = DIREND;
3119 return 0;
3122 if ((rc = dtReadFirst(ip, &btstack)))
3123 return rc;
3125 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3127 } else {
3128 /*
3129 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3131 * pn = index = 0: First entry "."
3132 * pn = 0; index = 1: Second entry ".."
3133 * pn > 0: Real entries, pn=1 -> leftmost page
3134 * pn = index = -1: No more entries
3135 */
3136 dtpos = filp->f_pos;
3137 if (dtpos == 0) {
3138 /* build "." entry */
3140 if (filldir(dirent, ".", 1, filp->f_pos, ip->i_ino,
3141 DT_DIR))
3142 return 0;
3143 dtoffset->index = 1;
3144 filp->f_pos = dtpos;
3147 if (dtoffset->pn == 0) {
3148 if (dtoffset->index == 1) {
3149 /* build ".." entry */
3151 if (filldir(dirent, "..", 2, filp->f_pos,
3152 PARENT(ip), DT_DIR))
3153 return 0;
3154 } else {
3155 jfs_err("jfs_readdir called with "
3156 "invalid offset!");
3158 dtoffset->pn = 1;
3159 dtoffset->index = 0;
3160 filp->f_pos = dtpos;
3163 if (dtEmpty(ip)) {
3164 filp->f_pos = DIREND;
3165 return 0;
3168 if ((rc = dtReadNext(ip, &filp->f_pos, &btstack))) {
3169 jfs_err("jfs_readdir: unexpected rc = %d "
3170 "from dtReadNext", rc);
3171 filp->f_pos = DIREND;
3172 return 0;
3174 /* get start leaf page and index */
3175 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3177 /* offset beyond directory eof ? */
3178 if (bn < 0) {
3179 filp->f_pos = DIREND;
3180 return 0;
3184 dirent_buf = __get_free_page(GFP_KERNEL);
3185 if (dirent_buf == 0) {
3186 DT_PUTPAGE(mp);
3187 jfs_warn("jfs_readdir: __get_free_page failed!");
3188 filp->f_pos = DIREND;
3189 return -ENOMEM;
3192 while (1) {
3193 jfs_dirent = (struct jfs_dirent *) dirent_buf;
3194 jfs_dirents = 0;
3195 overflow = fix_page = 0;
3197 stbl = DT_GETSTBL(p);
3199 for (i = index; i < p->header.nextindex; i++) {
3200 d = (struct ldtentry *) & p->slot[stbl[i]];
3202 if (((long) jfs_dirent + d->namlen + 1) >
3203 (dirent_buf + PAGE_SIZE)) {
3204 /* DBCS codepages could overrun dirent_buf */
3205 index = i;
3206 overflow = 1;
3207 break;
3210 d_namleft = d->namlen;
3211 name_ptr = jfs_dirent->name;
3212 jfs_dirent->ino = le32_to_cpu(d->inumber);
3214 if (do_index) {
3215 len = min(d_namleft, DTLHDRDATALEN);
3216 jfs_dirent->position = le32_to_cpu(d->index);
3217 /*
3218 * d->index should always be valid, but it
3219 * isn't. fsck.jfs doesn't create the
3220 * directory index for the lost+found
3221 * directory. Rather than let it go,
3222 * we can try to fix it.
3223 */
3224 if ((jfs_dirent->position < 2) ||
3225 (jfs_dirent->position >=
3226 JFS_IP(ip)->next_index)) {
3227 if (!page_fixed && !isReadOnly(ip)) {
3228 fix_page = 1;
3229 /*
3230 * setting overflow and setting
3231 * index to i will cause the
3232 * same page to be processed
3233 * again starting here
3234 */
3235 overflow = 1;
3236 index = i;
3237 break;
3239 jfs_dirent->position = unique_pos++;
3241 } else {
3242 jfs_dirent->position = dtpos;
3243 len = min(d_namleft, DTLHDRDATALEN_LEGACY);
3246 /* copy the name of head/only segment */
3247 outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
3248 codepage);
3249 jfs_dirent->name_len = outlen;
3251 /* copy name in the additional segment(s) */
3252 next = d->next;
3253 while (next >= 0) {
3254 t = (struct dtslot *) & p->slot[next];
3255 name_ptr += outlen;
3256 d_namleft -= len;
3257 /* Sanity Check */
3258 if (d_namleft == 0) {
3259 jfs_error(ip->i_sb,
3260 "JFS:Dtree error: ino = "
3261 "%ld, bn=%Ld, index = %d",
3262 (long)ip->i_ino,
3263 (long long)bn,
3264 i);
3265 goto skip_one;
3267 len = min(d_namleft, DTSLOTDATALEN);
3268 outlen = jfs_strfromUCS_le(name_ptr, t->name,
3269 len, codepage);
3270 jfs_dirent->name_len += outlen;
3272 next = t->next;
3275 jfs_dirents++;
3276 jfs_dirent = next_jfs_dirent(jfs_dirent);
3277 skip_one:
3278 if (!do_index)
3279 dtoffset->index++;
3282 if (!overflow) {
3283 /* Point to next leaf page */
3284 if (p->header.flag & BT_ROOT)
3285 bn = 0;
3286 else {
3287 bn = le64_to_cpu(p->header.next);
3288 index = 0;
3289 /* update offset (pn:index) for new page */
3290 if (!do_index) {
3291 dtoffset->pn++;
3292 dtoffset->index = 0;
3295 page_fixed = 0;
3298 /* unpin previous leaf page */
3299 DT_PUTPAGE(mp);
3301 jfs_dirent = (struct jfs_dirent *) dirent_buf;
3302 while (jfs_dirents--) {
3303 filp->f_pos = jfs_dirent->position;
3304 if (filldir(dirent, jfs_dirent->name,
3305 jfs_dirent->name_len, filp->f_pos,
3306 jfs_dirent->ino, DT_UNKNOWN))
3307 goto out;
3308 jfs_dirent = next_jfs_dirent(jfs_dirent);
3311 if (fix_page) {
3312 add_missing_indices(ip, bn);
3313 page_fixed = 1;
3316 if (!overflow && (bn == 0)) {
3317 filp->f_pos = DIREND;
3318 break;
3321 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3322 if (rc) {
3323 free_page(dirent_buf);
3324 return rc;
3328 out:
3329 free_page(dirent_buf);
3331 return rc;
3335 /*
3336 * dtReadFirst()
3338 * function: get the leftmost page of the directory
3339 */
3340 static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3342 int rc = 0;
3343 s64 bn;
3344 int psize = 288; /* initial in-line directory */
3345 struct metapage *mp;
3346 dtpage_t *p;
3347 s8 *stbl;
3348 struct btframe *btsp;
3349 pxd_t *xd;
3351 BT_CLR(btstack); /* reset stack */
3353 /*
3354 * descend leftmost path of the tree
3356 * by convention, root bn = 0.
3357 */
3358 for (bn = 0;;) {
3359 DT_GETPAGE(ip, bn, mp, psize, p, rc);
3360 if (rc)
3361 return rc;
3363 /*
3364 * leftmost leaf page
3365 */
3366 if (p->header.flag & BT_LEAF) {
3367 /* return leftmost entry */
3368 btsp = btstack->top;
3369 btsp->bn = bn;
3370 btsp->index = 0;
3371 btsp->mp = mp;
3373 return 0;
3376 /*
3377 * descend down to leftmost child page
3378 */
3379 if (BT_STACK_FULL(btstack)) {
3380 DT_PUTPAGE(mp);
3381 jfs_error(ip->i_sb, "dtReadFirst: btstack overrun");
3382 BT_STACK_DUMP(btstack);
3383 return -EIO;
3385 /* push (bn, index) of the parent page/entry */
3386 BT_PUSH(btstack, bn, 0);
3388 /* get the leftmost entry */
3389 stbl = DT_GETSTBL(p);
3390 xd = (pxd_t *) & p->slot[stbl[0]];
3392 /* get the child page block address */
3393 bn = addressPXD(xd);
3394 psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3396 /* unpin the parent page */
3397 DT_PUTPAGE(mp);
3402 /*
3403 * dtReadNext()
3405 * function: get the page of the specified offset (pn:index)
3407 * return: if (offset > eof), bn = -1;
3409 * note: if index > nextindex of the target leaf page,
3410 * start with 1st entry of next leaf page;
3411 */
3412 static int dtReadNext(struct inode *ip, loff_t * offset,
3413 struct btstack * btstack)
3415 int rc = 0;
3416 struct dtoffset {
3417 s16 pn;
3418 s16 index;
3419 s32 unused;
3420 } *dtoffset = (struct dtoffset *) offset;
3421 s64 bn;
3422 struct metapage *mp;
3423 dtpage_t *p;
3424 int index;
3425 int pn;
3426 s8 *stbl;
3427 struct btframe *btsp, *parent;
3428 pxd_t *xd;
3430 /*
3431 * get leftmost leaf page pinned
3432 */
3433 if ((rc = dtReadFirst(ip, btstack)))
3434 return rc;
3436 /* get leaf page */
3437 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3439 /* get the start offset (pn:index) */
3440 pn = dtoffset->pn - 1; /* Now pn = 0 represents leftmost leaf */
3441 index = dtoffset->index;
3443 /* start at leftmost page ? */
3444 if (pn == 0) {
3445 /* offset beyond eof ? */
3446 if (index < p->header.nextindex)
3447 goto out;
3449 if (p->header.flag & BT_ROOT) {
3450 bn = -1;
3451 goto out;
3454 /* start with 1st entry of next leaf page */
3455 dtoffset->pn++;
3456 dtoffset->index = index = 0;
3457 goto a;
3460 /* start at non-leftmost page: scan parent pages for large pn */
3461 if (p->header.flag & BT_ROOT) {
3462 bn = -1;
3463 goto out;
3466 /* start after next leaf page ? */
3467 if (pn > 1)
3468 goto b;
3470 /* get leaf page pn = 1 */
3471 a:
3472 bn = le64_to_cpu(p->header.next);
3474 /* unpin leaf page */
3475 DT_PUTPAGE(mp);
3477 /* offset beyond eof ? */
3478 if (bn == 0) {
3479 bn = -1;
3480 goto out;
3483 goto c;
3485 /*
3486 * scan last internal page level to get target leaf page
3487 */
3488 b:
3489 /* unpin leftmost leaf page */
3490 DT_PUTPAGE(mp);
3492 /* get left most parent page */
3493 btsp = btstack->top;
3494 parent = btsp - 1;
3495 bn = parent->bn;
3496 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3497 if (rc)
3498 return rc;
3500 /* scan parent pages at last internal page level */
3501 while (pn >= p->header.nextindex) {
3502 pn -= p->header.nextindex;
3504 /* get next parent page address */
3505 bn = le64_to_cpu(p->header.next);
3507 /* unpin current parent page */
3508 DT_PUTPAGE(mp);
3510 /* offset beyond eof ? */
3511 if (bn == 0) {
3512 bn = -1;
3513 goto out;
3516 /* get next parent page */
3517 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3518 if (rc)
3519 return rc;
3521 /* update parent page stack frame */
3522 parent->bn = bn;
3525 /* get leaf page address */
3526 stbl = DT_GETSTBL(p);
3527 xd = (pxd_t *) & p->slot[stbl[pn]];
3528 bn = addressPXD(xd);
3530 /* unpin parent page */
3531 DT_PUTPAGE(mp);
3533 /*
3534 * get target leaf page
3535 */
3536 c:
3537 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3538 if (rc)
3539 return rc;
3541 /*
3542 * leaf page has been completed:
3543 * start with 1st entry of next leaf page
3544 */
3545 if (index >= p->header.nextindex) {
3546 bn = le64_to_cpu(p->header.next);
3548 /* unpin leaf page */
3549 DT_PUTPAGE(mp);
3551 /* offset beyond eof ? */
3552 if (bn == 0) {
3553 bn = -1;
3554 goto out;
3557 /* get next leaf page */
3558 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3559 if (rc)
3560 return rc;
3562 /* start with 1st entry of next leaf page */
3563 dtoffset->pn++;
3564 dtoffset->index = 0;
3567 out:
3568 /* return target leaf page pinned */
3569 btsp = btstack->top;
3570 btsp->bn = bn;
3571 btsp->index = dtoffset->index;
3572 btsp->mp = mp;
3574 return 0;
3578 /*
3579 * dtCompare()
3581 * function: compare search key with an internal entry
3583 * return:
3584 * < 0 if k is < record
3585 * = 0 if k is = record
3586 * > 0 if k is > record
3587 */
3588 static int dtCompare(struct component_name * key, /* search key */
3589 dtpage_t * p, /* directory page */
3590 int si)
3591 { /* entry slot index */
3592 wchar_t *kname;
3593 __le16 *name;
3594 int klen, namlen, len, rc;
3595 struct idtentry *ih;
3596 struct dtslot *t;
3598 /*
3599 * force the left-most key on internal pages, at any level of
3600 * the tree, to be less than any search key.
3601 * this obviates having to update the leftmost key on an internal
3602 * page when the user inserts a new key in the tree smaller than
3603 * anything that has been stored.
3605 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3606 * at any internal page at any level of the tree,
3607 * it descends to child of the entry anyway -
3608 * ? make the entry as min size dummy entry)
3610 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3611 * return (1);
3612 */
3614 kname = key->name;
3615 klen = key->namlen;
3617 ih = (struct idtentry *) & p->slot[si];
3618 si = ih->next;
3619 name = ih->name;
3620 namlen = ih->namlen;
3621 len = min(namlen, DTIHDRDATALEN);
3623 /* compare with head/only segment */
3624 len = min(klen, len);
3625 if ((rc = UniStrncmp_le(kname, name, len)))
3626 return rc;
3628 klen -= len;
3629 namlen -= len;
3631 /* compare with additional segment(s) */
3632 kname += len;
3633 while (klen > 0 && namlen > 0) {
3634 /* compare with next name segment */
3635 t = (struct dtslot *) & p->slot[si];
3636 len = min(namlen, DTSLOTDATALEN);
3637 len = min(klen, len);
3638 name = t->name;
3639 if ((rc = UniStrncmp_le(kname, name, len)))
3640 return rc;
3642 klen -= len;
3643 namlen -= len;
3644 kname += len;
3645 si = t->next;
3648 return (klen - namlen);
3654 /*
3655 * ciCompare()
3657 * function: compare search key with an (leaf/internal) entry
3659 * return:
3660 * < 0 if k is < record
3661 * = 0 if k is = record
3662 * > 0 if k is > record
3663 */
3664 static int ciCompare(struct component_name * key, /* search key */
3665 dtpage_t * p, /* directory page */
3666 int si, /* entry slot index */
3667 int flag)
3669 wchar_t *kname, x;
3670 __le16 *name;
3671 int klen, namlen, len, rc;
3672 struct ldtentry *lh;
3673 struct idtentry *ih;
3674 struct dtslot *t;
3675 int i;
3677 /*
3678 * force the left-most key on internal pages, at any level of
3679 * the tree, to be less than any search key.
3680 * this obviates having to update the leftmost key on an internal
3681 * page when the user inserts a new key in the tree smaller than
3682 * anything that has been stored.
3684 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3685 * at any internal page at any level of the tree,
3686 * it descends to child of the entry anyway -
3687 * ? make the entry as min size dummy entry)
3689 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3690 * return (1);
3691 */
3693 kname = key->name;
3694 klen = key->namlen;
3696 /*
3697 * leaf page entry
3698 */
3699 if (p->header.flag & BT_LEAF) {
3700 lh = (struct ldtentry *) & p->slot[si];
3701 si = lh->next;
3702 name = lh->name;
3703 namlen = lh->namlen;
3704 if (flag & JFS_DIR_INDEX)
3705 len = min(namlen, DTLHDRDATALEN);
3706 else
3707 len = min(namlen, DTLHDRDATALEN_LEGACY);
3709 /*
3710 * internal page entry
3711 */
3712 else {
3713 ih = (struct idtentry *) & p->slot[si];
3714 si = ih->next;
3715 name = ih->name;
3716 namlen = ih->namlen;
3717 len = min(namlen, DTIHDRDATALEN);
3720 /* compare with head/only segment */
3721 len = min(klen, len);
3722 for (i = 0; i < len; i++, kname++, name++) {
3723 /* only uppercase if case-insensitive support is on */
3724 if ((flag & JFS_OS2) == JFS_OS2)
3725 x = UniToupper(le16_to_cpu(*name));
3726 else
3727 x = le16_to_cpu(*name);
3728 if ((rc = *kname - x))
3729 return rc;
3732 klen -= len;
3733 namlen -= len;
3735 /* compare with additional segment(s) */
3736 while (klen > 0 && namlen > 0) {
3737 /* compare with next name segment */
3738 t = (struct dtslot *) & p->slot[si];
3739 len = min(namlen, DTSLOTDATALEN);
3740 len = min(klen, len);
3741 name = t->name;
3742 for (i = 0; i < len; i++, kname++, name++) {
3743 /* only uppercase if case-insensitive support is on */
3744 if ((flag & JFS_OS2) == JFS_OS2)
3745 x = UniToupper(le16_to_cpu(*name));
3746 else
3747 x = le16_to_cpu(*name);
3749 if ((rc = *kname - x))
3750 return rc;
3753 klen -= len;
3754 namlen -= len;
3755 si = t->next;
3758 return (klen - namlen);
3762 /*
3763 * ciGetLeafPrefixKey()
3765 * function: compute prefix of suffix compression
3766 * from two adjacent leaf entries
3767 * across page boundary
3769 * return: non-zero on error
3771 */
3772 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3773 int ri, struct component_name * key, int flag)
3775 int klen, namlen;
3776 wchar_t *pl, *pr, *kname;
3777 struct component_name lkey;
3778 struct component_name rkey;
3780 lkey.name = (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3781 GFP_KERNEL);
3782 if (lkey.name == NULL)
3783 return -ENOSPC;
3785 rkey.name = (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3786 GFP_KERNEL);
3787 if (rkey.name == NULL) {
3788 kfree(lkey.name);
3789 return -ENOSPC;
3792 /* get left and right key */
3793 dtGetKey(lp, li, &lkey, flag);
3794 lkey.name[lkey.namlen] = 0;
3796 if ((flag & JFS_OS2) == JFS_OS2)
3797 ciToUpper(&lkey);
3799 dtGetKey(rp, ri, &rkey, flag);
3800 rkey.name[rkey.namlen] = 0;
3803 if ((flag & JFS_OS2) == JFS_OS2)
3804 ciToUpper(&rkey);
3806 /* compute prefix */
3807 klen = 0;
3808 kname = key->name;
3809 namlen = min(lkey.namlen, rkey.namlen);
3810 for (pl = lkey.name, pr = rkey.name;
3811 namlen; pl++, pr++, namlen--, klen++, kname++) {
3812 *kname = *pr;
3813 if (*pl != *pr) {
3814 key->namlen = klen + 1;
3815 goto free_names;
3819 /* l->namlen <= r->namlen since l <= r */
3820 if (lkey.namlen < rkey.namlen) {
3821 *kname = *pr;
3822 key->namlen = klen + 1;
3823 } else /* l->namelen == r->namelen */
3824 key->namlen = klen;
3826 free_names:
3827 kfree(lkey.name);
3828 kfree(rkey.name);
3829 return 0;
3834 /*
3835 * dtGetKey()
3837 * function: get key of the entry
3838 */
3839 static void dtGetKey(dtpage_t * p, int i, /* entry index */
3840 struct component_name * key, int flag)
3842 int si;
3843 s8 *stbl;
3844 struct ldtentry *lh;
3845 struct idtentry *ih;
3846 struct dtslot *t;
3847 int namlen, len;
3848 wchar_t *kname;
3849 __le16 *name;
3851 /* get entry */
3852 stbl = DT_GETSTBL(p);
3853 si = stbl[i];
3854 if (p->header.flag & BT_LEAF) {
3855 lh = (struct ldtentry *) & p->slot[si];
3856 si = lh->next;
3857 namlen = lh->namlen;
3858 name = lh->name;
3859 if (flag & JFS_DIR_INDEX)
3860 len = min(namlen, DTLHDRDATALEN);
3861 else
3862 len = min(namlen, DTLHDRDATALEN_LEGACY);
3863 } else {
3864 ih = (struct idtentry *) & p->slot[si];
3865 si = ih->next;
3866 namlen = ih->namlen;
3867 name = ih->name;
3868 len = min(namlen, DTIHDRDATALEN);
3871 key->namlen = namlen;
3872 kname = key->name;
3874 /*
3875 * move head/only segment
3876 */
3877 UniStrncpy_from_le(kname, name, len);
3879 /*
3880 * move additional segment(s)
3881 */
3882 while (si >= 0) {
3883 /* get next segment */
3884 t = &p->slot[si];
3885 kname += len;
3886 namlen -= len;
3887 len = min(namlen, DTSLOTDATALEN);
3888 UniStrncpy_from_le(kname, t->name, len);
3890 si = t->next;
3895 /*
3896 * dtInsertEntry()
3898 * function: allocate free slot(s) and
3899 * write a leaf/internal entry
3901 * return: entry slot index
3902 */
3903 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3904 ddata_t * data, struct dt_lock ** dtlock)
3906 struct dtslot *h, *t;
3907 struct ldtentry *lh = NULL;
3908 struct idtentry *ih = NULL;
3909 int hsi, fsi, klen, len, nextindex;
3910 wchar_t *kname;
3911 __le16 *name;
3912 s8 *stbl;
3913 pxd_t *xd;
3914 struct dt_lock *dtlck = *dtlock;
3915 struct lv *lv;
3916 int xsi, n;
3917 s64 bn = 0;
3918 struct metapage *mp = NULL;
3920 klen = key->namlen;
3921 kname = key->name;
3923 /* allocate a free slot */
3924 hsi = fsi = p->header.freelist;
3925 h = &p->slot[fsi];
3926 p->header.freelist = h->next;
3927 --p->header.freecnt;
3929 /* open new linelock */
3930 if (dtlck->index >= dtlck->maxcnt)
3931 dtlck = (struct dt_lock *) txLinelock(dtlck);
3933 lv = & dtlck->lv[dtlck->index];
3934 lv->offset = hsi;
3936 /* write head/only segment */
3937 if (p->header.flag & BT_LEAF) {
3938 lh = (struct ldtentry *) h;
3939 lh->next = h->next;
3940 lh->inumber = cpu_to_le32(data->leaf.ino);
3941 lh->namlen = klen;
3942 name = lh->name;
3943 if (data->leaf.ip) {
3944 len = min(klen, DTLHDRDATALEN);
3945 if (!(p->header.flag & BT_ROOT))
3946 bn = addressPXD(&p->header.self);
3947 lh->index = cpu_to_le32(add_index(data->leaf.tid,
3948 data->leaf.ip,
3949 bn, index));
3950 } else
3951 len = min(klen, DTLHDRDATALEN_LEGACY);
3952 } else {
3953 ih = (struct idtentry *) h;
3954 ih->next = h->next;
3955 xd = (pxd_t *) ih;
3956 *xd = data->xd;
3957 ih->namlen = klen;
3958 name = ih->name;
3959 len = min(klen, DTIHDRDATALEN);
3962 UniStrncpy_to_le(name, kname, len);
3964 n = 1;
3965 xsi = hsi;
3967 /* write additional segment(s) */
3968 t = h;
3969 klen -= len;
3970 while (klen) {
3971 /* get free slot */
3972 fsi = p->header.freelist;
3973 t = &p->slot[fsi];
3974 p->header.freelist = t->next;
3975 --p->header.freecnt;
3977 /* is next slot contiguous ? */
3978 if (fsi != xsi + 1) {
3979 /* close current linelock */
3980 lv->length = n;
3981 dtlck->index++;
3983 /* open new linelock */
3984 if (dtlck->index < dtlck->maxcnt)
3985 lv++;
3986 else {
3987 dtlck = (struct dt_lock *) txLinelock(dtlck);
3988 lv = & dtlck->lv[0];
3991 lv->offset = fsi;
3992 n = 0;
3995 kname += len;
3996 len = min(klen, DTSLOTDATALEN);
3997 UniStrncpy_to_le(t->name, kname, len);
3999 n++;
4000 xsi = fsi;
4001 klen -= len;
4004 /* close current linelock */
4005 lv->length = n;
4006 dtlck->index++;
4008 *dtlock = dtlck;
4010 /* terminate last/only segment */
4011 if (h == t) {
4012 /* single segment entry */
4013 if (p->header.flag & BT_LEAF)
4014 lh->next = -1;
4015 else
4016 ih->next = -1;
4017 } else
4018 /* multi-segment entry */
4019 t->next = -1;
4021 /* if insert into middle, shift right succeeding entries in stbl */
4022 stbl = DT_GETSTBL(p);
4023 nextindex = p->header.nextindex;
4024 if (index < nextindex) {
4025 memmove(stbl + index + 1, stbl + index, nextindex - index);
4027 if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
4028 s64 lblock;
4030 /*
4031 * Need to update slot number for entries that moved
4032 * in the stbl
4033 */
4034 mp = NULL;
4035 for (n = index + 1; n <= nextindex; n++) {
4036 lh = (struct ldtentry *) & (p->slot[stbl[n]]);
4037 modify_index(data->leaf.tid, data->leaf.ip,
4038 le32_to_cpu(lh->index), bn, n,
4039 &mp, &lblock);
4041 if (mp)
4042 release_metapage(mp);
4046 stbl[index] = hsi;
4048 /* advance next available entry index of stbl */
4049 ++p->header.nextindex;
4053 /*
4054 * dtMoveEntry()
4056 * function: move entries from split/left page to new/right page
4058 * nextindex of dst page and freelist/freecnt of both pages
4059 * are updated.
4060 */
4061 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
4062 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
4063 int do_index)
4065 int ssi, next; /* src slot index */
4066 int di; /* dst entry index */
4067 int dsi; /* dst slot index */
4068 s8 *sstbl, *dstbl; /* sorted entry table */
4069 int snamlen, len;
4070 struct ldtentry *slh, *dlh = NULL;
4071 struct idtentry *sih, *dih = NULL;
4072 struct dtslot *h, *s, *d;
4073 struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
4074 struct lv *slv, *dlv;
4075 int xssi, ns, nd;
4076 int sfsi;
4078 sstbl = (s8 *) & sp->slot[sp->header.stblindex];
4079 dstbl = (s8 *) & dp->slot[dp->header.stblindex];
4081 dsi = dp->header.freelist; /* first (whole page) free slot */
4082 sfsi = sp->header.freelist;
4084 /* linelock destination entry slot */
4085 dlv = & ddtlck->lv[ddtlck->index];
4086 dlv->offset = dsi;
4088 /* linelock source entry slot */
4089 slv = & sdtlck->lv[sdtlck->index];
4090 slv->offset = sstbl[si];
4091 xssi = slv->offset - 1;
4093 /*
4094 * move entries
4095 */
4096 ns = nd = 0;
4097 for (di = 0; si < sp->header.nextindex; si++, di++) {
4098 ssi = sstbl[si];
4099 dstbl[di] = dsi;
4101 /* is next slot contiguous ? */
4102 if (ssi != xssi + 1) {
4103 /* close current linelock */
4104 slv->length = ns;
4105 sdtlck->index++;
4107 /* open new linelock */
4108 if (sdtlck->index < sdtlck->maxcnt)
4109 slv++;
4110 else {
4111 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
4112 slv = & sdtlck->lv[0];
4115 slv->offset = ssi;
4116 ns = 0;
4119 /*
4120 * move head/only segment of an entry
4121 */
4122 /* get dst slot */
4123 h = d = &dp->slot[dsi];
4125 /* get src slot and move */
4126 s = &sp->slot[ssi];
4127 if (sp->header.flag & BT_LEAF) {
4128 /* get source entry */
4129 slh = (struct ldtentry *) s;
4130 dlh = (struct ldtentry *) h;
4131 snamlen = slh->namlen;
4133 if (do_index) {
4134 len = min(snamlen, DTLHDRDATALEN);
4135 dlh->index = slh->index; /* little-endian */
4136 } else
4137 len = min(snamlen, DTLHDRDATALEN_LEGACY);
4139 memcpy(dlh, slh, 6 + len * 2);
4141 next = slh->next;
4143 /* update dst head/only segment next field */
4144 dsi++;
4145 dlh->next = dsi;
4146 } else {
4147 sih = (struct idtentry *) s;
4148 snamlen = sih->namlen;
4150 len = min(snamlen, DTIHDRDATALEN);
4151 dih = (struct idtentry *) h;
4152 memcpy(dih, sih, 10 + len * 2);
4153 next = sih->next;
4155 dsi++;
4156 dih->next = dsi;
4159 /* free src head/only segment */
4160 s->next = sfsi;
4161 s->cnt = 1;
4162 sfsi = ssi;
4164 ns++;
4165 nd++;
4166 xssi = ssi;
4168 /*
4169 * move additional segment(s) of the entry
4170 */
4171 snamlen -= len;
4172 while ((ssi = next) >= 0) {
4173 /* is next slot contiguous ? */
4174 if (ssi != xssi + 1) {
4175 /* close current linelock */
4176 slv->length = ns;
4177 sdtlck->index++;
4179 /* open new linelock */
4180 if (sdtlck->index < sdtlck->maxcnt)
4181 slv++;
4182 else {
4183 sdtlck =
4184 (struct dt_lock *)
4185 txLinelock(sdtlck);
4186 slv = & sdtlck->lv[0];
4189 slv->offset = ssi;
4190 ns = 0;
4193 /* get next source segment */
4194 s = &sp->slot[ssi];
4196 /* get next destination free slot */
4197 d++;
4199 len = min(snamlen, DTSLOTDATALEN);
4200 UniStrncpy_le(d->name, s->name, len);
4202 ns++;
4203 nd++;
4204 xssi = ssi;
4206 dsi++;
4207 d->next = dsi;
4209 /* free source segment */
4210 next = s->next;
4211 s->next = sfsi;
4212 s->cnt = 1;
4213 sfsi = ssi;
4215 snamlen -= len;
4216 } /* end while */
4218 /* terminate dst last/only segment */
4219 if (h == d) {
4220 /* single segment entry */
4221 if (dp->header.flag & BT_LEAF)
4222 dlh->next = -1;
4223 else
4224 dih->next = -1;
4225 } else
4226 /* multi-segment entry */
4227 d->next = -1;
4228 } /* end for */
4230 /* close current linelock */
4231 slv->length = ns;
4232 sdtlck->index++;
4233 *sdtlock = sdtlck;
4235 dlv->length = nd;
4236 ddtlck->index++;
4237 *ddtlock = ddtlck;
4239 /* update source header */
4240 sp->header.freelist = sfsi;
4241 sp->header.freecnt += nd;
4243 /* update destination header */
4244 dp->header.nextindex = di;
4246 dp->header.freelist = dsi;
4247 dp->header.freecnt -= nd;
4251 /*
4252 * dtDeleteEntry()
4254 * function: free a (leaf/internal) entry
4256 * log freelist header, stbl, and each segment slot of entry
4257 * (even though last/only segment next field is modified,
4258 * physical image logging requires all segment slots of
4259 * the entry logged to avoid applying previous updates
4260 * to the same slots)
4261 */
4262 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
4264 int fsi; /* free entry slot index */
4265 s8 *stbl;
4266 struct dtslot *t;
4267 int si, freecnt;
4268 struct dt_lock *dtlck = *dtlock;
4269 struct lv *lv;
4270 int xsi, n;
4272 /* get free entry slot index */
4273 stbl = DT_GETSTBL(p);
4274 fsi = stbl[fi];
4276 /* open new linelock */
4277 if (dtlck->index >= dtlck->maxcnt)
4278 dtlck = (struct dt_lock *) txLinelock(dtlck);
4279 lv = & dtlck->lv[dtlck->index];
4281 lv->offset = fsi;
4283 /* get the head/only segment */
4284 t = &p->slot[fsi];
4285 if (p->header.flag & BT_LEAF)
4286 si = ((struct ldtentry *) t)->next;
4287 else
4288 si = ((struct idtentry *) t)->next;
4289 t->next = si;
4290 t->cnt = 1;
4292 n = freecnt = 1;
4293 xsi = fsi;
4295 /* find the last/only segment */
4296 while (si >= 0) {
4297 /* is next slot contiguous ? */
4298 if (si != xsi + 1) {
4299 /* close current linelock */
4300 lv->length = n;
4301 dtlck->index++;
4303 /* open new linelock */
4304 if (dtlck->index < dtlck->maxcnt)
4305 lv++;
4306 else {
4307 dtlck = (struct dt_lock *) txLinelock(dtlck);
4308 lv = & dtlck->lv[0];
4311 lv->offset = si;
4312 n = 0;
4315 n++;
4316 xsi = si;
4317 freecnt++;
4319 t = &p->slot[si];
4320 t->cnt = 1;
4321 si = t->next;
4324 /* close current linelock */
4325 lv->length = n;
4326 dtlck->index++;
4328 *dtlock = dtlck;
4330 /* update freelist */
4331 t->next = p->header.freelist;
4332 p->header.freelist = fsi;
4333 p->header.freecnt += freecnt;
4335 /* if delete from middle,
4336 * shift left the succedding entries in the stbl
4337 */
4338 si = p->header.nextindex;
4339 if (fi < si - 1)
4340 memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4342 p->header.nextindex--;
4346 /*
4347 * dtTruncateEntry()
4349 * function: truncate a (leaf/internal) entry
4351 * log freelist header, stbl, and each segment slot of entry
4352 * (even though last/only segment next field is modified,
4353 * physical image logging requires all segment slots of
4354 * the entry logged to avoid applying previous updates
4355 * to the same slots)
4356 */
4357 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4359 int tsi; /* truncate entry slot index */
4360 s8 *stbl;
4361 struct dtslot *t;
4362 int si, freecnt;
4363 struct dt_lock *dtlck = *dtlock;
4364 struct lv *lv;
4365 int fsi, xsi, n;
4367 /* get free entry slot index */
4368 stbl = DT_GETSTBL(p);
4369 tsi = stbl[ti];
4371 /* open new linelock */
4372 if (dtlck->index >= dtlck->maxcnt)
4373 dtlck = (struct dt_lock *) txLinelock(dtlck);
4374 lv = & dtlck->lv[dtlck->index];
4376 lv->offset = tsi;
4378 /* get the head/only segment */
4379 t = &p->slot[tsi];
4380 ASSERT(p->header.flag & BT_INTERNAL);
4381 ((struct idtentry *) t)->namlen = 0;
4382 si = ((struct idtentry *) t)->next;
4383 ((struct idtentry *) t)->next = -1;
4385 n = 1;
4386 freecnt = 0;
4387 fsi = si;
4388 xsi = tsi;
4390 /* find the last/only segment */
4391 while (si >= 0) {
4392 /* is next slot contiguous ? */
4393 if (si != xsi + 1) {
4394 /* close current linelock */
4395 lv->length = n;
4396 dtlck->index++;
4398 /* open new linelock */
4399 if (dtlck->index < dtlck->maxcnt)
4400 lv++;
4401 else {
4402 dtlck = (struct dt_lock *) txLinelock(dtlck);
4403 lv = & dtlck->lv[0];
4406 lv->offset = si;
4407 n = 0;
4410 n++;
4411 xsi = si;
4412 freecnt++;
4414 t = &p->slot[si];
4415 t->cnt = 1;
4416 si = t->next;
4419 /* close current linelock */
4420 lv->length = n;
4421 dtlck->index++;
4423 *dtlock = dtlck;
4425 /* update freelist */
4426 if (freecnt == 0)
4427 return;
4428 t->next = p->header.freelist;
4429 p->header.freelist = fsi;
4430 p->header.freecnt += freecnt;
4434 /*
4435 * dtLinelockFreelist()
4436 */
4437 static void dtLinelockFreelist(dtpage_t * p, /* directory page */
4438 int m, /* max slot index */
4439 struct dt_lock ** dtlock)
4441 int fsi; /* free entry slot index */
4442 struct dtslot *t;
4443 int si;
4444 struct dt_lock *dtlck = *dtlock;
4445 struct lv *lv;
4446 int xsi, n;
4448 /* get free entry slot index */
4449 fsi = p->header.freelist;
4451 /* open new linelock */
4452 if (dtlck->index >= dtlck->maxcnt)
4453 dtlck = (struct dt_lock *) txLinelock(dtlck);
4454 lv = & dtlck->lv[dtlck->index];
4456 lv->offset = fsi;
4458 n = 1;
4459 xsi = fsi;
4461 t = &p->slot[fsi];
4462 si = t->next;
4464 /* find the last/only segment */
4465 while (si < m && si >= 0) {
4466 /* is next slot contiguous ? */
4467 if (si != xsi + 1) {
4468 /* close current linelock */
4469 lv->length = n;
4470 dtlck->index++;
4472 /* open new linelock */
4473 if (dtlck->index < dtlck->maxcnt)
4474 lv++;
4475 else {
4476 dtlck = (struct dt_lock *) txLinelock(dtlck);
4477 lv = & dtlck->lv[0];
4480 lv->offset = si;
4481 n = 0;
4484 n++;
4485 xsi = si;
4487 t = &p->slot[si];
4488 si = t->next;
4491 /* close current linelock */
4492 lv->length = n;
4493 dtlck->index++;
4495 *dtlock = dtlck;
4499 /*
4500 * NAME: dtModify
4502 * FUNCTION: Modify the inode number part of a directory entry
4504 * PARAMETERS:
4505 * tid - Transaction id
4506 * ip - Inode of parent directory
4507 * key - Name of entry to be modified
4508 * orig_ino - Original inode number expected in entry
4509 * new_ino - New inode number to put into entry
4510 * flag - JFS_RENAME
4512 * RETURNS:
4513 * -ESTALE - If entry found does not match orig_ino passed in
4514 * -ENOENT - If no entry can be found to match key
4515 * 0 - If successfully modified entry
4516 */
4517 int dtModify(tid_t tid, struct inode *ip,
4518 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4520 int rc;
4521 s64 bn;
4522 struct metapage *mp;
4523 dtpage_t *p;
4524 int index;
4525 struct btstack btstack;
4526 struct tlock *tlck;
4527 struct dt_lock *dtlck;
4528 struct lv *lv;
4529 s8 *stbl;
4530 int entry_si; /* entry slot index */
4531 struct ldtentry *entry;
4533 /*
4534 * search for the entry to modify:
4536 * dtSearch() returns (leaf page pinned, index at which to modify).
4537 */
4538 if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4539 return rc;
4541 /* retrieve search result */
4542 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4544 BT_MARK_DIRTY(mp, ip);
4545 /*
4546 * acquire a transaction lock on the leaf page of named entry
4547 */
4548 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4549 dtlck = (struct dt_lock *) & tlck->lock;
4551 /* get slot index of the entry */
4552 stbl = DT_GETSTBL(p);
4553 entry_si = stbl[index];
4555 /* linelock entry */
4556 ASSERT(dtlck->index == 0);
4557 lv = & dtlck->lv[0];
4558 lv->offset = entry_si;
4559 lv->length = 1;
4560 dtlck->index++;
4562 /* get the head/only segment */
4563 entry = (struct ldtentry *) & p->slot[entry_si];
4565 /* substitute the inode number of the entry */
4566 entry->inumber = cpu_to_le32(new_ino);
4568 /* unpin the leaf page */
4569 DT_PUTPAGE(mp);
4571 return 0;