ia64/linux-2.6.18-xen.hg

view fs/jffs2/nodelist.h @ 524:7f8b544237bf

netfront: Allow netfront in domain 0.

This is useful if your physical network device is in a utility domain.

Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
author Keir Fraser <keir.fraser@citrix.com>
date Tue Apr 15 15:18:58 2008 +0100 (2008-04-15)
parents 831230e53067
children
line source
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
10 * $Id: nodelist.h,v 1.140 2005/09/07 08:34:54 havasi Exp $
11 *
12 */
14 #ifndef __JFFS2_NODELIST_H__
15 #define __JFFS2_NODELIST_H__
17 #include <linux/fs.h>
18 #include <linux/types.h>
19 #include <linux/jffs2.h>
20 #include "jffs2_fs_sb.h"
21 #include "jffs2_fs_i.h"
22 #include "xattr.h"
23 #include "acl.h"
24 #include "summary.h"
26 #ifdef __ECOS
27 #include "os-ecos.h"
28 #else
29 #include <linux/mtd/compatmac.h> /* For compatibility with older kernels */
30 #include "os-linux.h"
31 #endif
33 #define JFFS2_NATIVE_ENDIAN
35 /* Note we handle mode bits conversion from JFFS2 (i.e. Linux) to/from
36 whatever OS we're actually running on here too. */
38 #if defined(JFFS2_NATIVE_ENDIAN)
39 #define cpu_to_je16(x) ((jint16_t){x})
40 #define cpu_to_je32(x) ((jint32_t){x})
41 #define cpu_to_jemode(x) ((jmode_t){os_to_jffs2_mode(x)})
43 #define je16_to_cpu(x) ((x).v16)
44 #define je32_to_cpu(x) ((x).v32)
45 #define jemode_to_cpu(x) (jffs2_to_os_mode((x).m))
46 #elif defined(JFFS2_BIG_ENDIAN)
47 #define cpu_to_je16(x) ((jint16_t){cpu_to_be16(x)})
48 #define cpu_to_je32(x) ((jint32_t){cpu_to_be32(x)})
49 #define cpu_to_jemode(x) ((jmode_t){cpu_to_be32(os_to_jffs2_mode(x))})
51 #define je16_to_cpu(x) (be16_to_cpu(x.v16))
52 #define je32_to_cpu(x) (be32_to_cpu(x.v32))
53 #define jemode_to_cpu(x) (be32_to_cpu(jffs2_to_os_mode((x).m)))
54 #elif defined(JFFS2_LITTLE_ENDIAN)
55 #define cpu_to_je16(x) ((jint16_t){cpu_to_le16(x)})
56 #define cpu_to_je32(x) ((jint32_t){cpu_to_le32(x)})
57 #define cpu_to_jemode(x) ((jmode_t){cpu_to_le32(os_to_jffs2_mode(x))})
59 #define je16_to_cpu(x) (le16_to_cpu(x.v16))
60 #define je32_to_cpu(x) (le32_to_cpu(x.v32))
61 #define jemode_to_cpu(x) (le32_to_cpu(jffs2_to_os_mode((x).m)))
62 #else
63 #error wibble
64 #endif
66 /* The minimal node header size */
67 #define JFFS2_MIN_NODE_HEADER sizeof(struct jffs2_raw_dirent)
69 /*
70 This is all we need to keep in-core for each raw node during normal
71 operation. As and when we do read_inode on a particular inode, we can
72 scan the nodes which are listed for it and build up a proper map of
73 which nodes are currently valid. JFFSv1 always used to keep that whole
74 map in core for each inode.
75 */
76 struct jffs2_raw_node_ref
77 {
78 struct jffs2_raw_node_ref *next_in_ino; /* Points to the next raw_node_ref
79 for this object. If this _is_ the last, it points to the inode_cache,
80 xattr_ref or xattr_datum instead. The common part of those structures
81 has NULL in the first word. See jffs2_raw_ref_to_ic() below */
82 uint32_t flash_offset;
83 #define TEST_TOTLEN
84 #ifdef TEST_TOTLEN
85 uint32_t __totlen; /* This may die; use ref_totlen(c, jeb, ) below */
86 #endif
87 };
89 #define REF_LINK_NODE ((int32_t)-1)
90 #define REF_EMPTY_NODE ((int32_t)-2)
92 /* Use blocks of about 256 bytes */
93 #define REFS_PER_BLOCK ((255/sizeof(struct jffs2_raw_node_ref))-1)
95 static inline struct jffs2_raw_node_ref *ref_next(struct jffs2_raw_node_ref *ref)
96 {
97 ref++;
99 /* Link to another block of refs */
100 if (ref->flash_offset == REF_LINK_NODE) {
101 ref = ref->next_in_ino;
102 if (!ref)
103 return ref;
104 }
106 /* End of chain */
107 if (ref->flash_offset == REF_EMPTY_NODE)
108 return NULL;
110 return ref;
111 }
113 static inline struct jffs2_inode_cache *jffs2_raw_ref_to_ic(struct jffs2_raw_node_ref *raw)
114 {
115 while(raw->next_in_ino)
116 raw = raw->next_in_ino;
118 /* NB. This can be a jffs2_xattr_datum or jffs2_xattr_ref and
119 not actually a jffs2_inode_cache. Check ->class */
120 return ((struct jffs2_inode_cache *)raw);
121 }
123 /* flash_offset & 3 always has to be zero, because nodes are
124 always aligned at 4 bytes. So we have a couple of extra bits
125 to play with, which indicate the node's status; see below: */
126 #define REF_UNCHECKED 0 /* We haven't yet checked the CRC or built its inode */
127 #define REF_OBSOLETE 1 /* Obsolete, can be completely ignored */
128 #define REF_PRISTINE 2 /* Completely clean. GC without looking */
129 #define REF_NORMAL 3 /* Possibly overlapped. Read the page and write again on GC */
130 #define ref_flags(ref) ((ref)->flash_offset & 3)
131 #define ref_offset(ref) ((ref)->flash_offset & ~3)
132 #define ref_obsolete(ref) (((ref)->flash_offset & 3) == REF_OBSOLETE)
133 #define mark_ref_normal(ref) do { (ref)->flash_offset = ref_offset(ref) | REF_NORMAL; } while(0)
135 /* NB: REF_PRISTINE for an inode-less node (ref->next_in_ino == NULL) indicates
136 it is an unknown node of type JFFS2_NODETYPE_RWCOMPAT_COPY, so it'll get
137 copied. If you need to do anything different to GC inode-less nodes, then
138 you need to modify gc.c accordingly. */
140 /* For each inode in the filesystem, we need to keep a record of
141 nlink, because it would be a PITA to scan the whole directory tree
142 at read_inode() time to calculate it, and to keep sufficient information
143 in the raw_node_ref (basically both parent and child inode number for
144 dirent nodes) would take more space than this does. We also keep
145 a pointer to the first physical node which is part of this inode, too.
146 */
147 struct jffs2_inode_cache {
148 /* First part of structure is shared with other objects which
149 can terminate the raw node refs' next_in_ino list -- which
150 currently struct jffs2_xattr_datum and struct jffs2_xattr_ref. */
152 struct jffs2_full_dirent *scan_dents; /* Used during scan to hold
153 temporary lists of dirents, and later must be set to
154 NULL to mark the end of the raw_node_ref->next_in_ino
155 chain. */
156 struct jffs2_raw_node_ref *nodes;
157 uint8_t class; /* It's used for identification */
159 /* end of shared structure */
161 uint8_t flags;
162 uint16_t state;
163 uint32_t ino;
164 struct jffs2_inode_cache *next;
165 #ifdef CONFIG_JFFS2_FS_XATTR
166 struct jffs2_xattr_ref *xref;
167 #endif
168 int nlink;
169 };
171 /* Inode states for 'state' above. We need the 'GC' state to prevent
172 someone from doing a read_inode() while we're moving a 'REF_PRISTINE'
173 node without going through all the iget() nonsense */
174 #define INO_STATE_UNCHECKED 0 /* CRC checks not yet done */
175 #define INO_STATE_CHECKING 1 /* CRC checks in progress */
176 #define INO_STATE_PRESENT 2 /* In core */
177 #define INO_STATE_CHECKEDABSENT 3 /* Checked, cleared again */
178 #define INO_STATE_GC 4 /* GCing a 'pristine' node */
179 #define INO_STATE_READING 5 /* In read_inode() */
180 #define INO_STATE_CLEARING 6 /* In clear_inode() */
182 #define INO_FLAGS_XATTR_CHECKED 0x01 /* has no duplicate xattr_ref */
184 #define RAWNODE_CLASS_INODE_CACHE 0
185 #define RAWNODE_CLASS_XATTR_DATUM 1
186 #define RAWNODE_CLASS_XATTR_REF 2
188 #define INOCACHE_HASHSIZE 128
190 #define write_ofs(c) ((c)->nextblock->offset + (c)->sector_size - (c)->nextblock->free_size)
192 /*
193 Larger representation of a raw node, kept in-core only when the
194 struct inode for this particular ino is instantiated.
195 */
197 struct jffs2_full_dnode
198 {
199 struct jffs2_raw_node_ref *raw;
200 uint32_t ofs; /* The offset to which the data of this node belongs */
201 uint32_t size;
202 uint32_t frags; /* Number of fragments which currently refer
203 to this node. When this reaches zero,
204 the node is obsolete. */
205 };
207 /*
208 Even larger representation of a raw node, kept in-core only while
209 we're actually building up the original map of which nodes go where,
210 in read_inode()
211 */
212 struct jffs2_tmp_dnode_info
213 {
214 struct rb_node rb;
215 struct jffs2_full_dnode *fn;
216 uint32_t version;
217 uint32_t data_crc;
218 uint32_t partial_crc;
219 uint32_t csize;
220 };
222 struct jffs2_full_dirent
223 {
224 struct jffs2_raw_node_ref *raw;
225 struct jffs2_full_dirent *next;
226 uint32_t version;
227 uint32_t ino; /* == zero for unlink */
228 unsigned int nhash;
229 unsigned char type;
230 unsigned char name[0];
231 };
233 /*
234 Fragments - used to build a map of which raw node to obtain
235 data from for each part of the ino
236 */
237 struct jffs2_node_frag
238 {
239 struct rb_node rb;
240 struct jffs2_full_dnode *node; /* NULL for holes */
241 uint32_t size;
242 uint32_t ofs; /* The offset to which this fragment belongs */
243 };
245 struct jffs2_eraseblock
246 {
247 struct list_head list;
248 int bad_count;
249 uint32_t offset; /* of this block in the MTD */
251 uint32_t unchecked_size;
252 uint32_t used_size;
253 uint32_t dirty_size;
254 uint32_t wasted_size;
255 uint32_t free_size; /* Note that sector_size - free_size
256 is the address of the first free space */
257 uint32_t allocated_refs;
258 struct jffs2_raw_node_ref *first_node;
259 struct jffs2_raw_node_ref *last_node;
261 struct jffs2_raw_node_ref *gc_node; /* Next node to be garbage collected */
262 };
264 static inline int jffs2_blocks_use_vmalloc(struct jffs2_sb_info *c)
265 {
266 return ((c->flash_size / c->sector_size) * sizeof (struct jffs2_eraseblock)) > (128 * 1024);
267 }
269 #define ref_totlen(a, b, c) __jffs2_ref_totlen((a), (b), (c))
271 #define ALLOC_NORMAL 0 /* Normal allocation */
272 #define ALLOC_DELETION 1 /* Deletion node. Best to allow it */
273 #define ALLOC_GC 2 /* Space requested for GC. Give it or die */
274 #define ALLOC_NORETRY 3 /* For jffs2_write_dnode: On failure, return -EAGAIN instead of retrying */
276 /* How much dirty space before it goes on the very_dirty_list */
277 #define VERYDIRTY(c, size) ((size) >= ((c)->sector_size / 2))
279 /* check if dirty space is more than 255 Byte */
280 #define ISDIRTY(size) ((size) > sizeof (struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
282 #define PAD(x) (((x)+3)&~3)
284 static inline int jffs2_encode_dev(union jffs2_device_node *jdev, dev_t rdev)
285 {
286 if (old_valid_dev(rdev)) {
287 jdev->old = cpu_to_je16(old_encode_dev(rdev));
288 return sizeof(jdev->old);
289 } else {
290 jdev->new = cpu_to_je32(new_encode_dev(rdev));
291 return sizeof(jdev->new);
292 }
293 }
295 static inline struct jffs2_node_frag *frag_first(struct rb_root *root)
296 {
297 struct rb_node *node = root->rb_node;
299 if (!node)
300 return NULL;
301 while(node->rb_left)
302 node = node->rb_left;
303 return rb_entry(node, struct jffs2_node_frag, rb);
304 }
306 static inline struct jffs2_node_frag *frag_last(struct rb_root *root)
307 {
308 struct rb_node *node = root->rb_node;
310 if (!node)
311 return NULL;
312 while(node->rb_right)
313 node = node->rb_right;
314 return rb_entry(node, struct jffs2_node_frag, rb);
315 }
317 #define frag_next(frag) rb_entry(rb_next(&(frag)->rb), struct jffs2_node_frag, rb)
318 #define frag_prev(frag) rb_entry(rb_prev(&(frag)->rb), struct jffs2_node_frag, rb)
319 #define frag_parent(frag) rb_entry(rb_parent(&(frag)->rb), struct jffs2_node_frag, rb)
320 #define frag_left(frag) rb_entry((frag)->rb.rb_left, struct jffs2_node_frag, rb)
321 #define frag_right(frag) rb_entry((frag)->rb.rb_right, struct jffs2_node_frag, rb)
322 #define frag_erase(frag, list) rb_erase(&frag->rb, list);
324 /* nodelist.c */
325 void jffs2_add_fd_to_list(struct jffs2_sb_info *c, struct jffs2_full_dirent *new, struct jffs2_full_dirent **list);
326 void jffs2_set_inocache_state(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, int state);
327 struct jffs2_inode_cache *jffs2_get_ino_cache(struct jffs2_sb_info *c, uint32_t ino);
328 void jffs2_add_ino_cache (struct jffs2_sb_info *c, struct jffs2_inode_cache *new);
329 void jffs2_del_ino_cache(struct jffs2_sb_info *c, struct jffs2_inode_cache *old);
330 void jffs2_free_ino_caches(struct jffs2_sb_info *c);
331 void jffs2_free_raw_node_refs(struct jffs2_sb_info *c);
332 struct jffs2_node_frag *jffs2_lookup_node_frag(struct rb_root *fragtree, uint32_t offset);
333 void jffs2_kill_fragtree(struct rb_root *root, struct jffs2_sb_info *c_delete);
334 struct rb_node *rb_next(struct rb_node *);
335 struct rb_node *rb_prev(struct rb_node *);
336 void rb_replace_node(struct rb_node *victim, struct rb_node *new, struct rb_root *root);
337 int jffs2_add_full_dnode_to_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_full_dnode *fn);
338 void jffs2_truncate_fragtree (struct jffs2_sb_info *c, struct rb_root *list, uint32_t size);
339 int jffs2_add_older_frag_to_fragtree(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_tmp_dnode_info *tn);
340 struct jffs2_raw_node_ref *jffs2_link_node_ref(struct jffs2_sb_info *c,
341 struct jffs2_eraseblock *jeb,
342 uint32_t ofs, uint32_t len,
343 struct jffs2_inode_cache *ic);
344 extern uint32_t __jffs2_ref_totlen(struct jffs2_sb_info *c,
345 struct jffs2_eraseblock *jeb,
346 struct jffs2_raw_node_ref *ref);
348 /* nodemgmt.c */
349 int jffs2_thread_should_wake(struct jffs2_sb_info *c);
350 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
351 uint32_t *len, int prio, uint32_t sumsize);
352 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
353 uint32_t *len, uint32_t sumsize);
354 struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
355 uint32_t ofs, uint32_t len,
356 struct jffs2_inode_cache *ic);
357 void jffs2_complete_reservation(struct jffs2_sb_info *c);
358 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *raw);
360 /* write.c */
361 int jffs2_do_new_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, uint32_t mode, struct jffs2_raw_inode *ri);
363 struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
364 struct jffs2_raw_inode *ri, const unsigned char *data,
365 uint32_t datalen, int alloc_mode);
366 struct jffs2_full_dirent *jffs2_write_dirent(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
367 struct jffs2_raw_dirent *rd, const unsigned char *name,
368 uint32_t namelen, int alloc_mode);
369 int jffs2_write_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
370 struct jffs2_raw_inode *ri, unsigned char *buf,
371 uint32_t offset, uint32_t writelen, uint32_t *retlen);
372 int jffs2_do_create(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, struct jffs2_inode_info *f,
373 struct jffs2_raw_inode *ri, const char *name, int namelen);
374 int jffs2_do_unlink(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, const char *name,
375 int namelen, struct jffs2_inode_info *dead_f, uint32_t time);
376 int jffs2_do_link(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, uint32_t ino,
377 uint8_t type, const char *name, int namelen, uint32_t time);
380 /* readinode.c */
381 int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
382 uint32_t ino, struct jffs2_raw_inode *latest_node);
383 int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic);
384 void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f);
386 /* malloc.c */
387 int jffs2_create_slab_caches(void);
388 void jffs2_destroy_slab_caches(void);
390 struct jffs2_full_dirent *jffs2_alloc_full_dirent(int namesize);
391 void jffs2_free_full_dirent(struct jffs2_full_dirent *);
392 struct jffs2_full_dnode *jffs2_alloc_full_dnode(void);
393 void jffs2_free_full_dnode(struct jffs2_full_dnode *);
394 struct jffs2_raw_dirent *jffs2_alloc_raw_dirent(void);
395 void jffs2_free_raw_dirent(struct jffs2_raw_dirent *);
396 struct jffs2_raw_inode *jffs2_alloc_raw_inode(void);
397 void jffs2_free_raw_inode(struct jffs2_raw_inode *);
398 struct jffs2_tmp_dnode_info *jffs2_alloc_tmp_dnode_info(void);
399 void jffs2_free_tmp_dnode_info(struct jffs2_tmp_dnode_info *);
400 int jffs2_prealloc_raw_node_refs(struct jffs2_sb_info *c,
401 struct jffs2_eraseblock *jeb, int nr);
402 void jffs2_free_refblock(struct jffs2_raw_node_ref *);
403 struct jffs2_node_frag *jffs2_alloc_node_frag(void);
404 void jffs2_free_node_frag(struct jffs2_node_frag *);
405 struct jffs2_inode_cache *jffs2_alloc_inode_cache(void);
406 void jffs2_free_inode_cache(struct jffs2_inode_cache *);
407 #ifdef CONFIG_JFFS2_FS_XATTR
408 struct jffs2_xattr_datum *jffs2_alloc_xattr_datum(void);
409 void jffs2_free_xattr_datum(struct jffs2_xattr_datum *);
410 struct jffs2_xattr_ref *jffs2_alloc_xattr_ref(void);
411 void jffs2_free_xattr_ref(struct jffs2_xattr_ref *);
412 #endif
414 /* gc.c */
415 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c);
417 /* read.c */
418 int jffs2_read_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
419 struct jffs2_full_dnode *fd, unsigned char *buf,
420 int ofs, int len);
421 int jffs2_read_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
422 unsigned char *buf, uint32_t offset, uint32_t len);
423 char *jffs2_getlink(struct jffs2_sb_info *c, struct jffs2_inode_info *f);
425 /* scan.c */
426 int jffs2_scan_medium(struct jffs2_sb_info *c);
427 void jffs2_rotate_lists(struct jffs2_sb_info *c);
428 struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino);
429 int jffs2_scan_classify_jeb(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
430 int jffs2_scan_dirty_space(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t size);
432 /* build.c */
433 int jffs2_do_mount_fs(struct jffs2_sb_info *c);
435 /* erase.c */
436 void jffs2_erase_pending_blocks(struct jffs2_sb_info *c, int count);
437 void jffs2_free_jeb_node_refs(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
439 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
440 /* wbuf.c */
441 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino);
442 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c);
443 int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
444 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
445 #endif
447 #include "debug.h"
449 #endif /* __JFFS2_NODELIST_H__ */