direct-io.hg

view xen/arch/ia64/linux-xen/process-linux-xen.c @ 11347:f74c9368f6ff

[IA64] fix noreboot option

fix machine_hlt to support noreboot option.

Signed-off-by: Akio Takebe <takebe_akio@jp.fujitsu.com>
[modified to use existing cpu_halt() function in linux-xen files]
Signed-off-by: Alex Williamson <alex.williamson@hp.com>
author awilliam@xenbuild.aw
date Mon Aug 28 14:09:31 2006 -0600 (2006-08-28)
parents d42e9a6f5378
children
line source
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
7 */
8 #ifdef XEN
9 #include <xen/types.h>
10 #include <xen/lib.h>
11 #include <xen/symbols.h>
12 #include <xen/smp.h>
13 #include <xen/sched.h>
14 #include <asm/uaccess.h>
15 #include <asm/processor.h>
16 #include <asm/ptrace.h>
17 #include <asm/unwind.h>
18 #else
19 #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
20 #include <linux/config.h>
22 #include <linux/cpu.h>
23 #include <linux/pm.h>
24 #include <linux/elf.h>
25 #include <linux/errno.h>
26 #include <linux/kallsyms.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/notifier.h>
31 #include <linux/personality.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/smp_lock.h>
35 #include <linux/stddef.h>
36 #include <linux/thread_info.h>
37 #include <linux/unistd.h>
38 #include <linux/efi.h>
39 #include <linux/interrupt.h>
40 #include <linux/delay.h>
41 #include <linux/kprobes.h>
43 #include <asm/cpu.h>
44 #include <asm/delay.h>
45 #include <asm/elf.h>
46 #include <asm/ia32.h>
47 #include <asm/irq.h>
48 #include <asm/pgalloc.h>
49 #include <asm/processor.h>
50 #include <asm/sal.h>
51 #include <asm/tlbflush.h>
52 #include <asm/uaccess.h>
53 #include <asm/unwind.h>
54 #include <asm/user.h>
56 #include "entry.h"
58 #ifdef CONFIG_PERFMON
59 # include <asm/perfmon.h>
60 #endif
62 #include "sigframe.h"
64 void (*ia64_mark_idle)(int);
65 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
67 unsigned long boot_option_idle_override = 0;
68 EXPORT_SYMBOL(boot_option_idle_override);
69 #endif
71 void
72 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
73 {
74 unsigned long ip, sp, bsp;
75 char buf[128]; /* don't make it so big that it overflows the stack! */
77 printk("\nCall Trace:\n");
78 do {
79 unw_get_ip(info, &ip);
80 if (ip == 0)
81 break;
83 unw_get_sp(info, &sp);
84 unw_get_bsp(info, &bsp);
85 snprintf(buf, sizeof(buf),
86 " [<%016lx>] %%s\n"
87 " sp=%016lx bsp=%016lx\n",
88 ip, sp, bsp);
89 print_symbol(buf, ip);
90 } while (unw_unwind(info) >= 0);
91 }
93 void
94 show_stack (struct task_struct *task, unsigned long *sp)
95 {
96 if (!task)
97 unw_init_running(ia64_do_show_stack, NULL);
98 else {
99 struct unw_frame_info info;
101 unw_init_from_blocked_task(&info, task);
102 ia64_do_show_stack(&info, NULL);
103 }
104 }
106 void
107 dump_stack (void)
108 {
109 show_stack(NULL, NULL);
110 }
112 EXPORT_SYMBOL(dump_stack);
114 #ifdef XEN
115 void
116 show_registers(struct pt_regs *regs)
117 #else
118 void
119 show_regs (struct pt_regs *regs)
120 #endif
121 {
122 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
124 #ifndef XEN
125 print_modules();
126 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
127 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
128 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
129 #else
130 struct vcpu* vcpu = current;
131 if (vcpu != NULL) {
132 struct domain* d = vcpu->domain;
133 printk("d 0x%p domid %d\n", d, d->domain_id);
134 printk("vcpu 0x%p vcpu %d\n",
135 vcpu, vcpu->vcpu_id);
136 }
137 printk("\nCPU %d\n", smp_processor_id());
138 printk("psr : %016lx ifs : %016lx ip : [<%016lx>]\n",
139 regs->cr_ipsr, regs->cr_ifs, ip);
140 #endif
141 print_symbol("ip is at %s\n", ip);
142 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
143 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
144 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
145 regs->ar_rnat, regs->ar_bspstore, regs->pr);
146 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
147 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
148 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
149 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
150 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
151 regs->f6.u.bits[1], regs->f6.u.bits[0],
152 regs->f7.u.bits[1], regs->f7.u.bits[0]);
153 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
154 regs->f8.u.bits[1], regs->f8.u.bits[0],
155 regs->f9.u.bits[1], regs->f9.u.bits[0]);
156 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
157 regs->f10.u.bits[1], regs->f10.u.bits[0],
158 regs->f11.u.bits[1], regs->f11.u.bits[0]);
160 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
161 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
162 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
163 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
164 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
165 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
166 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
167 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
168 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
170 #ifndef XEN
171 if (user_mode(regs)) {
172 /* print the stacked registers */
173 unsigned long val, *bsp, ndirty;
174 int i, sof, is_nat = 0;
176 sof = regs->cr_ifs & 0x7f; /* size of frame */
177 ndirty = (regs->loadrs >> 19);
178 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
179 for (i = 0; i < sof; ++i) {
180 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
181 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
182 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
183 }
184 } else
185 #endif
186 show_stack(NULL, NULL);
187 }
189 #ifndef XEN
190 void
191 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
192 {
193 if (fsys_mode(current, &scr->pt)) {
194 /* defer signal-handling etc. until we return to privilege-level 0. */
195 if (!ia64_psr(&scr->pt)->lp)
196 ia64_psr(&scr->pt)->lp = 1;
197 return;
198 }
200 #ifdef CONFIG_PERFMON
201 if (current->thread.pfm_needs_checking)
202 pfm_handle_work();
203 #endif
205 /* deal with pending signal delivery */
206 if (test_thread_flag(TIF_SIGPENDING))
207 ia64_do_signal(oldset, scr, in_syscall);
208 }
210 static int pal_halt = 1;
211 static int can_do_pal_halt = 1;
213 static int __init nohalt_setup(char * str)
214 {
215 pal_halt = can_do_pal_halt = 0;
216 return 1;
217 }
218 __setup("nohalt", nohalt_setup);
220 void
221 update_pal_halt_status(int status)
222 {
223 can_do_pal_halt = pal_halt && status;
224 }
226 /*
227 * We use this if we don't have any better idle routine..
228 */
229 void
230 default_idle (void)
231 {
232 local_irq_enable();
233 while (!need_resched())
234 if (can_do_pal_halt)
235 safe_halt();
236 else
237 cpu_relax();
238 }
240 #ifdef CONFIG_HOTPLUG_CPU
241 /* We don't actually take CPU down, just spin without interrupts. */
242 static inline void play_dead(void)
243 {
244 extern void ia64_cpu_local_tick (void);
245 unsigned int this_cpu = smp_processor_id();
247 /* Ack it */
248 __get_cpu_var(cpu_state) = CPU_DEAD;
250 max_xtp();
251 local_irq_disable();
252 idle_domain_exit();
253 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
254 /*
255 * The above is a point of no-return, the processor is
256 * expected to be in SAL loop now.
257 */
258 BUG();
259 }
260 #else
261 static inline void play_dead(void)
262 {
263 BUG();
264 }
265 #endif /* CONFIG_HOTPLUG_CPU */
267 void cpu_idle_wait(void)
268 {
269 unsigned int cpu, this_cpu = get_cpu();
270 cpumask_t map;
272 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
273 put_cpu();
275 cpus_clear(map);
276 for_each_online_cpu(cpu) {
277 per_cpu(cpu_idle_state, cpu) = 1;
278 cpu_set(cpu, map);
279 }
281 __get_cpu_var(cpu_idle_state) = 0;
283 wmb();
284 do {
285 ssleep(1);
286 for_each_online_cpu(cpu) {
287 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
288 cpu_clear(cpu, map);
289 }
290 cpus_and(map, map, cpu_online_map);
291 } while (!cpus_empty(map));
292 }
293 EXPORT_SYMBOL_GPL(cpu_idle_wait);
295 void __attribute__((noreturn))
296 cpu_idle (void)
297 {
298 void (*mark_idle)(int) = ia64_mark_idle;
300 /* endless idle loop with no priority at all */
301 while (1) {
302 #ifdef CONFIG_SMP
303 if (!need_resched())
304 min_xtp();
305 #endif
306 while (!need_resched()) {
307 void (*idle)(void);
309 if (__get_cpu_var(cpu_idle_state))
310 __get_cpu_var(cpu_idle_state) = 0;
312 rmb();
313 if (mark_idle)
314 (*mark_idle)(1);
316 idle = pm_idle;
317 if (!idle)
318 idle = default_idle;
319 (*idle)();
320 }
322 if (mark_idle)
323 (*mark_idle)(0);
325 #ifdef CONFIG_SMP
326 normal_xtp();
327 #endif
328 schedule();
329 check_pgt_cache();
330 if (cpu_is_offline(smp_processor_id()))
331 play_dead();
332 }
333 }
335 void
336 ia64_save_extra (struct task_struct *task)
337 {
338 #ifdef CONFIG_PERFMON
339 unsigned long info;
340 #endif
342 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
343 ia64_save_debug_regs(&task->thread.dbr[0]);
345 #ifdef CONFIG_PERFMON
346 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
347 pfm_save_regs(task);
349 info = __get_cpu_var(pfm_syst_info);
350 if (info & PFM_CPUINFO_SYST_WIDE)
351 pfm_syst_wide_update_task(task, info, 0);
352 #endif
354 #ifdef CONFIG_IA32_SUPPORT
355 if (IS_IA32_PROCESS(ia64_task_regs(task)))
356 ia32_save_state(task);
357 #endif
358 }
360 void
361 ia64_load_extra (struct task_struct *task)
362 {
363 #ifdef CONFIG_PERFMON
364 unsigned long info;
365 #endif
367 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
368 ia64_load_debug_regs(&task->thread.dbr[0]);
370 #ifdef CONFIG_PERFMON
371 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
372 pfm_load_regs(task);
374 info = __get_cpu_var(pfm_syst_info);
375 if (info & PFM_CPUINFO_SYST_WIDE)
376 pfm_syst_wide_update_task(task, info, 1);
377 #endif
379 #ifdef CONFIG_IA32_SUPPORT
380 if (IS_IA32_PROCESS(ia64_task_regs(task)))
381 ia32_load_state(task);
382 #endif
383 }
385 /*
386 * Copy the state of an ia-64 thread.
387 *
388 * We get here through the following call chain:
389 *
390 * from user-level: from kernel:
391 *
392 * <clone syscall> <some kernel call frames>
393 * sys_clone :
394 * do_fork do_fork
395 * copy_thread copy_thread
396 *
397 * This means that the stack layout is as follows:
398 *
399 * +---------------------+ (highest addr)
400 * | struct pt_regs |
401 * +---------------------+
402 * | struct switch_stack |
403 * +---------------------+
404 * | |
405 * | memory stack |
406 * | | <-- sp (lowest addr)
407 * +---------------------+
408 *
409 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
410 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
411 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
412 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
413 * the stack is page aligned and the page size is at least 4KB, this is always the case,
414 * so there is nothing to worry about.
415 */
416 int
417 copy_thread (int nr, unsigned long clone_flags,
418 unsigned long user_stack_base, unsigned long user_stack_size,
419 struct task_struct *p, struct pt_regs *regs)
420 {
421 extern char ia64_ret_from_clone, ia32_ret_from_clone;
422 struct switch_stack *child_stack, *stack;
423 unsigned long rbs, child_rbs, rbs_size;
424 struct pt_regs *child_ptregs;
425 int retval = 0;
427 #ifdef CONFIG_SMP
428 /*
429 * For SMP idle threads, fork_by_hand() calls do_fork with
430 * NULL regs.
431 */
432 if (!regs)
433 return 0;
434 #endif
436 stack = ((struct switch_stack *) regs) - 1;
438 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
439 child_stack = (struct switch_stack *) child_ptregs - 1;
441 /* copy parent's switch_stack & pt_regs to child: */
442 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
444 rbs = (unsigned long) current + IA64_RBS_OFFSET;
445 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
446 rbs_size = stack->ar_bspstore - rbs;
448 /* copy the parent's register backing store to the child: */
449 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
451 if (likely(user_mode(child_ptregs))) {
452 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
453 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
454 if (user_stack_base) {
455 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
456 child_ptregs->ar_bspstore = user_stack_base;
457 child_ptregs->ar_rnat = 0;
458 child_ptregs->loadrs = 0;
459 }
460 } else {
461 /*
462 * Note: we simply preserve the relative position of
463 * the stack pointer here. There is no need to
464 * allocate a scratch area here, since that will have
465 * been taken care of by the caller of sys_clone()
466 * already.
467 */
468 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
469 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
470 }
471 child_stack->ar_bspstore = child_rbs + rbs_size;
472 if (IS_IA32_PROCESS(regs))
473 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
474 else
475 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
477 /* copy parts of thread_struct: */
478 p->thread.ksp = (unsigned long) child_stack - 16;
480 /* stop some PSR bits from being inherited.
481 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
482 * therefore we must specify them explicitly here and not include them in
483 * IA64_PSR_BITS_TO_CLEAR.
484 */
485 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
486 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
488 /*
489 * NOTE: The calling convention considers all floating point
490 * registers in the high partition (fph) to be scratch. Since
491 * the only way to get to this point is through a system call,
492 * we know that the values in fph are all dead. Hence, there
493 * is no need to inherit the fph state from the parent to the
494 * child and all we have to do is to make sure that
495 * IA64_THREAD_FPH_VALID is cleared in the child.
496 *
497 * XXX We could push this optimization a bit further by
498 * clearing IA64_THREAD_FPH_VALID on ANY system call.
499 * However, it's not clear this is worth doing. Also, it
500 * would be a slight deviation from the normal Linux system
501 * call behavior where scratch registers are preserved across
502 * system calls (unless used by the system call itself).
503 */
504 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
505 | IA64_THREAD_PM_VALID)
506 # define THREAD_FLAGS_TO_SET 0
507 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
508 | THREAD_FLAGS_TO_SET);
509 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
510 #ifdef CONFIG_IA32_SUPPORT
511 /*
512 * If we're cloning an IA32 task then save the IA32 extra
513 * state from the current task to the new task
514 */
515 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
516 ia32_save_state(p);
517 if (clone_flags & CLONE_SETTLS)
518 retval = ia32_clone_tls(p, child_ptregs);
520 /* Copy partially mapped page list */
521 if (!retval)
522 retval = ia32_copy_partial_page_list(p, clone_flags);
523 }
524 #endif
526 #ifdef CONFIG_PERFMON
527 if (current->thread.pfm_context)
528 pfm_inherit(p, child_ptregs);
529 #endif
530 return retval;
531 }
533 static void
534 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
535 {
536 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
537 elf_greg_t *dst = arg;
538 struct pt_regs *pt;
539 char nat;
540 int i;
542 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
544 if (unw_unwind_to_user(info) < 0)
545 return;
547 unw_get_sp(info, &sp);
548 pt = (struct pt_regs *) (sp + 16);
550 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
552 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
553 return;
555 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
556 &ar_rnat);
558 /*
559 * coredump format:
560 * r0-r31
561 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
562 * predicate registers (p0-p63)
563 * b0-b7
564 * ip cfm user-mask
565 * ar.rsc ar.bsp ar.bspstore ar.rnat
566 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
567 */
569 /* r0 is zero */
570 for (i = 1, mask = (1UL << i); i < 32; ++i) {
571 unw_get_gr(info, i, &dst[i], &nat);
572 if (nat)
573 nat_bits |= mask;
574 mask <<= 1;
575 }
576 dst[32] = nat_bits;
577 unw_get_pr(info, &dst[33]);
579 for (i = 0; i < 8; ++i)
580 unw_get_br(info, i, &dst[34 + i]);
582 unw_get_rp(info, &ip);
583 dst[42] = ip + ia64_psr(pt)->ri;
584 dst[43] = cfm;
585 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
587 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
588 /*
589 * For bsp and bspstore, unw_get_ar() would return the kernel
590 * addresses, but we need the user-level addresses instead:
591 */
592 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
593 dst[47] = pt->ar_bspstore;
594 dst[48] = ar_rnat;
595 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
596 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
597 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
598 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
599 unw_get_ar(info, UNW_AR_LC, &dst[53]);
600 unw_get_ar(info, UNW_AR_EC, &dst[54]);
601 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
602 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
603 }
605 void
606 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
607 {
608 elf_fpreg_t *dst = arg;
609 int i;
611 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
613 if (unw_unwind_to_user(info) < 0)
614 return;
616 /* f0 is 0.0, f1 is 1.0 */
618 for (i = 2; i < 32; ++i)
619 unw_get_fr(info, i, dst + i);
621 ia64_flush_fph(task);
622 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
623 memcpy(dst + 32, task->thread.fph, 96*16);
624 }
626 void
627 do_copy_regs (struct unw_frame_info *info, void *arg)
628 {
629 do_copy_task_regs(current, info, arg);
630 }
632 void
633 do_dump_fpu (struct unw_frame_info *info, void *arg)
634 {
635 do_dump_task_fpu(current, info, arg);
636 }
638 int
639 dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
640 {
641 struct unw_frame_info tcore_info;
643 if (current == task) {
644 unw_init_running(do_copy_regs, regs);
645 } else {
646 memset(&tcore_info, 0, sizeof(tcore_info));
647 unw_init_from_blocked_task(&tcore_info, task);
648 do_copy_task_regs(task, &tcore_info, regs);
649 }
650 return 1;
651 }
653 void
654 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
655 {
656 unw_init_running(do_copy_regs, dst);
657 }
659 int
660 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
661 {
662 struct unw_frame_info tcore_info;
664 if (current == task) {
665 unw_init_running(do_dump_fpu, dst);
666 } else {
667 memset(&tcore_info, 0, sizeof(tcore_info));
668 unw_init_from_blocked_task(&tcore_info, task);
669 do_dump_task_fpu(task, &tcore_info, dst);
670 }
671 return 1;
672 }
674 int
675 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
676 {
677 unw_init_running(do_dump_fpu, dst);
678 return 1; /* f0-f31 are always valid so we always return 1 */
679 }
681 long
682 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
683 struct pt_regs *regs)
684 {
685 char *fname;
686 int error;
688 fname = getname(filename);
689 error = PTR_ERR(fname);
690 if (IS_ERR(fname))
691 goto out;
692 error = do_execve(fname, argv, envp, regs);
693 putname(fname);
694 out:
695 return error;
696 }
698 pid_t
699 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
700 {
701 extern void start_kernel_thread (void);
702 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
703 struct {
704 struct switch_stack sw;
705 struct pt_regs pt;
706 } regs;
708 memset(&regs, 0, sizeof(regs));
709 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
710 regs.pt.r1 = helper_fptr[1]; /* set GP */
711 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
712 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
713 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
714 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
715 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
716 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
717 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
718 regs.sw.pr = (1 << PRED_KERNEL_STACK);
719 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
720 }
721 EXPORT_SYMBOL(kernel_thread);
723 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
724 int
725 kernel_thread_helper (int (*fn)(void *), void *arg)
726 {
727 #ifdef CONFIG_IA32_SUPPORT
728 if (IS_IA32_PROCESS(ia64_task_regs(current))) {
729 /* A kernel thread is always a 64-bit process. */
730 current->thread.map_base = DEFAULT_MAP_BASE;
731 current->thread.task_size = DEFAULT_TASK_SIZE;
732 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
733 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
734 }
735 #endif
736 return (*fn)(arg);
737 }
739 /*
740 * Flush thread state. This is called when a thread does an execve().
741 */
742 void
743 flush_thread (void)
744 {
745 /*
746 * Remove function-return probe instances associated with this task
747 * and put them back on the free list. Do not insert an exit probe for
748 * this function, it will be disabled by kprobe_flush_task if you do.
749 */
750 kprobe_flush_task(current);
752 /* drop floating-point and debug-register state if it exists: */
753 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
754 ia64_drop_fpu(current);
755 if (IS_IA32_PROCESS(ia64_task_regs(current)))
756 ia32_drop_partial_page_list(current);
757 }
759 /*
760 * Clean up state associated with current thread. This is called when
761 * the thread calls exit().
762 */
763 void
764 exit_thread (void)
765 {
767 /*
768 * Remove function-return probe instances associated with this task
769 * and put them back on the free list. Do not insert an exit probe for
770 * this function, it will be disabled by kprobe_flush_task if you do.
771 */
772 kprobe_flush_task(current);
774 ia64_drop_fpu(current);
775 #ifdef CONFIG_PERFMON
776 /* if needed, stop monitoring and flush state to perfmon context */
777 if (current->thread.pfm_context)
778 pfm_exit_thread(current);
780 /* free debug register resources */
781 if (current->thread.flags & IA64_THREAD_DBG_VALID)
782 pfm_release_debug_registers(current);
783 #endif
784 if (IS_IA32_PROCESS(ia64_task_regs(current)))
785 ia32_drop_partial_page_list(current);
786 }
788 unsigned long
789 get_wchan (struct task_struct *p)
790 {
791 struct unw_frame_info info;
792 unsigned long ip;
793 int count = 0;
795 /*
796 * Note: p may not be a blocked task (it could be current or
797 * another process running on some other CPU. Rather than
798 * trying to determine if p is really blocked, we just assume
799 * it's blocked and rely on the unwind routines to fail
800 * gracefully if the process wasn't really blocked after all.
801 * --davidm 99/12/15
802 */
803 unw_init_from_blocked_task(&info, p);
804 do {
805 if (unw_unwind(&info) < 0)
806 return 0;
807 unw_get_ip(&info, &ip);
808 if (!in_sched_functions(ip))
809 return ip;
810 } while (count++ < 16);
811 return 0;
812 }
813 #endif // !XEN
815 void
816 cpu_halt (void)
817 {
818 pal_power_mgmt_info_u_t power_info[8];
819 unsigned long min_power;
820 int i, min_power_state;
822 if (ia64_pal_halt_info(power_info) != 0)
823 return;
825 min_power_state = 0;
826 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
827 for (i = 1; i < 8; ++i)
828 if (power_info[i].pal_power_mgmt_info_s.im
829 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
830 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
831 min_power_state = i;
832 }
834 while (1)
835 ia64_pal_halt(min_power_state);
836 }
838 #ifndef XEN
839 void
840 machine_restart (char *restart_cmd)
841 {
842 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
843 }
845 void
846 machine_halt (void)
847 {
848 cpu_halt();
849 }
851 void
852 machine_power_off (void)
853 {
854 if (pm_power_off)
855 pm_power_off();
856 machine_halt();
857 }
858 #endif // !XEN