direct-io.hg

view linux-2.6-xen-sparse/include/linux/mm.h @ 11509:2e6c10dc7c0b

[POWERPC][XEN] make sure put_domain() is called in case of allocate_rma() failuer

Signed-off-by: Jimi Xenidis <jimix@watson.ibm.com>
Signed-off-by: Hollis Blanchard <hollisb@us.ibm.com>
author Jimi Xenidis <jimix@watson.ibm.com>
date Tue Sep 12 10:53:46 2006 -0400 (2006-09-12)
parents 44e5abbf333b
children 4fad820a2233
line source
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
4 #include <linux/sched.h>
5 #include <linux/errno.h>
6 #include <linux/capability.h>
8 #ifdef __KERNEL__
10 #include <linux/config.h>
11 #include <linux/gfp.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/prio_tree.h>
16 #include <linux/fs.h>
17 #include <linux/mutex.h>
19 struct mempolicy;
20 struct anon_vma;
22 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
23 extern unsigned long max_mapnr;
24 #endif
26 extern unsigned long num_physpages;
27 extern void * high_memory;
28 extern unsigned long vmalloc_earlyreserve;
29 extern int page_cluster;
31 #ifdef CONFIG_SYSCTL
32 extern int sysctl_legacy_va_layout;
33 #else
34 #define sysctl_legacy_va_layout 0
35 #endif
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/atomic.h>
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44 /*
45 * Linux kernel virtual memory manager primitives.
46 * The idea being to have a "virtual" mm in the same way
47 * we have a virtual fs - giving a cleaner interface to the
48 * mm details, and allowing different kinds of memory mappings
49 * (from shared memory to executable loading to arbitrary
50 * mmap() functions).
51 */
53 /*
54 * This struct defines a memory VMM memory area. There is one of these
55 * per VM-area/task. A VM area is any part of the process virtual memory
56 * space that has a special rule for the page-fault handlers (ie a shared
57 * library, the executable area etc).
58 */
59 struct vm_area_struct {
60 struct mm_struct * vm_mm; /* The address space we belong to. */
61 unsigned long vm_start; /* Our start address within vm_mm. */
62 unsigned long vm_end; /* The first byte after our end address
63 within vm_mm. */
65 /* linked list of VM areas per task, sorted by address */
66 struct vm_area_struct *vm_next;
68 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
69 unsigned long vm_flags; /* Flags, listed below. */
71 struct rb_node vm_rb;
73 /*
74 * For areas with an address space and backing store,
75 * linkage into the address_space->i_mmap prio tree, or
76 * linkage to the list of like vmas hanging off its node, or
77 * linkage of vma in the address_space->i_mmap_nonlinear list.
78 */
79 union {
80 struct {
81 struct list_head list;
82 void *parent; /* aligns with prio_tree_node parent */
83 struct vm_area_struct *head;
84 } vm_set;
86 struct raw_prio_tree_node prio_tree_node;
87 } shared;
89 /*
90 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
91 * list, after a COW of one of the file pages. A MAP_SHARED vma
92 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
93 * or brk vma (with NULL file) can only be in an anon_vma list.
94 */
95 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */
96 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
98 /* Function pointers to deal with this struct. */
99 struct vm_operations_struct * vm_ops;
101 /* Information about our backing store: */
102 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
103 units, *not* PAGE_CACHE_SIZE */
104 struct file * vm_file; /* File we map to (can be NULL). */
105 void * vm_private_data; /* was vm_pte (shared mem) */
106 unsigned long vm_truncate_count;/* truncate_count or restart_addr */
108 #ifndef CONFIG_MMU
109 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */
110 #endif
111 #ifdef CONFIG_NUMA
112 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
113 #endif
114 };
116 /*
117 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
118 * disabled, then there's a single shared list of VMAs maintained by the
119 * system, and mm's subscribe to these individually
120 */
121 struct vm_list_struct {
122 struct vm_list_struct *next;
123 struct vm_area_struct *vma;
124 };
126 #ifndef CONFIG_MMU
127 extern struct rb_root nommu_vma_tree;
128 extern struct rw_semaphore nommu_vma_sem;
130 extern unsigned int kobjsize(const void *objp);
131 #endif
133 /*
134 * vm_flags..
135 */
136 #define VM_READ 0x00000001 /* currently active flags */
137 #define VM_WRITE 0x00000002
138 #define VM_EXEC 0x00000004
139 #define VM_SHARED 0x00000008
141 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
142 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
143 #define VM_MAYWRITE 0x00000020
144 #define VM_MAYEXEC 0x00000040
145 #define VM_MAYSHARE 0x00000080
147 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
148 #define VM_GROWSUP 0x00000200
149 #define VM_SHM 0x00000000 /* Means nothing: delete it later */
150 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
151 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
153 #define VM_EXECUTABLE 0x00001000
154 #define VM_LOCKED 0x00002000
155 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
157 /* Used by sys_madvise() */
158 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
159 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
161 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
162 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
163 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
164 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
165 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
166 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
167 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
168 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
169 #ifdef CONFIG_XEN
170 #define VM_FOREIGN 0x04000000 /* Has pages belonging to another VM */
171 #endif
173 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
174 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
175 #endif
177 #ifdef CONFIG_STACK_GROWSUP
178 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
179 #else
180 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
181 #endif
183 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
184 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
185 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
186 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
187 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
189 /*
190 * mapping from the currently active vm_flags protection bits (the
191 * low four bits) to a page protection mask..
192 */
193 extern pgprot_t protection_map[16];
196 /*
197 * These are the virtual MM functions - opening of an area, closing and
198 * unmapping it (needed to keep files on disk up-to-date etc), pointer
199 * to the functions called when a no-page or a wp-page exception occurs.
200 */
201 struct vm_operations_struct {
202 void (*open)(struct vm_area_struct * area);
203 void (*close)(struct vm_area_struct * area);
204 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
205 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
206 #ifdef CONFIG_NUMA
207 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
208 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
209 unsigned long addr);
210 #endif
211 };
213 struct mmu_gather;
214 struct inode;
216 /*
217 * Each physical page in the system has a struct page associated with
218 * it to keep track of whatever it is we are using the page for at the
219 * moment. Note that we have no way to track which tasks are using
220 * a page.
221 */
222 struct page {
223 unsigned long flags; /* Atomic flags, some possibly
224 * updated asynchronously */
225 atomic_t _count; /* Usage count, see below. */
226 atomic_t _mapcount; /* Count of ptes mapped in mms,
227 * to show when page is mapped
228 * & limit reverse map searches.
229 */
230 union {
231 struct {
232 unsigned long private; /* Mapping-private opaque data:
233 * usually used for buffer_heads
234 * if PagePrivate set; used for
235 * swp_entry_t if PageSwapCache;
236 * indicates order in the buddy
237 * system if PG_buddy is set.
238 */
239 struct address_space *mapping; /* If low bit clear, points to
240 * inode address_space, or NULL.
241 * If page mapped as anonymous
242 * memory, low bit is set, and
243 * it points to anon_vma object:
244 * see PAGE_MAPPING_ANON below.
245 */
246 };
247 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
248 spinlock_t ptl;
249 #endif
250 };
251 pgoff_t index; /* Our offset within mapping. */
252 struct list_head lru; /* Pageout list, eg. active_list
253 * protected by zone->lru_lock !
254 */
255 /*
256 * On machines where all RAM is mapped into kernel address space,
257 * we can simply calculate the virtual address. On machines with
258 * highmem some memory is mapped into kernel virtual memory
259 * dynamically, so we need a place to store that address.
260 * Note that this field could be 16 bits on x86 ... ;)
261 *
262 * Architectures with slow multiplication can define
263 * WANT_PAGE_VIRTUAL in asm/page.h
264 */
265 #if defined(WANT_PAGE_VIRTUAL)
266 void *virtual; /* Kernel virtual address (NULL if
267 not kmapped, ie. highmem) */
268 #endif /* WANT_PAGE_VIRTUAL */
269 };
271 #define page_private(page) ((page)->private)
272 #define set_page_private(page, v) ((page)->private = (v))
274 /*
275 * FIXME: take this include out, include page-flags.h in
276 * files which need it (119 of them)
277 */
278 #include <linux/page-flags.h>
280 /*
281 * Methods to modify the page usage count.
282 *
283 * What counts for a page usage:
284 * - cache mapping (page->mapping)
285 * - private data (page->private)
286 * - page mapped in a task's page tables, each mapping
287 * is counted separately
288 *
289 * Also, many kernel routines increase the page count before a critical
290 * routine so they can be sure the page doesn't go away from under them.
291 *
292 * Since 2.6.6 (approx), a free page has ->_count = -1. This is so that we
293 * can use atomic_add_negative(-1, page->_count) to detect when the page
294 * becomes free and so that we can also use atomic_inc_and_test to atomically
295 * detect when we just tried to grab a ref on a page which some other CPU has
296 * already deemed to be freeable.
297 *
298 * NO code should make assumptions about this internal detail! Use the provided
299 * macros which retain the old rules: page_count(page) == 0 is a free page.
300 */
302 /*
303 * Drop a ref, return true if the logical refcount fell to zero (the page has
304 * no users)
305 */
306 #define put_page_testzero(p) \
307 ({ \
308 BUG_ON(atomic_read(&(p)->_count) == -1);\
309 atomic_add_negative(-1, &(p)->_count); \
310 })
312 /*
313 * Grab a ref, return true if the page previously had a logical refcount of
314 * zero. ie: returns true if we just grabbed an already-deemed-to-be-free page
315 */
316 #define get_page_testone(p) atomic_inc_and_test(&(p)->_count)
318 #define set_page_count(p,v) atomic_set(&(p)->_count, (v) - 1)
319 #define __put_page(p) atomic_dec(&(p)->_count)
321 extern void FASTCALL(__page_cache_release(struct page *));
323 static inline int page_count(struct page *page)
324 {
325 if (PageCompound(page))
326 page = (struct page *)page_private(page);
327 return atomic_read(&page->_count) + 1;
328 }
330 static inline void get_page(struct page *page)
331 {
332 if (unlikely(PageCompound(page)))
333 page = (struct page *)page_private(page);
334 atomic_inc(&page->_count);
335 }
337 void put_page(struct page *page);
339 /*
340 * Multiple processes may "see" the same page. E.g. for untouched
341 * mappings of /dev/null, all processes see the same page full of
342 * zeroes, and text pages of executables and shared libraries have
343 * only one copy in memory, at most, normally.
344 *
345 * For the non-reserved pages, page_count(page) denotes a reference count.
346 * page_count() == 0 means the page is free. page->lru is then used for
347 * freelist management in the buddy allocator.
348 * page_count() == 1 means the page is used for exactly one purpose
349 * (e.g. a private data page of one process).
350 *
351 * A page may be used for kmalloc() or anyone else who does a
352 * __get_free_page(). In this case the page_count() is at least 1, and
353 * all other fields are unused but should be 0 or NULL. The
354 * management of this page is the responsibility of the one who uses
355 * it.
356 *
357 * The other pages (we may call them "process pages") are completely
358 * managed by the Linux memory manager: I/O, buffers, swapping etc.
359 * The following discussion applies only to them.
360 *
361 * A page may belong to an inode's memory mapping. In this case,
362 * page->mapping is the pointer to the inode, and page->index is the
363 * file offset of the page, in units of PAGE_CACHE_SIZE.
364 *
365 * A page contains an opaque `private' member, which belongs to the
366 * page's address_space. Usually, this is the address of a circular
367 * list of the page's disk buffers.
368 *
369 * For pages belonging to inodes, the page_count() is the number of
370 * attaches, plus 1 if `private' contains something, plus one for
371 * the page cache itself.
372 *
373 * Instead of keeping dirty/clean pages in per address-space lists, we instead
374 * now tag pages as dirty/under writeback in the radix tree.
375 *
376 * There is also a per-mapping radix tree mapping index to the page
377 * in memory if present. The tree is rooted at mapping->root.
378 *
379 * All process pages can do I/O:
380 * - inode pages may need to be read from disk,
381 * - inode pages which have been modified and are MAP_SHARED may need
382 * to be written to disk,
383 * - private pages which have been modified may need to be swapped out
384 * to swap space and (later) to be read back into memory.
385 */
387 /*
388 * The zone field is never updated after free_area_init_core()
389 * sets it, so none of the operations on it need to be atomic.
390 */
393 /*
394 * page->flags layout:
395 *
396 * There are three possibilities for how page->flags get
397 * laid out. The first is for the normal case, without
398 * sparsemem. The second is for sparsemem when there is
399 * plenty of space for node and section. The last is when
400 * we have run out of space and have to fall back to an
401 * alternate (slower) way of determining the node.
402 *
403 * No sparsemem: | NODE | ZONE | ... | FLAGS |
404 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
405 * no space for node: | SECTION | ZONE | ... | FLAGS |
406 */
407 #ifdef CONFIG_SPARSEMEM
408 #define SECTIONS_WIDTH SECTIONS_SHIFT
409 #else
410 #define SECTIONS_WIDTH 0
411 #endif
413 #define ZONES_WIDTH ZONES_SHIFT
415 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
416 #define NODES_WIDTH NODES_SHIFT
417 #else
418 #define NODES_WIDTH 0
419 #endif
421 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
422 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
423 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
424 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
426 /*
427 * We are going to use the flags for the page to node mapping if its in
428 * there. This includes the case where there is no node, so it is implicit.
429 */
430 #define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0)
432 #ifndef PFN_SECTION_SHIFT
433 #define PFN_SECTION_SHIFT 0
434 #endif
436 /*
437 * Define the bit shifts to access each section. For non-existant
438 * sections we define the shift as 0; that plus a 0 mask ensures
439 * the compiler will optimise away reference to them.
440 */
441 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
442 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
443 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
445 /* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */
446 #if FLAGS_HAS_NODE
447 #define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT)
448 #else
449 #define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
450 #endif
451 #define ZONETABLE_PGSHIFT ZONES_PGSHIFT
453 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
454 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
455 #endif
457 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
458 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
459 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
460 #define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1)
462 static inline unsigned long page_zonenum(struct page *page)
463 {
464 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
465 }
467 struct zone;
468 extern struct zone *zone_table[];
470 static inline struct zone *page_zone(struct page *page)
471 {
472 return zone_table[(page->flags >> ZONETABLE_PGSHIFT) &
473 ZONETABLE_MASK];
474 }
476 static inline unsigned long page_to_nid(struct page *page)
477 {
478 if (FLAGS_HAS_NODE)
479 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
480 else
481 return page_zone(page)->zone_pgdat->node_id;
482 }
483 static inline unsigned long page_to_section(struct page *page)
484 {
485 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
486 }
488 static inline void set_page_zone(struct page *page, unsigned long zone)
489 {
490 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
491 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
492 }
493 static inline void set_page_node(struct page *page, unsigned long node)
494 {
495 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
496 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
497 }
498 static inline void set_page_section(struct page *page, unsigned long section)
499 {
500 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
501 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
502 }
504 static inline void set_page_links(struct page *page, unsigned long zone,
505 unsigned long node, unsigned long pfn)
506 {
507 set_page_zone(page, zone);
508 set_page_node(page, node);
509 set_page_section(page, pfn_to_section_nr(pfn));
510 }
512 #ifndef CONFIG_DISCONTIGMEM
513 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
514 extern struct page *mem_map;
515 #endif
517 static __always_inline void *lowmem_page_address(struct page *page)
518 {
519 return __va(page_to_pfn(page) << PAGE_SHIFT);
520 }
522 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
523 #define HASHED_PAGE_VIRTUAL
524 #endif
526 #if defined(WANT_PAGE_VIRTUAL)
527 #define page_address(page) ((page)->virtual)
528 #define set_page_address(page, address) \
529 do { \
530 (page)->virtual = (address); \
531 } while(0)
532 #define page_address_init() do { } while(0)
533 #endif
535 #if defined(HASHED_PAGE_VIRTUAL)
536 void *page_address(struct page *page);
537 void set_page_address(struct page *page, void *virtual);
538 void page_address_init(void);
539 #endif
541 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
542 #define page_address(page) lowmem_page_address(page)
543 #define set_page_address(page, address) do { } while(0)
544 #define page_address_init() do { } while(0)
545 #endif
547 /*
548 * On an anonymous page mapped into a user virtual memory area,
549 * page->mapping points to its anon_vma, not to a struct address_space;
550 * with the PAGE_MAPPING_ANON bit set to distinguish it.
551 *
552 * Please note that, confusingly, "page_mapping" refers to the inode
553 * address_space which maps the page from disk; whereas "page_mapped"
554 * refers to user virtual address space into which the page is mapped.
555 */
556 #define PAGE_MAPPING_ANON 1
558 extern struct address_space swapper_space;
559 static inline struct address_space *page_mapping(struct page *page)
560 {
561 struct address_space *mapping = page->mapping;
563 if (unlikely(PageSwapCache(page)))
564 mapping = &swapper_space;
565 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
566 mapping = NULL;
567 return mapping;
568 }
570 static inline int PageAnon(struct page *page)
571 {
572 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
573 }
575 /*
576 * Return the pagecache index of the passed page. Regular pagecache pages
577 * use ->index whereas swapcache pages use ->private
578 */
579 static inline pgoff_t page_index(struct page *page)
580 {
581 if (unlikely(PageSwapCache(page)))
582 return page_private(page);
583 return page->index;
584 }
586 /*
587 * The atomic page->_mapcount, like _count, starts from -1:
588 * so that transitions both from it and to it can be tracked,
589 * using atomic_inc_and_test and atomic_add_negative(-1).
590 */
591 static inline void reset_page_mapcount(struct page *page)
592 {
593 atomic_set(&(page)->_mapcount, -1);
594 }
596 static inline int page_mapcount(struct page *page)
597 {
598 return atomic_read(&(page)->_mapcount) + 1;
599 }
601 /*
602 * Return true if this page is mapped into pagetables.
603 */
604 static inline int page_mapped(struct page *page)
605 {
606 return atomic_read(&(page)->_mapcount) >= 0;
607 }
609 /*
610 * Error return values for the *_nopage functions
611 */
612 #define NOPAGE_SIGBUS (NULL)
613 #define NOPAGE_OOM ((struct page *) (-1))
615 /*
616 * Different kinds of faults, as returned by handle_mm_fault().
617 * Used to decide whether a process gets delivered SIGBUS or
618 * just gets major/minor fault counters bumped up.
619 */
620 #define VM_FAULT_OOM 0x00
621 #define VM_FAULT_SIGBUS 0x01
622 #define VM_FAULT_MINOR 0x02
623 #define VM_FAULT_MAJOR 0x03
625 /*
626 * Special case for get_user_pages.
627 * Must be in a distinct bit from the above VM_FAULT_ flags.
628 */
629 #define VM_FAULT_WRITE 0x10
631 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
633 extern void show_free_areas(void);
635 #ifdef CONFIG_SHMEM
636 struct page *shmem_nopage(struct vm_area_struct *vma,
637 unsigned long address, int *type);
638 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
639 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
640 unsigned long addr);
641 int shmem_lock(struct file *file, int lock, struct user_struct *user);
642 #else
643 #define shmem_nopage filemap_nopage
645 static inline int shmem_lock(struct file *file, int lock,
646 struct user_struct *user)
647 {
648 return 0;
649 }
651 static inline int shmem_set_policy(struct vm_area_struct *vma,
652 struct mempolicy *new)
653 {
654 return 0;
655 }
657 static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
658 unsigned long addr)
659 {
660 return NULL;
661 }
662 #endif
663 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
664 extern int shmem_mmap(struct file *file, struct vm_area_struct *vma);
666 int shmem_zero_setup(struct vm_area_struct *);
668 #ifndef CONFIG_MMU
669 extern unsigned long shmem_get_unmapped_area(struct file *file,
670 unsigned long addr,
671 unsigned long len,
672 unsigned long pgoff,
673 unsigned long flags);
674 #endif
676 static inline int can_do_mlock(void)
677 {
678 if (capable(CAP_IPC_LOCK))
679 return 1;
680 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
681 return 1;
682 return 0;
683 }
684 extern int user_shm_lock(size_t, struct user_struct *);
685 extern void user_shm_unlock(size_t, struct user_struct *);
687 /*
688 * Parameter block passed down to zap_pte_range in exceptional cases.
689 */
690 struct zap_details {
691 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
692 struct address_space *check_mapping; /* Check page->mapping if set */
693 pgoff_t first_index; /* Lowest page->index to unmap */
694 pgoff_t last_index; /* Highest page->index to unmap */
695 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
696 unsigned long truncate_count; /* Compare vm_truncate_count */
697 };
699 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
700 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
701 unsigned long size, struct zap_details *);
702 unsigned long unmap_vmas(struct mmu_gather **tlb,
703 struct vm_area_struct *start_vma, unsigned long start_addr,
704 unsigned long end_addr, unsigned long *nr_accounted,
705 struct zap_details *);
706 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
707 unsigned long end, unsigned long floor, unsigned long ceiling);
708 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
709 unsigned long floor, unsigned long ceiling);
710 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
711 struct vm_area_struct *vma);
712 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
713 unsigned long size, pgprot_t prot);
714 void unmap_mapping_range(struct address_space *mapping,
715 loff_t const holebegin, loff_t const holelen, int even_cows);
717 static inline void unmap_shared_mapping_range(struct address_space *mapping,
718 loff_t const holebegin, loff_t const holelen)
719 {
720 unmap_mapping_range(mapping, holebegin, holelen, 0);
721 }
723 extern int vmtruncate(struct inode * inode, loff_t offset);
724 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
725 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
726 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
728 #ifdef CONFIG_MMU
729 extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
730 unsigned long address, int write_access);
732 static inline int handle_mm_fault(struct mm_struct *mm,
733 struct vm_area_struct *vma, unsigned long address,
734 int write_access)
735 {
736 return __handle_mm_fault(mm, vma, address, write_access) &
737 (~VM_FAULT_WRITE);
738 }
739 #else
740 static inline int handle_mm_fault(struct mm_struct *mm,
741 struct vm_area_struct *vma, unsigned long address,
742 int write_access)
743 {
744 /* should never happen if there's no MMU */
745 BUG();
746 return VM_FAULT_SIGBUS;
747 }
748 #endif
750 extern int make_pages_present(unsigned long addr, unsigned long end);
751 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
752 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
754 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
755 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
756 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
758 int __set_page_dirty_buffers(struct page *page);
759 int __set_page_dirty_nobuffers(struct page *page);
760 int redirty_page_for_writepage(struct writeback_control *wbc,
761 struct page *page);
762 int FASTCALL(set_page_dirty(struct page *page));
763 int set_page_dirty_lock(struct page *page);
764 int clear_page_dirty_for_io(struct page *page);
766 extern unsigned long do_mremap(unsigned long addr,
767 unsigned long old_len, unsigned long new_len,
768 unsigned long flags, unsigned long new_addr);
770 /*
771 * Prototype to add a shrinker callback for ageable caches.
772 *
773 * These functions are passed a count `nr_to_scan' and a gfpmask. They should
774 * scan `nr_to_scan' objects, attempting to free them.
775 *
776 * The callback must return the number of objects which remain in the cache.
777 *
778 * The callback will be passed nr_to_scan == 0 when the VM is querying the
779 * cache size, so a fastpath for that case is appropriate.
780 */
781 typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
783 /*
784 * Add an aging callback. The int is the number of 'seeks' it takes
785 * to recreate one of the objects that these functions age.
786 */
788 #define DEFAULT_SEEKS 2
789 struct shrinker;
790 extern struct shrinker *set_shrinker(int, shrinker_t);
791 extern void remove_shrinker(struct shrinker *shrinker);
793 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
795 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
796 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
797 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
798 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
800 /*
801 * The following ifdef needed to get the 4level-fixup.h header to work.
802 * Remove it when 4level-fixup.h has been removed.
803 */
804 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
805 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
806 {
807 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
808 NULL: pud_offset(pgd, address);
809 }
811 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
812 {
813 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
814 NULL: pmd_offset(pud, address);
815 }
816 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
818 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
819 /*
820 * We tuck a spinlock to guard each pagetable page into its struct page,
821 * at page->private, with BUILD_BUG_ON to make sure that this will not
822 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
823 * When freeing, reset page->mapping so free_pages_check won't complain.
824 */
825 #define __pte_lockptr(page) &((page)->ptl)
826 #define pte_lock_init(_page) do { \
827 spin_lock_init(__pte_lockptr(_page)); \
828 } while (0)
829 #define pte_lock_deinit(page) ((page)->mapping = NULL)
830 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
831 #else
832 /*
833 * We use mm->page_table_lock to guard all pagetable pages of the mm.
834 */
835 #define pte_lock_init(page) do {} while (0)
836 #define pte_lock_deinit(page) do {} while (0)
837 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
838 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
840 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
841 ({ \
842 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
843 pte_t *__pte = pte_offset_map(pmd, address); \
844 *(ptlp) = __ptl; \
845 spin_lock(__ptl); \
846 __pte; \
847 })
849 #define pte_unmap_unlock(pte, ptl) do { \
850 spin_unlock(ptl); \
851 pte_unmap(pte); \
852 } while (0)
854 #define pte_alloc_map(mm, pmd, address) \
855 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
856 NULL: pte_offset_map(pmd, address))
858 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
859 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
860 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
862 #define pte_alloc_kernel(pmd, address) \
863 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
864 NULL: pte_offset_kernel(pmd, address))
866 extern void free_area_init(unsigned long * zones_size);
867 extern void free_area_init_node(int nid, pg_data_t *pgdat,
868 unsigned long * zones_size, unsigned long zone_start_pfn,
869 unsigned long *zholes_size);
870 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long);
871 extern void setup_per_zone_pages_min(void);
872 extern void mem_init(void);
873 extern void show_mem(void);
874 extern void si_meminfo(struct sysinfo * val);
875 extern void si_meminfo_node(struct sysinfo *val, int nid);
877 #ifdef CONFIG_NUMA
878 extern void setup_per_cpu_pageset(void);
879 #else
880 static inline void setup_per_cpu_pageset(void) {}
881 #endif
883 /* prio_tree.c */
884 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
885 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
886 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
887 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
888 struct prio_tree_iter *iter);
890 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
891 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
892 (vma = vma_prio_tree_next(vma, iter)); )
894 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
895 struct list_head *list)
896 {
897 vma->shared.vm_set.parent = NULL;
898 list_add_tail(&vma->shared.vm_set.list, list);
899 }
901 /* mmap.c */
902 extern int __vm_enough_memory(long pages, int cap_sys_admin);
903 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
904 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
905 extern struct vm_area_struct *vma_merge(struct mm_struct *,
906 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
907 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
908 struct mempolicy *);
909 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
910 extern int split_vma(struct mm_struct *,
911 struct vm_area_struct *, unsigned long addr, int new_below);
912 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
913 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
914 struct rb_node **, struct rb_node *);
915 extern void unlink_file_vma(struct vm_area_struct *);
916 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
917 unsigned long addr, unsigned long len, pgoff_t pgoff);
918 extern void exit_mmap(struct mm_struct *);
919 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
921 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
923 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
924 unsigned long len, unsigned long prot,
925 unsigned long flag, unsigned long pgoff);
927 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
928 unsigned long len, unsigned long prot,
929 unsigned long flag, unsigned long offset)
930 {
931 unsigned long ret = -EINVAL;
932 if ((offset + PAGE_ALIGN(len)) < offset)
933 goto out;
934 if (!(offset & ~PAGE_MASK))
935 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
936 out:
937 return ret;
938 }
940 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
942 extern unsigned long do_brk(unsigned long, unsigned long);
944 /* filemap.c */
945 extern unsigned long page_unuse(struct page *);
946 extern void truncate_inode_pages(struct address_space *, loff_t);
947 extern void truncate_inode_pages_range(struct address_space *,
948 loff_t lstart, loff_t lend);
950 /* generic vm_area_ops exported for stackable file systems */
951 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
952 extern int filemap_populate(struct vm_area_struct *, unsigned long,
953 unsigned long, pgprot_t, unsigned long, int);
955 /* mm/page-writeback.c */
956 int write_one_page(struct page *page, int wait);
958 /* readahead.c */
959 #define VM_MAX_READAHEAD 128 /* kbytes */
960 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
961 #define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before
962 * turning readahead off */
964 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
965 pgoff_t offset, unsigned long nr_to_read);
966 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
967 pgoff_t offset, unsigned long nr_to_read);
968 unsigned long page_cache_readahead(struct address_space *mapping,
969 struct file_ra_state *ra,
970 struct file *filp,
971 pgoff_t offset,
972 unsigned long size);
973 void handle_ra_miss(struct address_space *mapping,
974 struct file_ra_state *ra, pgoff_t offset);
975 unsigned long max_sane_readahead(unsigned long nr);
977 /* Do stack extension */
978 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
979 #ifdef CONFIG_IA64
980 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
981 #endif
983 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
984 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
985 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
986 struct vm_area_struct **pprev);
988 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
989 NULL if none. Assume start_addr < end_addr. */
990 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
991 {
992 struct vm_area_struct * vma = find_vma(mm,start_addr);
994 if (vma && end_addr <= vma->vm_start)
995 vma = NULL;
996 return vma;
997 }
999 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1001 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1004 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1005 struct page *vmalloc_to_page(void *addr);
1006 unsigned long vmalloc_to_pfn(void *addr);
1007 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1008 unsigned long pfn, unsigned long size, pgprot_t);
1009 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1011 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1012 unsigned int foll_flags);
1013 #define FOLL_WRITE 0x01 /* check pte is writable */
1014 #define FOLL_TOUCH 0x02 /* mark page accessed */
1015 #define FOLL_GET 0x04 /* do get_page on page */
1016 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1018 #ifdef CONFIG_XEN
1019 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1020 void *data);
1021 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1022 unsigned long size, pte_fn_t fn, void *data);
1023 #endif
1025 #ifdef CONFIG_PROC_FS
1026 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1027 #else
1028 static inline void vm_stat_account(struct mm_struct *mm,
1029 unsigned long flags, struct file *file, long pages)
1032 #endif /* CONFIG_PROC_FS */
1034 #ifndef CONFIG_DEBUG_PAGEALLOC
1035 static inline void
1036 kernel_map_pages(struct page *page, int numpages, int enable)
1038 if (!PageHighMem(page) && !enable)
1039 mutex_debug_check_no_locks_freed(page_address(page),
1040 numpages * PAGE_SIZE);
1042 #endif
1044 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1045 #ifdef __HAVE_ARCH_GATE_AREA
1046 int in_gate_area_no_task(unsigned long addr);
1047 int in_gate_area(struct task_struct *task, unsigned long addr);
1048 #else
1049 int in_gate_area_no_task(unsigned long addr);
1050 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1051 #endif /* __HAVE_ARCH_GATE_AREA */
1053 /* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */
1054 #define OOM_DISABLE -17
1056 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1057 void __user *, size_t *, loff_t *);
1058 int shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1059 unsigned long lru_pages);
1060 void drop_pagecache(void);
1061 void drop_slab(void);
1063 #ifndef CONFIG_MMU
1064 #define randomize_va_space 0
1065 #else
1066 extern int randomize_va_space;
1067 #endif
1069 #endif /* __KERNEL__ */
1070 #endif /* _LINUX_MM_H */